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ABSTRACT

Any gravitating mass traversing a relatively sparse gas experiences a retarding force created by its disturbance of the surrounding
medium. In a previous contribution, we determined this dynamical friction force when the object’s velocity was subsonic. We now
extend our analysis to the supersonic regime. As before, we consider small perturbations created in the gas far from the gravitating
object, and thereby obtain the net influx of linear momentum over a large, bounding surface. Various terms in the perturbation
series formally diverge, necessitating an approximate treatment of the flow streamlines. Nevertheless, we are able to derive exactly
the force itself. As in the subsonic case, we find that F = Ṁ V, where Ṁ is the rate of mass accretion onto the object and V its
instantaneous velocity with respect to distant background gas. Our force law holds even when the object is porous (e.g., a galaxy)
or is actually expelling mass in a wind. Quantitatively, the force in the supersonic regime is less than that derived analytically by
previous researchers, and is also less than was found in numerical simulations through the mid-1990s. We urge simulators to revisit
the problem using modern numerical techniques. Assuming our result to be correct, it is applicable to many fields of astrophysics,
ranging from exoplanet studies to galactic dynamics.
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1. Introduction

Whenever a massive object passes through a rarefied medium,
it draws surrounding matter toward it. As a result, this material
creates an overdense wake behind the object that exerts its own
gravitational pull, retarding the original motion. Such dynamical
friction arises whether the medium consists of non-interacting
point particles, e.g., a stellar cluster, or a continuum fluid, e.g.,
an interstellar cloud. Chandrasekhar (1943) provided the essen-
tial theory when the background is collisionless, and his solu-
tion has been extensively used in studies of both star clusters
and galaxies. Interaction of a gravitating object with gas also oc-
curs in a wide variety of situations. A partial list of topics and
references includes: the interaction of planets and gaseous disks
(Teyssandier et al. 2013); the orbital decay of common-envelope
binaries (Ricker & Taam 2008); the settling of massive stars in
dense molecular clouds (Chavarría et al. 2010); the coalescence
of massive black holes in both isolated galactic nuclei (Narayan
2000) and colliding galaxies (Armitage & Natarajan 2005); and
the heating of intracluster gas by infalling galaxies (El-Zant et al.
2004).

Despite the widespread occurrence of gaseous dynamical
friction, there is still no generally accepted derivation of the
force, even after 70 years of effort. The flow in the vicinity
of the gravitating mass is complex both temporally and spa-
tially, as many simulations have shown (see, e.g. Matsuda et al.
1987). Theorists seeking a fully analytic expression for the time-
averaged force have employed various strategems to circumvent
a detailed description of this region. In the course of their classic

� Appendix A is available in electronic form at
http://www.aanda.org

studies of stellar accretion, Bondi & Hoyle (1944) took the star
to be traversing a zero-temperature gas. In their model, fluid
elements follow hyperbolic orbits in the star’s reference frame
and land in an infinitely thin, dense spindle behind the object.
Bondi & Hoyle analyzed the transfer of linear momentum from
the spindle to the star, and hence obtained the force. Dodd &
McCrae (1952) similarly investigated this hypersonic limit, as
did, much more recently, Cantó et al. (2011). Dokuchaev (1964)
first treated a finite-temperature gas. He determined the force
by integrating the total power emitted by the object in acoustic
waves (see also Rephaeli & Salpeter 1980). Ruderman & Spiegel
(1971) used an impulse approximation in the reference frame
of the background gas. Finally, Ostriker (1999) calculated the
force by integrating directly over the wake, whose density she
obtained through a linear perturbation analysis.

These researchers focused principally on the supersonic
case, which is often the most interesting one astrophysically.
That is, they took V > cs, where V is the speed of the gravitating
mass relative to the distant background, and cs the sound speed
in that gas. (In the hypersonic calculations of Bondi, Hoyle, and
their successors, cs was implicitly set to zero.) While their an-
swers differed in detail, all agreed that the friction force in this
regime varies as V−2, with a coefficient that includes a Coulomb
logarithm. This latter term also appears in the force derived by
Chandrasekhar (1943), and arises from an integration in radius
away from the mass. In all derivations, at least one of the inte-
gration limits is rather ill-defined.

The previous studies made two important, simplifying as-
sumptions. First, they neglected any accretion of background
gas by the moving object. Quantitatively, the assumption was
that R � racc, where R is the object’s physical radius and
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Fig. 1. Sketch of mass and momentum flow. Surrounding the central
gravitating body of mass M is a large, imaginary sphere. The thin curves
represent streamlines of background gas. After entering the sphere,
most gas simply exits again, while a small portion joins directly onto
the mass. In addition, some gas temporarily forms an overdense wake,
also sketched here. The wake tugs gravitationally on the mass, thereby
imparting momentum to it (broad arrow). All gas entering the wake also
leaves it, either joining the mass or exiting the sphere.

the accretion radius racc ≡ 2 G M/V2 is the distance from the
mass M within which its gravity qualitatively alters the back-
ground flow. They further ignored R compared to the scale
for spatial variations in the surrounding flow. If L denotes the
latter scale, then these assumptions may be summarized as
L� R� racc. Unfortunately, the inequality R� racc is often not
satisfied. For example, a low-mass star moving through a cluster-
producing molecular cloud has R ∼ 1011 cm and racc ∼ 1016 cm.
An analysis that covers this regime should treat the object as
being point-like in all respects, allowing the possibility of mass
accretion through infall.

This infall cannot occur via direct impact, since the geo-
metrical cross section of the body is negligible by assumption.
Instead, some fluid elements that initially miss the object are
pulled back into it. Mass accretion is, in fact, closely related to
dynamical friction. In the reference frame attached to the mass,
the background gas flows by with a speed that approaches V far
away. The steady-state accretion rate onto the object is simply
the net influx of mass through any closed surface surrounding
it. Similarly, the friction force is the net influx of linear momen-
tum. Much closer to the mass, this momentum influx manifests
itself as two distinct force components. One is the gravitational
pull from the wake, as described earlier. A second component is
the direct advection of linear momentum from any background
gas that falls into the object. Any determination of the force by
an asymptotic surface integration cannot tease apart these two
contributions.

