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ABSTRACT

Searches for faint companions to stars may use coronagraphs fed by adaptive optics (AO) systems of very
high correction. Sensitivity will be limited by focal plane speckles from residual, uncorrected wave-front errors,
so it is important to characterize remnant coronagraphic speckles. A general analysis is presented, illustrated with
the classical Lyot coronagraph and the newer four quadrant phase mask scheme. Two kinds of remnant speckles,
of distinct symmetry, occur that are closely analogous to those arising in direct imaging at high correction.
Properties and typical intensity estimates are presented, which are useful for estimating speckle noise and false
companion detection levels and reduction strategies. For realistic parameters describing some current ground-
based observations, the novel antisymmetric “pinned” speckles, usually neglected even in direct imaging, are
nonnegligible in narrowband short exposures. For parameters appropriate to a space-borne coronagraph on the
Hubble Space Telescope, these anomalous speckles are in fact dominant close to the star and thus a potentially
significant source of false companion detections.

Subject headings: instrumentation: adaptive optics — techniques: high angular resolution —
techniques: image processing — turbulence

1. INTRODUCTION

Ground-based companion searches are hampered by large
phase errors due to atmospheric turbulence. In space, incident
wave fronts are flat, but imperfect optics and slow deformations
of the telescope still produce phase errors that cause a slowly
changing halo of focal plane speckles. In either situation, adap-
tive or active wave-front correction is desirable, and the rem-
nant postcorrection errors set important sensitivity limits (Ra-
cine et al. 1999). In adaptive imaging at high correction,
speckles have distinct symmetries (Rouan et al. 2000; Boc-
caletti et al. 2002; Sivaramakrishnan et al. 2002, 2003). At
sufficiently high correction, exotic speckles “pinned” to or am-
plified by the diffraction-limited point-spread function (PSF)
must dominate (Bloemhof et al. 2001). Occurring in antisym-
metric patterns, these contribute no net power over an entire
image (Bloemhof 2004) but can produce individual speckles
brighter than the more familiar unpinned speckles. Simple in-
tensity estimates have been derived for the two speckle types
of greatest physical interest (Bloemhof 2003). For unpinned,
symmetric speckles, typical intensities are roughly constant
throughout the halo and depend on the Strehl ratioS and the
deformable-mirror (DM) actuator density , whereD is theD/a
telescope diameter anda the actuator spacing. The pinned,
antisymmetric speckles, which tend to dominate at highS and

, are brightest on the inner Airy rings.D/a
Companion detection is much enhanced when adaptive op-

tics (AO) systems are coupled to coronagraphs, which sub-
stantially attenuate both the core and the rings of the diffraction-
limited PSF produced by an on-axis star. In this Letter,
Fourier-optical analysis is applied to a highly corrected coro-
nagraph. The behavior of remnant coronagraphic speckles is
discussed, and typical intensities estimated. It is found, perhaps
surprisingly, that the anomalous pinned linear-term speckles
may play a significant role in ground- and space-based
observations.

2. FOURIER-OPTICAL ANALYSIS OF A HIGHLY CORRECTED
CORONAGRAPH

Figure 1 shows a telescope/coronagraph schematic. In the
notation of Bloemhof et al. (2001), the telescope is modeled
by a real aperture function , where (y, h) are pupil planeA(y, h)
coordinates. Scintillation is neglected. Remnant wave-front er-
rors not corrected by the AO system are represented by the
real phase function . Optical fields in focal plane FP1f(y, h)
and reimaged pupil P2 are multiplied by functions andf (x, y)

, respectively, representing the effects of masks at thosep(y, h)
locations; p is generally a round hole in an opaque screen
blocking light diverted to the outer rim of the pupil by the
focal plane mask, andf may be a spot occulting the central
few of the field (as in a Lyot coronagraph) or four quad-l/D
rants of phase shifts alternately 0 orp (as in the four quadrant
phase mask, or FQPM). Apodized masks and other variants
may be treated by straightforward generalization. Focal and
pupil plane fields are related by Fourier transformation (denoted

); the final image has intensityF{}

�1 2I(x, y) p FF { p(y, h)F { f (x, y)F {A(y, h) exp [if(y, h)]}}} F .