To clarify these ideas, Fig. 1 shows graphically the mass and
momentum flow within the extended gas cloud surrounding the
central, gravitating object. Gas enters the region via the dotted
sphere shown in the sketch. This gas then follows one of three
paths. Most of it leaves the sphere downstream of the gravitat-
ing mass, as shown by the two outermost streamlines (thin solid
curves). Only a small fraction of the gas makes its way to the
deep interior. Some of it accretes onto the mass, first missing
it and then looping back. Other gas that misses more widely
is temporarily slowed by the gravitational pull of the mass and
forms an overdense wake, also sketched in the figure. In steady
state, the wake cannot gain net mass, so all of the gas entering it
also leaves, either by joining onto the mass or exiting the sphere

directly. Meanwhile, the wake itself tugs on the mass gravita-
tionally. The broad arrow in the figure depicts this second form
of momentum input to the mass. It is possible to determine the
force analytically by integrating the net momentum flux over the
bounding sphere. Numerical simulations can obtain this same
force by calculating the advective and gravitational components
acting directly on the mass.

In a previous paper (Lee & Stahler 2011, hereafter Paper I),
we did the analytic surface integration. We focused on the sub-
sonic case, V < cs, which traditionally has been less explored1.
Working in the reference frame whose origin is attached to the
mass, we developed a perturbative method to analyze the small
deviations of the background gas from a uniform, constant-
density, flow. By integrating the perturbed variables over a large
sphere to obtain the net momentum influx, we arrived at a sur-
prisingly simple result for the force: F = Ṁ V . Here, Ṁ is the
mass accretion rate onto the moving object. To evaluate this
quantity from first principles, one would have to follow the tra-
jectories of fluid elements as they accrete onto the central mass,
and ensure that, following turnaround, they smoothly cross the
sonic transition. This transition occurs well inside the region
of validity for our calculation. Lacking a fundamental theory
for Ṁ, we adopted a variant of the interpolation formula of Bondi
(1952) and thus found the force explicitly as a function of veloc-
ity. In this subsonic regime, our expression agrees reasonably
well with past simulations (e.g., Ruffert 1996).

Here we apply the same technique to study the supersonic
case. We quickly encounter the technical difficulty that some per-
turbation variables diverge, when expressed as functions of the
angle from the background velocity vector. The true flow around
the gravitating mass is, of course, well-defined everywhere, and
the divergences simply indicate that the adopted series expan-
sions fail at certain locations. Despite this mathematical incon-
venience, we are able once again to derive the dynamical friction
force through spatial integration of the linear momentum influx.
The force has exactly the same form as previously: F = Ṁ V .
In the high-speed limit, we recover the V−2 behavior found by
others, but not the Coulomb logarithm.

In Sect. 2 below, we describe our solution strategy, and
then formulate the problem using a convenient, non-dimensional
scheme. Whenever material repeats that of Paper I, we abbrevi-
ate its presentation as much as possible. Section 3 analyzes the
perturbed flow to first order only. In this approximation, we find
there is no mass accretion or friction force, just as in the sub-
sonic case. We extend the analysis to second order in Sect. 4,
thus accounting for mass accretion. Here we also describe our
method for calculating the flow numerically, and show sample
results. Section 5 presents the analytic derivation of the force
itself, and compares our expression to past simulations. Those
found a greater force than we derive in the supersonic regime;
we indicate possible causes for this discrepancy. Assuming our
result to be correct, we present several representative applica-
tions. Finally, Sect. 6 compares our derivation to previous ones,
and indicates directions for future work.

2. Method of solution

2.1. Physical assumptions

In the reference frame whose origin coincides with the mass, the
background gas has speed V far from the object and a spatially

1 Rephaeli & Salpeter (1980) argued, based on a linear perturbation
analysis, that the subsonic force vanishes. We showed in Paper I that ex-
tension of their analysis into the non-linear regime gives a finite result.
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Fig. 2. Mathematical treatment of the flow. We erect a spherical coordi-
nate system centered on the gravitating body. The gas is isothermal, and
its velocity far upstream is β cs (β > 1). Indicated are the Mach angle θM

and its supplement, θ′M ≡ π − θM .

uniform density, which we denote as ρ0. We take the gas to be
isothermal, with associated sound speed cs. As depicted in Fig. 2,
we will be working in a spherical coordinate system (r, θ), and
will assume that the gas flow is axisymmetric about the polar (z-)
axis, which is parallel to the asymptotic fluid velocity.

We neglect the self-gravity of the gas, and will be ana-
lyzing perturbations to the flow relatively far from the central
mass. Specifically, our expansions are valid for r � rs, where
rs ≡ G M/c2

s is the sonic radius. We assume that in the far-field
region of interest, the flow is steady-state. Of course, a steady
flow cannot be established over arbitrarily large distances, and
one must judge, in each astrophysical situation, whether the as-
sumption is justified. In numerical simulations, which we later
discuss by way of comparison, the flow occurs within some fixed
computational volume, at the center of which lies the mass. For
the non-relativistic case of relevance, the force of gravity propa-
gates instantaneously, but alterations in the flow density and ve-
locity take time. In practice, a steady flow is indeed approached
in many such experiments (e.g., Pogorelov et al. 2000). The ob-
served decay of transients is instructive, but again is only broadly
suggestive of what may occur in Nature.

Figure 2 singles out two special angles, both of which only
occur in supersonic flow. The first is the familiar Mach angle,
defined through the relation

sin θM ≡ 1/β, (1)

where β ≡ V/cs. The second is the supplement of the first: θ′M ≡
π − θM . The figure of revolution swept out by the radius lying
along θ = θM is the Mach cone, while we dub the analogous fig-
ure swept out by θ = θ′M the “anti-Mach cone”. As Fig. 3 illus-
trates, we denote as the “upstream” region that portion of the
flow bounded by the anti-Mach cone, while the “downstream”
region lies within the Mach cone. Finally, the “intermediate” re-
gion has θM < θ < θ′M .

A significant feature of the flow surrounding a gravitating
mass is the presence of an accretion bowshock. Any fluid el-
ement that joins onto the mass penetrates to r � racc, and en-
counters a shock at θ ∼ θM . At much larger r, such bowshocks
weaken and degenerate to acoustic pulses, before fading away
entirely (Zel’dovich & Raizer 1968, Chap. 1). No such shock
arises near θ′M , even at relatively small distances. In summary,
for r � rs � racc, we do not expect any discontinuities at θM

or θ′M in steady-state flow, either in the fluid variables themselves
or their derivatives. We need to keep this key point in mind as we
encounter apparent discontinuities at both angles.

Fig. 3. Regions of the flow. The upstream and downstream regions lie
within the anti-Mach and Mach cones, respectively. Between the two
cones is the intermediate region. In the far-field flow, there are no phys-
ical barriers between the intermediate region and its neighbors, although
mathematical divergences appear at the two cones.

2.2. Mathematical formulation

As in Paper I, we describe the flow through two dependent vari-
ables, the mass density ρ(r, θ) and the stream function ψ(r, θ).
Individual velocity components may be recovered from these
through the relations

ur =
1

ρ r2 sin θ
∂ψ

∂θ
(2)

uθ =
−1

ρ r sin θ
∂ψ

∂r
, (3)

which automatically ensure mass continuity. In the extreme far-
field limit, the stream function approaches that for the back-
ground, uniform flow:

lim
r→∞ψ =

ρ0 V r2 sin2 θ

2
= ρ0 cs r2

s
β sin2 θ

2

(
r
rs

)2

·

Our second form of the stream function’s limit suggests how to
expandψ(r, θ) in a perturbation series valid for finite, but large, r:

ψ = ρ0 cs r2
s

⎡⎢⎢⎢⎢⎢⎣ f2

(
r
rs

)2

+ f1

(
r
rs

)
+ f0 + f−1

(
r
rs

)−1

+ ...

⎤⎥⎥⎥⎥⎥⎦ . (4)

Here, f2 ≡ β sin2θ/2, while f1, f0, f−1, etc., are as yet unknown,
non-dimensional functions of β and θ. We write a similar pertur-
bation expansion for the density:

ρ = ρ0

⎡⎢⎢⎢⎢⎢⎣1 + g−1

(
r
rs

)−1

+ g−2

(
r
rs

)−2

+g−3

(
r
rs

)−3

+ ...

⎤⎥⎥⎥⎥⎥⎦ . (5)

The quantities g−1, g−2, and g−3 are again non-dimensional func-
tions of β and θ, all of them unknown at this stage2.

2 The perturbation series in Eqs. (4) and (5) are valid for r � rs. On
the other hand, we expect that a smooth flow, representing a modest
perturbation of the background stream, is present beyond racc, which is
much less than rs in the hypersonic regime. We also expect our final ex-
pression for the force to be valid as long as the background gas extends
beyond racc.
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The dynamical equations will be simplified once we recast
all variables into non-dimensional form. We let the fiducial ra-
dius, density, and speed be rs, ρ0, and cs, respectively, while we
normalize the stream function to ρ0 cs r2

s . We will not change no-
tation, but alert the reader whenever we revert to dimensional
varables. Our fully non-dimensional perturbation series are

ψ = f2 r2 + f1 r + f0 + f−1 r−1 + ... (6)

ρ = 1 + g−1 r−1 + g−2 r−2 + g−3 r−3 + ... (7)

The task will be to solve for the various functions fi(θ)
and gi(θ) appearing in these two series. (Henceforth, we will
suppress the β-dependence for simplicity.) As explained in
Sect. 2.3 of Paper I, the appropriate boundary conditions are
fi(π) = f ′i (π) = f ′i (0) = 0 for i = 1, 0,−1,−2, etc., and fi(0) = 0
for i = 1,−1,−2, etc. These conditions ensure regularity of both
ur and uθ, as given by Eqs. (2) and (3), respectively, on both the
upstream and downstream axes. Since sin θ → 0 on both axes,
the r- and θ-derivatives of ψ must also vanish. Using the expan-
sion of ψ in Eq. (6), we derive the aforementioned conditions.
There is no associated restriction on f0(0), which is tied to the
mass accretion rate onto the central object, as shown in Sect. 4
below.

3. First-order flow

3.1. Upstream and downstream regions

The r- and θ-components of Euler’s equation, in non-
dimensional form, are

ur
∂ur

∂r
+

uθ
r
∂ur

∂θ
− u2

θ

r
= −1

ρ

∂ρ

∂r
− 1

r2
(8)

ur
∂uθ
∂r
+

uθ
r
∂uθ
∂θ
+

ur uθ
r
= − 1

ρ r
∂ρ

∂θ
· (9)

Our procedure is first to express ur and uθ in terms of ψ and ρ,
using Eqs. (2) and (3). We then expand ψ and ρ themselves in
their respective perturbation series and equate the coeffcients of
various powers of r. To avoid cumbersome division by the series
for ρ, we first multiply Eqs. (8) and (9) through by ρ3.

Equating the coefficients of the highest power of r, which
is r−1, we find that they are identically equal. Equating coeffi-
cients of r−2 yields the first-order equations. From Eq. (8), we
find

− β f ′′1 − β f1 + β
2 sin θ cos θ g′−1

+
(
β2 cos2 θ − 1

)
g−1 + 1 = 0, (10)

while Eq. (9) yields
(
1 − β2 sin2 θ

)
g′−1 − β2 sin θ cos θ g−1 = 0. (11)

These equations are identical in form to Eqs. (18) and (19), re-
spectively, of Paper I, hereafter designated Eqs. (I.18) and (I.19).
However, their solutions may differ. The factor (1 − β2 sin2 θ) in
Eq. (11), which was positive in the subsonic case for any angle
θ, can now be positive, negative, or zero.

Consider first the upstream region. For θ > θ′M , the term
(1 − β2 sin2 θ) is indeed positive, and we may recast Eq. (11) as

d
dθ

[(
1 − β2 sin2 θ

)1/2
g−1

]
= 0,

whose solution is

g−1 =
C(

1 − β2 sin2 θ
)1/2
· (12)

Here, C is independent of θ, but is possibly a function of β. The
analogous result appeared in our subsonic analysis as Eq. (I.20).
In that case, we ultimately found C to be unity.

Returning to the supersonic flow, we see that, for any non-
zero C, the function g−1 diverges at θ = θ′M . This fact does not
mean that the density itself diverges at that location; there is no
reason for it to do so. Rather, it is our series expansion of ρ (r, θ)
that fails in this region. The issue here is mathematical, rather
than physical. Although the function g−1(θ) diverges, the asso-
ciated term in the perturbation expansion, Eq. (7), is multiplied
by r−1. At any finite angular separation from θ′M , the first-order
correction to the background density can be made arbitrarily
small by considering a sufficiently large r-value. This observa-
tion suggests that the divergences encountered here and else-
where in our analysis will vanish if we change independent vari-
ables from r and θ to another set that mixes the two. In any case,
we do not explore that possibility in the present paper.

Substitution of Eq. (12) for g−1 into (10) yields the governing
equation for f1:

f ′′1 + f1 =
1
β
−

C
(
1 − β2

)
β
(
1 − β2 sin2 θ

)3/2
· (13)

This equation, being identical to (I.21), has the same general
solution:

f1 =
1
β
−

C
(
1 − β2 sin2 θ

)1/2

β
+ D cos θ + E sin θ, (14)

where D and E are additional constants. The vanishing of f1 (π)
tells us that D = (1 −C)/β, while f ′1 (π) = 0 implies that E = 0.
Both relations also held in the subsonic case.

We next turn to the downstream region. Here again, the crit-
ical term (1 − β2 sin2 θ) is positive. The solutions for g−1 and f1
are thus identical to the upstream solutions in Eqs. (12) and (14),
if we replace C, D, and E by new constants C′, D′, and E′.
Application of the appropriate boundary conditions then tells us
that E′ = 0 and D′ = (C′ − 1)/β.