(1)

If the degree of adaptive correction is high, the remnant phase
f is small: the mean square wave-front phase error across the
aperture is , whereS is the Strehl ratio. At suf-2Af S p 1 � S
ficiently high Strehl, the pupil plane optical fieldA exp (if)
may be approximated as , and the coronagraphic im-A(1 � if)
age of the bright on-axis star that produces speckles is

�1 2I(x, y) ≈ FF { pF { fF {A(1 � if)}}} F
�1 2p FF { pF { fF {A}}} F

�1 ∗� 2 Re [i(F { pF { fF {A}}})
�1# (F { pF { fF {f}}})]

�1 2� FF { pF { fF {f}}} F . (2)
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Fig. 1.—Schematic of a coronagraph. Light from a star enters a telescope
on the left where the aperture defines the entrance pupil. Image formation is
represented schematically by a lens; optical fields in the focal plane are related
to those in the pupil plane by Fourier transformation. A focal plane mask “f,”
inserted as shown, multiplies the fields. A Lyot mask “p” blocks light that the
focal plane mask has diverted to the periphery of the reimaged pupil (P2).
Final image intensity is the squared modulus of the optical fields.

For simplicity, an unapodized aperture has been assumed, so
we may write . Neglected terms describe fainter speck-Af p f
les that play a lesser role in companion detection (§ 4). An
asterisk denotes complex conjugation, and “ ” the real part.Re ()
Equation (2) may be studied numerically, but simple arguments
give convenient analytic expressions for the various terms.

The first term is the PSF from the central star (an Airy pattern
, ∼ wide, if A is an unobscured clear circle of diameter2FAF l/D

D; here the overbar also denotes Fourier transformation) at-
tenuated by the action of the coronagraph. Ideally, attenuation
is small for any source a few or more off-axis. Suppressionl/D
of the main lobe and Airy rings of the on-axis diffraction pattern
may be described by

�1 2 2FF { pF { fF {A}}} F ∼ FAF /R , (3)cor

where the coronagraphic reduction factor (greaterR (x, y)cor

than unity and possibly large) is the intensity ratio of the PSF
to the coronagraphic image of the on-axis star for each focal
plane position . Azimuthal averages of may be pre-(x, y) Rcor

sented, and averaging over some radial neighborhood may also
be appropriate, as the coronagraph will shift Airy rings.

3. SPATIAL/TEMPORAL PROPERTIES OF CORONAGRAPH
SPECKLES

3.1. Unpinned Symmetric Speckles from the Quadratic Term

The third term in equation (2), , de-�1 2FF { pF { fF {f}}} F
scribes speckles closely analogous to the unpinned quadratic
speckles derived for simple AO imaging systems, modified2FfF
only slightly by the coronagraph. Similar nomenclature is ap-
propriate: the term is quadratic in the coronagraph-filtered
speckle amplitude, . These speckles move�1F { pF { fF {f}}}
freely in the focal plane within a halo of diameter∼ andl/a
fully account for the speckle power, (Bloemhof 2004).1 � S
Past studies (Rouan et al. 2000; Boccaletti et al. 2002) con-
sidered only the quadratic term, as is appropriate when isRcor

so large that the second term of equation (2) is negligible. (In
practice, this is not always the case; see § 5.) These investi-
gators found that quadratic-term speckles appear in spatially
symmetric patterns: the phase screenf has a Hermitian Fourier
transform (Bracewell 1986), which is obviously still Her-f
mitian when multiplied by a real Lyot or FQPM focal plane

filter function f. The inverse transform of this is real, as is the
product with the real pupil plane filter functionp. The final
transform ( ) is then a Hermitian function,�1F { pF { fF {f}}}
whose squared modulus must be symmetric.

Figure 2 demonstrates that quadratic speckles pass through
a Lyot or FQPM coronagraph with little alteration: they are
slightly broadened and lowered in peak intensity with the nar-
rowing of the reimaged pupil byp, as is any off-axis source.
These effects, although small (∼10%), are included in § 4 and
seen in numerical simulations. Iff describes an apodized mask
(e.g., radial Gaussian, radial cosine, linear cosine), it modulates
speckle intensities over the focal plane in the obvious way: one
may think of individual quadratic speckles as sources from the
first focal plane reimaged by the coronagraph.

3.2. Pinned Antisymmetric Speckles from the Linear Term

The second term in equation (2), roughly linear in the corona-
graphic speckle amplitude , is analogous to�1F { pF { fF {f}}}
the linear term derived for highly corrected imaging systems
(Bloemhof et al. 2001) and inherits much of that term’s unusual
behavior. These speckles are manifestly “pinned” to (localized
on) secondary maxima of the primary star’s diffraction pattern,
inheriting its nulls through the factor . For�1 ∗(F { pF { fF {A}}})
real aperture functionA, is Hermitian by�1F { pF { fF {A}}}
arguments given in § 3.1 for . The product�1F { pF { fF {f}}}
of these two factors is also Hermitian; multiplying byi and
extracting the real part give a spatially antisymmetric speckle
pattern.

Figure 2 shows that linear-term speckles are attenuated by
either a Lyot or FQPM coronagraph. Being spatially antisym-
metric, the linear term sums to zero over the entire focal plane
for any instantaneous pupil phase realization and so contributes
nothing to the speckle power (Bloemhof 2004, where(1 � S)
zero net power from speckles with possibly large individual
intensities was called “anomalous”). Also, in a sufficiently long
integration, linear-term speckles will average to zero at any
point in the focal plane, assuming the AO system delivers
random, zero mean phase errors. On the ground, this averaging
ideally takes many cycles of the AO system, each comparable
to the atmospheric coherence time. In space, this averaging
may take much longer, and there may be more potential for
phase excursions.

4. ESTIMATED INTENSITIES OF CORONAGRAPH SPECKLES

At high Strehl ratio, simple heuristic arguments may be used
to estimate the peak intensity of a typical unpinned speckle
from the quadratic term of equation (2):

(1 � S)
�1 2quadratic∼ FF{ pF { fF {f}}} F ∼

S
2 2# (1/0.342)(a/D) (D /D) . (4)p

As in direct imaging (Bloemhof 2003), the speckle image
power is divided among∼ speckles (Roddier21 � S 0.342(D/a)
1981). But here the effective pupil diameter is reduced by

(typically ∼0.9), broadening the PSF and speckles alikeD /Dp

and reducing the peak intensity of a typical speckle by
(∼0.8). As with direct imaging, the factorS in the2(D /D)p

denominator normalizes the speckle height to that of the cor-
rected PSF, containing fractional powerS, rather than to that
of an ideal PSF; the difference is negligible at high Strehl.

From equation (2), the relative intensity of linear-term speckles
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Fig. 2.—Simulated symmetric quadratic-term speckles �1 2FF {pF { fF {f}}} F
(left) are almost unchanged by coronagraphs, just slightly broadened and attenuated
in peak intensity by the Lyot mask. Antisymmetric linear-term speckles