Referring again to Fig. 3, the supersonic flow we are now
analyzing differs from the subsonic one by the presence of the
intermediate region, lying between the Mach and anti-Mach
cones. As β decreases to unity from above, this region nar-
rows symmetrically about θ = π/2 and ultimately vanishes, as
does the physical distinction between the supersonic and sub-
sonic flows. Continuity strongly suggests that, while (C,D) and
(C′,D′) could, in principle, be β-dependent, they are actually
not. Instead, they have the truly constant values (1, 0) found in
the subsonic case.

In summary, the first-order flow in both the upstream and
downstream regions is described by

f1 =
1 −

(
1 − β2 sin2 θ

)1/2

β
(15)

g−1 =
1(

1 − β2 sin2 θ
)1/2
· (16)

After substituting these coefficients into the series expansions
for ψ and ρ, one may calculate ur and uθ to linear order from
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Eqs. (2) and (3), respectively. At any fixed, r-value, however, the
series representation for ρ fails sufficiently close to either Mach
cone, and the velocity components cannot be obtained in this
manner.

Comparing our results thus far with the previous literature,
Dokuchaev (1964); Ruderman & Spiegel (1971); and Ostriker
(1999) all obtained Eq. (12) for the downstream, first-order den-
sity distribution, but with C = 2. They also found that g−1 van-
ishes for θ > θM . In the subsonic analysis of Ostriker (1999), g−1
is everywhere finite. Thus, the density distributions in her su-
personic and subsonic flows do not approach one another in the
β = 1 limit. Ruderman & Spiegel (1971) further argued that the
apparent divergence in the downstream density perturbation at
θ = θM signifies the presence of a bowshock. While a bowshock
certainly arises relatively close to the gravitating mass, it does
not persist into the far field, the only regime where an analysis
based on small perturbations of the background gas is justified.

3.2. Intermediate region

For θM < θ < θ′M , the term (1 − β2 sin2 θ) in Eq. (11) is negative.
We therefore rewrite this equation as
(
β2 sin2 θ − 1

)
g′−1 + β

2 sin θ cos θ g−1 = 0. (17)

This is equivalent to

d
dθ

[(
β2 sin2 θ − 1

)1/2
g−1

]
= 0,

which in turn implies that

g−1 =
C(

β2 sin2 θ − 1
)1/2
· (18)

Here we are reverting to our original notation for the integration
constants, as the previous ones have all been evaluated.

Substitution of the new expression for g−1 into Eq. (10)
yields

f ′′1 + f1 =
1
β
−

C
(
β2 − 1

)
β
(
β2 sin2 θ − 1

)3/2
· (19)

We may solve this equation using the method of variation of
parameters. Adding the two homogeneous solutions yields the
general result

f1 =
1
β
+

C
(
β2 sin2 θ − 1

)1/2

β
+ D cos θ + E sin θ. (20)

As in the upstream and downstream regions, the series represen-
tation of ψ is well-behaved at either Mach cone, at least to linear
order. Approaching either cone from the outside, Eq. (15) tells
us that f1 → 1/β. Equation (20) above implies that f1 has the ad-
ditional term D cos θ + E sin θ when we approach the cones from
the intermediate region.

To proceed, we consider the physical interpretation of the
stream function. Equation (2) tells us that ψ(r, θ) is the θ-integral
of the mass flux ρ ur over a surface of radius r. More generally,
the stream function is the net rate of mass transport into any sur-
face of revolution extending from θ = 0 to the angle of interest.
A discontinuity in ψ at an angle θ thus represents a thin sheet
of mass being injected or ejected along the corresponding cone.

If we are to reject such a solution as unphysical, then we must
demand continuity of ψ. That is, f1 must again approach 1/β at
the two Mach cones, and D = E = 0 in Eq. (20).

Our mathematical description of the first-order flow in the
intermediate region is now

f1 =
1 +C

(
β2 sin2 θ − 1

)1/2

β
(21)

g−1 =
C(

β2 sin2 θ − 1
)1/2
· (22)

Since the intermediate region does not reach either the upstream
or downstream axis, we cannot appeal to our usual boundary
conditions in order to evaluate C. We defer this issue until our
analysis of the second-order flow in Sect. 4, when we will show
that the requirement of mass continuity again settles the matter.
For any C-value, the divergence of g−1 at the Mach and anti-
Mach cones indicates a breakdown of the series representation
for the density.

3.3. Vorticity

A key, simplifying property of the flow is that it is irrotational. To
reprise the argument from Paper I, we first write Euler’s equation
in the steady state as

u ×ω = ∇B, (23)

where ω ≡ ∇ × u is the vorticity and the Bernoulli function on
the right-hand side is

B ≡ 1
2

u2 + ln ρ − 1
r
· (24)

Dotting both sides of Eq. (23) with u, we find that

(u · ∇) B = 0,

which is the familiar statement that B is constant along stream-
lines. Moreover, B approaches β2/2 at large r, both upstream
and downstream. (Recall that the non-dimensional density ρ be-
comes unity in this limit.) In these regions, therefore, B has the
same value on every streamline, and ∇B = 0. Since ω is orthog-
onal to u in our poloidal flow, Eq. (23) imples that ω = 0, i.e.,
the flow is irrotational outside the Mach cones.

If our derived intermediate solution is correct, then irrota-
tionality must hold there as well, since there is no physical
barrier between the intermediate flow and those upstream and
downstream, at least in the laminar, far field. The only non-zero
component of the vorticity is ωφ, so the condition of irrotation-
ality becomes

∂ur

∂θ
=
∂ (ruθ)
∂r
· (25)

To test the validity of this relation in the intermediate region, we
use Eqs. (2) and (3) for ur and uθ, respectively, and then substi-
tute in the series expansions for ψ and ρ, Eqs. (6) and (7).

Equating the coefficient of the highest power of r, which
is r0, is equivalent to testing for irrotationality in the uniform,
background flow. Specifically, we require

f ′′2 − f ′2 cot θ = −2 f2. (26)
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Using f2 = β sin2 θ/2, we verify that the above equation does
hold. This result is to be expected, as a uniform flow is mani-
festly irrotational.

We next equate the coefficients of r−1, effectively testing
irrotationality in the first-order flow. The required condition is
now

f ′′1 − f ′′2 g−1 − f ′2 g
′
−1 =

(
f ′1 − f ′2 g−1

)
cot θ, (27)

where f1 and g−1 are given by Eqs. (21) and (22), respectively.
Using these functional forms, we find that this last equation is
satisfied for any value of C. Thus, the first-order flow in the in-
termediate region is indeed irrotational.

4. Second-order flow

4.1. Dynamical equations

Having established the first-order flow, at least up to the con-
stant C, we consider the next higher approximation. We return
to the perturbative expansion of Euler’s equation, as described
at the beginning of Sect. 3.1. By equating coefficients of r−3, we
derive the second-order equations, which govern the variables f0
and g−2. Here the source terms involve f1 and g−1. Prior to sub-
stituting in the explicit solutions for f1 and g−1, the equations
are identical to those in the subsonic problem; we display them
again for convenient reference.

From the r-component of Euler’s equation, we derive
Eq. (I.27), which is

− β f ′′0 − β cot θ f ′0 + β
2 sin θ cos θ g′−2

+
(
2 β2 cos2 θ − 2

)
g−2 = A1 +A2 +A3. (28)

The three right-hand terms are

A1 ≡
f 2
1

sin2 θ
− f1 f ′1 cos θ

sin3 θ
+

(
f ′1
)2

sin2 θ
+

f1 f ′′1
sin2 θ

A2 ≡ β f1 g−1 − 2 β f ′1 g−1 cot θ − β f1 g
′
−1 cot θ − β f ′1 g

′
−1

+ β f ′′1 g−1

A3 ≡ 2 g2
−1 − 3 g−1.

The θ-component of Euler’s equation yields Eq. (I.31):

− β f ′0 +D g′−2 − 2 β2 sin θ cos θ g−2 = B1 + B2 + B3. (29)

Here,

D ≡ 1 − β2 sin2 θ, (30)

and

B1 ≡ f 2
1 cot θ − f1 f ′1

sin2 θ
B2 ≡ β f1 g−1 cot θ + β f ′1 g−1 + 2 β f1 g

′
−1

B3 ≡ −2 g−1 g
′
−1.

In the upstream and downstream regions, there are no unknown
constants in the source terms, i.e., both f1 and g−1 are identical
to their subsonic counterparts. Hence, the explicit form of the
second-order equations is also the same. Referring to Eqs. (I.35)
and (I.36), we have

− β f ′′0 − β cot θ f ′0 + β
2 sin θ cos θ g′−2

+
(
2 β2 cos2 θ − 2

)
g−2 =

1
D −

3√D +
2

1 +
√D , (31)

and

− β f ′0 + D g′−2 − 2 β2 sin θ cos θ g−2

= β2 sin θ cos θ

[
− 2
D2
+

2
D3/2

− 1
D +

1(
1 +
√D

)2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ·(32)

In the intermediate region, however, f1 and g−1 are given by
the new expressions in Eqs. (21) and (22), respectively. After
lengthy manipulation, we find the new source terms, and hence
the explicit dynamical equations in this region. These equations,
which still contain the unknown constant C, are

− β f ′′0 − β cot θ f ′0 + β
2 sin θ cos θ g′−2 +

(
2 β2 cos2 θ − 2

)
g−2 =

2 C E1/2

β2 sin2 θ
− 3 C
E1/2

+
C2

E +
1 −C2

β2 sin2 θ
, (33)

and

− β f ′0 − E g′−2 − 2 β2 sin θ cos θ g−2 =

2 C2 β2 sin θ cos θ
E2

− 2 C β2 sin θ cos θ
E3/2

− C2 β2 sin θ cos θ
E +

(
1 −C2

)
cot θ

β2 sin2 θ

+ C2 cot θ +
2 C E1/2 cot θ

β2 sin2 θ
· (34)

Here, we have defined

E ≡ β2 sin2 θ − 1, (35)

which is positive throughout this region.

4.2. Near-cone divergence

Our plan is to integrate numerically two, coupled second-order
equations in order to determine the variables f ′0 and g−2 through-
out the flow. With f ′0 in hand, another integration will yield f0
itself. Before we embark on this program, let us consider more
carefully the behavior of f ′0 and g−2. In the upstream and down-
stream regions, the term D vanishes as one approaches either
Mach cone. Thus, the source terms in Eqs. (31) and (32) diverge
in that limit. Similarly, the source terms in Eqs. (33) and (34)
diverge because of the vanishing of E. It is possible, then, that
both f ′0 and g−2 also diverge at the cones.

This is indeed the case. In this section, we first establish the
divergences of f ′0 and g−2 in the downstream region only. That
is, we assume that θ approaches θM from below. Later in the
section, we outline the derivation for the remaining regions of
the flow. We then use the full result to shed light on the unknown
parameter C.

Since θ < θM , we define the positive angle α ≡ θM − θ, and
assume that f ′0 and g−2 take the following asymptotic forms as α
diminishes:

f ′0 = ζ α
−m (36)

g−2 = γ α
−n, (37)
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where ζ, γ, m, and n are all functions of β only. If both f ′0
and g−2 truly diverge, then m and n are positive. Within Eqs. (31)
and (32), we replace sin θ and cos θ by their limiting values,
1/β and

√
β2 − 1/β, respectively. We further note that D →

2α
√
β2 − 1. After differentiating the asymptotic forms of f ′0

and g−2 with respect to θ, we derive simplified, limiting forms of
Eqs. (31) and (32). Expressed using α as the independent vari-
able, these are

− m β ζ α−m−1 + n γ
√
β2 − 1 α−n−1 = − β2

4 (β2 − 1)
α−1 (38)

β ζ α−m + 2 (1 − n) γ
√
β2 − 1 α−n =

1

2
√
β2 − 1

α−2. (39)

In deriving these equations, we have retained only the most
rapidly diverging terms on the right-hand sides of Eqs. (31)
and (32). We have also dropped terms proportional to α−m

and α−n in the left-hand side of Eq. (31), since both terms are
dominated, in the small-α limit, by the two we have kept.

We next consider the β-dependence of m and n. The right-
hand side of Eq. (39) is proportional to α−2. For this equation to
balance as α diminishes, one left-hand term could also diverge
as α−2, and the other more slowly. However, if this were the case,
i.e., if either m = 2 > n or n = 2 > m, then Eq. (38) would be
unbalanced. It is also posssible that the two left-hand terms in
(39) diverge more rapidly than α−2, balancing each other. We
would then have m = n > 2. Finally, all three terms in Eq. (39)
could diverge at the same rate: m = n = 2.

Assuming provisionally that m = n > 2, then we may ignore
the right-hand terms of both Eqs. (38) and (39) in the asymptotic
limit. After dividing out all terms containingα, the two equations
reduce to

−β ζ + γ
√
β2 − 1 = 0

β ζ + 2 (1 − n) γ
√
β2 − 1 = 0.

Adding these two yields

(3 − 2n) γ
√
β2 − 1 = 0,

which implies that n = 3/2. Since we assumed n > 2 at the out-
set, our original hypothesis, m = n > 2, was incorrect.