(right) are significantly atten-�1 ∗ �12 Re [i(F {pF { fF {A}}}) ( F {pF { fF {f}}})]
uated by a coronagraph. At the top, the telescope PSF shows the spatial scale for all
panels. The second row shows quadratic and linear speckles for the telescope alone.
The bottom two rows show these speckles after passage through Lyot (6 diameterl/D
occulting disk) and FQPM coronagraphs, each with a Lyot filter 0.90D in diameter.
The intensity scale is arbitrary but is the same in all speckle panels. Zero is gray;
white and black represent positive and negative intensities. Adaptive correction pa-
rameters are representative ofHST, but coronagraphic reduction factors are larger.Rcor

is determined by the relative strength of the coronagraphically
attenuated diffraction amplitude, , and the�1FF { pF { fF {A}}} F
speckle amplitude, . Using equations (3)�1FF { pF { fF {f}}} F
and (4), the ratio of typical intensities is

��1 Rcorquadratic FF{ pF { fF {f}}} F 1∼ ∼
�1� �FlinearF 2FF{ pF { fF {A}}} F FAF 2

(1 � S) 2 2�# (1/0.342)(a/D) (D /D) . (5)pS

The unusual effects of the pinned speckles will appear, at
least in narrowband short integrations involving only a few
speckle realizations, when the ratio in equation (5) is small
compared to unity: i.e., at high Strehl ratioS and actuator
density . The latter condition is equivalent to relativelyD/a
smooth phase functions across the pupil or to relatively large
halos in the image plane. Linear-term speckles will have lower
impact when the coronagraphic reduction factor is veryRcor

high, suppressing the Airy rings by which they are amplified.
Formally, additional speckle terms may be derived from

higher order expansion of the phase exponential in equation
(1). For example, in simple notation appropriate to direct im-
aging, expansion to second order inf gives three new terms:
� , , and . These are mathemati-∗ ∗2 2 2 2Re (A f ) Re (if f ) Ff F /4
cally interesting but produce speckles fainter than those from
the physically most relevant terms, linear and quadratic
[ and in this notation]. The brightest new term,∗ 22 Re (iA f) FfF
� , generates a PSF correction plus pinned speckles∗ 2Re (A f )
of zero temporal mean that are much fainter at high Strehl than
those from the archetypical pinned term . Hence,∗2 Re (iA f)
in direct or coronagraphic imaging, and generally with either
clear or apodized apertures, the terms retained in equation (2)
describe the essential leading-order behavior of the PSF, of
pinned speckles, and of unpinned speckles.

5. IMPLICATIONS

Speckle evolution generates speckle noise #j p (F /4)s

(Racine et al. 1999); is the atmospheric coherence1/2(t/t ) t0 0

time, for ground-based observations, and is the intensity ofFs

a typical speckle. So equations (4) and (5) determine the speckle
noise contributions of unpinned (quadratic) and pinned (linear)
speckles. Some examples follow to illustrate these results.

The Lyot coronagraph on the Palomar AO system has been
modeled by Sivaramakrishnan et al. (2001). They find a
primary-star reduction factor on the second Airy ring,R ∼ 6cor

and ∼1 (no substantial reduction) on the 10th, assumingS ∼
. Then equation (5), with , predicts that unpinned0.79 D/a ∼ 16

speckles are brighter than pinned linear-term speckles by a
factor of only 1.3 on the second Airy ring, and of about 4 on
the 10th. An FQPM coronagraph on the Very Large Telescope
has given and∼1 on the second and 10th Airy rings,R ∼ 2.2cor

for (A. Boccaletti et al. 2004, in preparation). Assum-S p 0.3
ing that the correction is increased enough to give speckles of
distinct symmetry, and assuming that suppression improved by
an order of magnitude, linear-term speckles would still ap-
proach the intensity of quadratic to within a factor of 2, even
before any image processing to suppress quadratic speckles.
These examples show that, even at the moderate wave-front
correction feasible on the ground in the near term, the sup-
pression of practical coronagraphs will not render pinned speck-
les entirely negligible.
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Fig. 3.—Potential false planets in a space-based coronagraph due to linear-
term speckles. “Exact” images are shown for�1 2FF { pF { fF { A exp (if)}}} F
Lyot and FQPM coronagraphs. Many speckles are symmetric (e.g., “s”), but
the isolated antisymmetric speckle “a,” with no comparably bright counterpart,
might produce a false planet detection in a narrowband short integration (see
text). Adaptive correction parameters are representative of theHST NICMOS
coronagraph, although the model values of are larger, suppressing anti-Rcor

symmetric linear-term speckles even more than in the real case. Zero is gray;
white represents positive intensity.