We have established that m = n = 2. Equations (38) and (39)
now reduce asymptotically to

−β ζ + γ
√
β2 − 1 = 0

β ζ − 2 γ
√
β2 − 1 =

1

2
√
β2 − 1

,

which have the unique solution

ζ =
−1

2 β
√
β2 − 1

γ =
−1

2 (β2 − 1)
·

Consider next the region just upstream from the Mach cone.
Here, we may assume the same asymptotic forms for f ′0 and g−2
as in Eqs. (36) and (37), provided the independent variable α re-
mains positive: α ≡ θ−θM . Inserting these functional forms into
the second-order Eqs. (33) and (34), we note that dα/dθ changes

sign from −1 to +1, and that E now approaches 2α
√
β2 − 1 near

the cone. We then derive equations analogous to (38) and (39),
which may again be solved in the near-cone limit. After applying
similar reasoning to the two regions surrounding the anti-Mach
cone, we arrive at the following asymptotic forms for f ′0 and g−2
near θM and θ′M:

f ′0 =
−1

2β
√
β2 − 1 (θM − θ)2

θ <∼ θM

=
C2

2β
√
β2 − 1 (θ − θM)2

θ >∼ θM

=
−C2

2β
√
β2 − 1

(
θ′M − θ

)2
θ <∼ θ′M

=
1

2β
√
β2 − 1

(
θ − θ′M

)2
θ >∼ θ′M , (40)

and

g−2 =
−1

2
(
β2 − 1

)
(θM − θ)2

θ <∼ θM

=
C2

2
(
β2 − 1

)
(θ − θM)2

θ >∼ θM

=
C2

2
(
β2 − 1

) (
θ′M − θ

)2
θ <∼ θ′M

=
−1

2
(
β2 − 1

) (
θ − θ′M

)2
θ >∼ θ′M . (41)

Obtaining f0 requires that we integrate f ′0 over θ. Starting at the
upstream axis, with f0(π) = 0, the integrated f0(θ) diverges to
positive infinity as θ approaches θ′M . However, the stream func-
tion has a direct physical meaning as the mass transfer rate into a
surface of revolution. Since this rate is finite for any θ, the func-
tion f ′0(θ) must be integrable across the anti-Mach cone. That is,
the upward divergence of f ′0 for θ >∼ θ′M must be cancelled by a
matching downward divergence for θ <∼ θ′M . A similar antisym-
metry of the divergences must occur at the Mach cone, θ = θM
(see Fig. 4). Inspection of Eq. (40) shows that this requirement
forces C2 to be unity. The parameter C itself is either +1 or −1,
independent of β. We will demonstrate presently that the positive
solution is the physically relevant one.

4.3. Vorticity

The second-order flow must be irrotational, as we argued in
Sect. 3.3. Starting with Eq. (25), we again replace the velocity
components by ψ and ρ, and develop the latter in our perturba-
tion series. Equating coefficients of r−2 tests irrotationality in the
second-order flow. Specifically, we require(
− f ′2 g

2
−1 + f ′2 g−2 + f ′1 g−1 − f ′0

)
cot θ

+ f ′′2 g2
−1 + 2 f ′2 g−1 g

′
−1 − f ′′2 g−2

− f ′2 g
′
−2 − f ′′1 g−1 − f ′1 g

′
−1 + f ′′0

= 2 f2 g
2
−2 − 2 f2 g−2 − f1 g−1. (42)

Within the upstream and downstream regions, Eqs. (15) and (16)
give us f1 and g−1, respectively. Substituting these functions into
Eq. (42) then yields the condition of irrotationality:

β f ′′0 − β cotθ f ′0 − β2 sin θ cos θ g′−2

+ 2 β2 sin2 θ g−2 =
1
D −

1√D· (43)
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Fig. 4. Asymmetric divergences at the Mach angle, for β = 1.1. The
solid and dashed curves trace f ′0 and g−2, respectively, close to the Mach
angle θM , marked here by the vertical, dotted line. The functions diverge
antisymmetrically once we choose C2 = 1. Both curves are taken from
the numerical integration outlined in Sect. 4.5. The shaded region is that
which we remove before enforcing continuity of f0 and g−2 across the
cones.

Finally, we may combine this last relation with Eq. (31), the
r-component of Euler’s equation, to obtain

− 2 β cot θ f ′0 + 2
(
β2 − 1

)
g−2 =

2
D −

4√D +
2

1 +
√D· (44)

This is identical to Eq. (I.64), and will prove useful when we
evaluate the force.

Turning to the intermediate region, we need to use Eqs. (21)
and (22) for f1, g−1, and their derivatives. In both equations, the
unknown parameter C appears. Substitution into Eq. (42) above
yields the condition for irrotationality:

β f ′′0 − β cotθ f ′0 − β2 sin θ cos θ g′−2

+ 2 β2 sin2 θ g−2 =
C2

E −
C√E =

1
E −

C√E· (45)

In the last form of this equation, we have used the fact that
C2 = 1. Combination with the Euler Eq. (31) gives

− 2 β cot θ f ′0 + 2
(
β2 − 1

)
g−2

=
2 C2

E − 4 C

E1/2
+

1 −C2

β2 sin2 θ
+

2 C E1/2

β2 sin2 θ

=
2
E −

4 C

E1/2
+

2 C E1/2

β2 sin2 θ
, (46)

which will again aid in the force evaluation.
We emphasize a key difference between Eqs. (44) and (46).

Because the upstream and downstream regions join smoothly
onto the uniform background, the flow in both is guaranteed to
be irrotational to all orders. In our numerical determination of
the flow, to be described in Sect. 4.5 below, we verified that
Eq. (44) indeed holds numerically both upstream and down-
stream. In contrast, we need to impose Eq. (46), or an equiva-
lent condition, to obtain a physically acceptable solution in the
intermediate region.

Enforcing irrotationality in the intermediate region requires
only that we impose this condition along any interior cone, i.e.,
at a θ-value such that θM < θ < θ′M . To see why, return to Euler’s

Fig. 5. Enforcing irrotationality. In our steady-state, isothermal flow, the
Bernoulli function B is constant along each streamline. In principle,
B could vary from one streamline to the next. However, if we also make
B constant along any cone, then the function is a universal constant and
the flow is irrotational.

equation, in the form given by Eq. (23). Projecting this vector
equation along the r-direction gives

uθ ωφ =
∂B
∂r
·

This relation holds at fixed θ and φ. Since the flow is axisym-
metric, the equation also holds at all φ-values, i.e., along a cone.
If ωφ vanishes along such a cone, then B is constant on that sur-
face: ∂B/∂r = 0. But we already know that B does not vary along
any streamline. As Fig. 5 illustrates schematically, the additional
constraint tells us that the B-values characterizing each stream-
line are identical, i.e., B is a true spatial constant. Thus, ∇B = 0
and, from Eq. (23), the flow is irrotational.