An illustration of these concepts at very high Strehl, where
they are most appropriate, is the Near-Infrared Camera and Multi-
Object Spectrometer (NICMOS) coronagraph on theHubble
Space Telescope (HST), which provides correction better than

. H-band images (Schneider & Silverstone 2003) revealS ∼ 0.98
an inner halo of diameter∼3�, implying a characteristic transverse
scalea of aperture phase errors corresponding to . TheseD/a ∼ 21
parameters imply remnant quadratic speckle intensities of

of the PSF peak. The coronagraphic reduction factor�41.2# 10
is just outside the occulting spot, at∼ , and dropsR ∼ 10 2l/Dcor

to ∼4 at . So equation (5) predicts that pinned anti-′′1 ∼ 7l/D
symmetric speckles, from the second term of equation (2), are
typically brighter than the symmetric quadratic speckles in any
instantaneous realization of the pupil phase screen by a factor
of roughly 2.5 just outside the occulting spot, where searches
for companions will be concentrated. (They are fainter by a factor
of only about 1.2 at 1�.)

Simulations are shown in Figure 3. Subtraction of spatially
inverted copies of images (Rouan et al. 2000), to suppress
quadratic speckles, would enhance the relative intensity of
pinned linear speckles, which survive unchanged. An off-axis
point source would leave a half-strength antisymmetric sig-
nature, so pinned speckles would mimic companions. Time
integration may suppress pinned speckles, which have zero
mean over a large number of independent realizations, but
speckles in a space-borne observatory may evolve quite slowly.

6. CONCLUSIONS

On the ground or in space, remnant focal plane speckles will
set limits on image noise and coronagraph contrast. In close
analogy to high-Strehl direct imaging, the dominant examples
of pinned and unpinned speckle behavior are captured by the
last two terms in equation (2), roughly linear and quadratic in
the coronagraph-filtered speckle amplitude .�1F { pF { fF {f}}}
These occur in spatially antisymmetric and symmetric patterns,
respectively (§ 3); rough estimates of typical intensities are given
in § 4. Quadratic speckles move freely within a halo of diameter

and fully account for the traditional speckle image powerl/a
.1 � S

Linear-term speckles, not previously considered, are exotic,
exhibiting ‘‘pinning’’ to the on-axis diffraction pattern and a
vanishing image power over the entire focal plane, although
individual speckles can be bright (as in the case of direct im-
aging; Bloemhof et al. 2001; Bloemhof 2003). They are sup-
pressed by coronagraphy along with the diffraction pattern of

the bright, on-axis star. However, they become more prominent
at very high Strehl ratioS and DM actuator density andD/a
therefore can still be appreciable in short, narrowband expo-
sures, particularly in the innermost Airy rings most relevant to
companion searches. Linear speckles will average away at any
point in the focal plane over many independent speckle real-
izations, but the timescales involved will be much longer in
space than on the ground, and it is less clear that successive
phase screens of instrumental origin will have ideal, statistically
random behavior. Being antisymmetric, linear speckles will sur-
vive the image subtraction that might be used to suppress quad-
ratic-term speckles (§ 5); they would then mimic companions,
whose half-power antisymmetric components alone would sur-
vive subtraction. So linear speckles may remain a potentially
troublesome source of false companion detections that should
be considered when space-borne coronagraphic observations
are planned.

The research described in this publication was carried out
at the Jet Propulsion Laboratory, California Institute of Tech-
nology, under a contract with the National Aeronautics and
Space Administration.
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