In practice, we apply ωφ = 0 at θ = π/2, the equatorial plane
of the flow. The irrotationality condition, expressed as Eq. (46),
implies that there is a unique (but β-dependent) value of g−2 at
that angle:

g−2 (π/2) =
2(

β2 − 1
)2
− 2 C(

β2 − 1
)3/2
+

C

β
(
β2 − 1

)1/2
· (47)

When we find the flow numerically in the intermediate region,
we will impose Eq. (47) as an initial condition. The resulting
flow is then irrotational. That is, all solutions of Euler’s Eqs. (33)
and (34) also obey Eq. (46).

4.4. Mass accretion

It is only in the second-order flow that mass accretion onto the
central object appears. Moreover, the function f0(θ), evaluated
on the downstream axis, gives the actual accretion rate. Higher-
order approximations to the flow contribute no additional infor-
mation in this regard. We now review the argument, first ad-
vanced in Paper I, and apply it to the present, supersonic, case.

Consider the net transfer rate of mass into a sphere of ra-
dius r. In a steady-state flow, this rate is the same through any
closed surface; we simply use a sphere for convenience. The di-
mensional result is

Ṁ = −2 π
∫ π

0
ρ ur r2 sin θ dθ = 2 π ψ(r, 0). (48)

Here we have substituted Eq. (2) for ur and utilized the normal-
ization for the stream function, ψ(r, π) = 03. We have also im-
plicitly assumed that ρ and ur are smooth functions, despite the
divergences arising in their perturbation expansions.

3 By symmetry, the upstream axis coincides with a streamline, so
that ψ(r, π) is a constant. Such an additive constant does not effect any
physical result, so we have set it to zero.
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If we identify 2πρ0csr2
s as our fiducial mass accretion

rate, then the non-dimensional counterpart of the last equation
becomes

Ṁ = ψ(r, 0).

Substitution of the series expansion for ψ(r, 0) in Eq. (6) and
application of the boundary condition that fi(0) = 0 for i =
1,−1,−2, etc. leads to

Ṁ = f0(0). (49)

It is noteworthy that Ṁ depends only on a coefficient from the
second-order expansion; this fact calls for a more physical ex-
planation. One reason is that the streamlines of the first-order
flow are symmetric, so that accretion does not occur to this ap-
proximation. Secondly, the mass flux ρ ur, when expanded using
approximations higher than second-order, generates terms that
fall off faster than r−2. After integrating these terms over a large
bounding sphere and taking the large-r limit, they do not con-
tribute to Ṁ. In any event, Eq. (49) underscores the fact that the
function f ′0(θ) must be integrable across both Mach cones, de-
spite its divergent behavior at the cones themselves.

We may now use our second-order equations to obtain a use-
ful relation between f0(0), and hence the mass accretion rate, and
the flow density. Consider first the upstream and downstream re-
gions. The left-hand side of Eq. (32) is a perfect derivative:

−β f ′0 +D g′−2 − 2 β2 sin θ cos θ g−2

=
d
dθ

[
−β f0 +

(
1 − β2 sin θ

)
g−2

]
.

In the right-hand side of the same equation, we note thatD is an
even function, in the sense that D(θ) = D(π − θ). Since cos θ is
an odd function, cos θ = −cos (π − θ), the entire right-hand side
of Eq. (32) is odd.

Within the intermediate region, the left-hand side of
Eq. (34) is

−β f ′0 − E g′−2 − 2 β2 sin θ cos θ g−2

=
d
dθ

[
−β f0 +

(
1 − β2 sin2 θ

)
g−2

]
.

Again, the right-hand side of Eq. (34) is odd. Now the integral of
an odd function from the downstream to the upstream axes van-
ishes. Thus, if we integrate Eq. (32) from θ = 0 to θM , Eq. (34)
from θM to θ′M , and Eq. (32) from θ′M to π, we find that

−β f0(0) + g−2(0) = −β f0(π) + g−2(π).

Using f0(π) = 0, we have the desired result:

f0(0) =
g−2(0) − g−2(π)

β
· (50)

The same relation appeared in the subsonic study as Eq. (I.46).

4.5. Numerical solution

4.5.1. Evaluation of C

Our description of the flow is clearly incomplete until we iden-
tify the still unknown parameter C, and not just its absolute
value. We again employ physical reasoning. The value of C af-
fects the shape of the streamlines, even in the first-order flow.
Only one shape is reasonable dynamically. Figure 6 shows
streamlines of the first-order flow for the case β = 1.1. That is,

Fig. 6. First-order streamlines. Shown are contours of constant f2 r2 +
f1 r, for the case β = 1.1. The dotted, diagonal lines trace the Mach and
anti-Mach cones, while the central, dotted circle is r/rs = 1. Within the
intermediate region, the dashed streamlines were constructed assuming
C = −1. The solid ones correspond to C = +1 and are more realistic.

we plot contours of constant f2 r2 + f1 r. In the upstream and
donwstream regions, f1 is taken from Eq. (15). For the interme-
diate region, we use Eq. (21), with both C = +1 (solid curves)
and C = −1 (dashed curves). For either choice of the parame-
ter, we see that all first-order streamlines are symmetric about
the equatorial plane, as we found in the subsonic flow (see, e.g.,
Fig. I.2). The kinks at both Mach cones result from the crude-
ness of this first-order approximation, and would disappear in
successively more accurate treatments.

The solid curves in Fig. 6 bow inward, toward the central
mass, both upstream of the anti-Mach cone and inside it. Such
inward turning results naturally from the gravitational pull of
the mass. Eventually, the concurrent rise in density and pressure
pushes the gas outward. If we were instead to choose C = −1,
the streamlines in the intermediate region would bow outward,
which is not expected.

We may also consider the matter more quantitatively by
examining the velocity component uR. Here R is the cylindri-
cal radius: R ≡ r sin θ. In the far-field limit, uR tends to zero,
since the background flow is in the z-direction. Closer to the
equatorial plane, but still upstream, uR should be slightly neg-
ative. Downstream, this velocity component should reverse sign
as each streamline rejoins the background flow. Starting with
the expreessions for f1 and g−1 in the intermediate region, we
first calculate ur and uθ from Eqs. (2) and (3), and then obtain
uR ≡ ur sin θ + uθ cos θ. We find that

uR =

[
C − E1/2

r βE1/2

]
cot θ.

Upstream from the mass (θ > π/2), we have cot θ > 0. Thus,
if C = −1, then uR > 0 in this direction. Conversely, uR < 0
downstream from the mass. This behavior is contrary to the
physically reasonable one, so we conclude that C = +1.

4.5.2. Integration scheme

Determining the second-order flow requires that we numerically
integrate Eqs. (31) and (32) in the upstream and downstream
regions, and Eqs. (33) and (34), with C = +1, in the intermediate
region. In all cases, we need to specify appropriate boundary
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values of f ′0 and g−2. We then perform an additional integration
to obtain f0 and thereby the streamlines.

One of our boundary conditions is the value of f0(0). As we
have seen, this quantity is also the mass accretion rate Ṁ. There
is still no fundamental theory to supply this rate, except at β = 0
(Bondi 1952), and in the hypersonic (β � 1) limit (Hoyle &
Lyttleton 1939; Bondi & Hoyle 1944). Extending the work of
Bondi (1952), Moeckel & Throop (2009) suggested an interpola-
tion formula that both respects the analytic limits and agrees rea-
sonably well with numerical simulations. As we did in Paper I,
we adopt this prescription, which is

Ṁ(β) =
2
(
λ2 + β2

)1/2

(
1 + β2

)2
= f0(0). (51)

Here, 2 λ = e3/2/2 = 2.24 is the analytic value of Ṁ(0) in the
isothermal case (Bondi 1952).

We are now in a position to outline our numerical procedure.
Starting at the upstream axis, θ = π, we set f0(π) = f ′0(π) = 0.
We provisionally treat g−2(π) as a free parameter, to be deter-
mined later in order to ensure smoothness of the flow across the
Mach cones, as we describe in more detail below. For any se-
lected g−2(π), we may then integrate Eqs. (31) and (32) to the
anti-Mach cone, θ = θ′M . Simultaneous integration of f ′0 yields f0
itself.

But knowledge of both g−2(π) and f0(0) also gives us g−2(0),
according to Eq. (50). Since f ′0(0) = 0, we may again integrate
the second-order Eqs. (31) and (32), along with f ′0 , from θ = 0 to
θ = θM . At this point, we have established a one-parameter fam-
ily of flows covering both the upstream and downstream regions.
For any value of g−2(π), both flows are irrotational, as required
physically.

Turning to the intermediate region, we begin at the equato-
rial plane, θ = π/2. We use Eq. (47) for g−2(π/2), again setting
C = +1. Our free parameter is now f ′0(π/2). For any value of this
quantity, we integrate Eqs. (33) and (34) away from the plane in
both directions until we come to the Mach cones. We have then
established the run of f ′0 and g−2 throughout the intermediate
region. Again, the flow is irrotational for any value of f ′0(π/2)4.

4.5.3. Enforcing smoothness

Within the intermediate region, we only know f0 up to a constant
of integration, which has yet to be fixed. In addition, we have
not yet determined our two free parameters, f ′0(π/2) and g−2(π).
All three quantities are specified by requiring that the flow be
smoothly varying. If f ′0 and g−2 were well-defined everywhere,
this task would be straightforward. For example, we could tune
one parameter until g−2, as calculated in the downstream re-
gion, matched the intermediate g−2 at the Mach cone. However,
both f ′0 and g−2 diverge at the cones. Hence, we can only require
smoothness outside some finite region surrounding each cone.

We therefore stopped each integration at a point where the
divergent behavior begins to dominate. For example, when inte-
grating from θ = π, we examined the ratio α ≡ |(π − θ) f ′′0 / f ′0 |.
Since f ′0(π) = 0, this quantity is close to unity for θ � π.
However, α climbs sharply near θ′M . In practice, we stopped the
integration at α = 10. We adopted equivalent criteria in the other

4 On a related issue, not only do the flows in all regions have spatially
uniform values of the Bernoulli function B, but these values match:
B = β2/2. To see this, we may expand Eq. (24) for B, using our per-
turbation series. The lowest-order (r-independent) terms sum to β2/2 in
all regions, while the higher-order terms sum to zero.

Fig. 7. Contours of constant χ, where χ is defined by Eq. (52) in the text.
Adjacent contours are separated by a χ-interval of 15.0. The minimum
point, indicated by the central dot within the circle, is f ′0(π/2) = 0.96
and g−2(π) = 10.0. The χ-value of this point is 2.22.

Fig. 8. Streamlines of the second-order flow, for β = 1.1, constructed us-
ing the best-fit parameters from Fig. 7. The shaded regions surrounding
the two Mach cones represent sectors in which the perturbation coef-
ficients diverge. Also indicated are the central mass and the surround-
ing circle corresponding to r = 1. Notice that the innermost streamlines
reach the origin, indicating the occurrence of mass accretion.

regions. thus establishing boundaries for the well-behaved flow.
Finally, we chose f ′0(π/2) and g−2(π) so that f0 and g−2 matched
as closely as possible across these boundaries.

A convenient measure of the goodness of fit is

χ2 ≡ Δg2
−2

(
θ′M

)
+ Δ f 2

0 (θM) + Δg2
−2 (θM) . (52)

Here, Δg−2

(
θ′M

)
is difference of g−2 across the anti-Mach cone,

and the two other quantities are analogously defined. We sepa-
rately enforced Δ f0

(
θ′M

)
= 0 by adding the appropriate constant

to the numerical integration of f ′0 in the intermediate region.
As we varied both f ′0(π/2) and g−2(π), the quantity χ reached a
well-defined minimum. Figure 7 shows χ-contours for the case
β = 1.1. The optimal values of f ′0(π/2) and g−2(π), shown here
by the dot within the circle, were insensitive to our choice of α.

4.5.4. Sample results

With the numerical procedure in hand, we could determine
the second-order flow for any desired β. Figure 8 displays
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Fig. 9. Angular variation of perturbation coefficients for β = 1.1. The
dashed curves show f ′0 , while the dotted curves are g−2, again using
the best-fit parameters from Fig. 7. Finally, the solid curve is the inte-
grated f0. As in Fig. 8, all variables diverge within the shaded regions
straddling the two Mach cones.

streamlines for β = 1.1. Even in this modestly supersonic case,
the two Mach cones depart substantially from the equatorial
plane (θM = 65◦), and the isodensity contours are a set of nearly
vertical lines that bow inward slightly toward the mass. The
shaded interiors of the wedges straddling each Mach cone rep-
resent the excluded sectors within which the divergent behav-
ior dominates. We previously indicated the excluded region sur-
rounding the Mach cone by the shading in Fig. 4.

Returning to Fig. 8, we notice that the streamlines in the in-
termediate region have the expected concavity, but are not pre-
cisely symmetric across the equatorial plane. For example, a
cone with a half angle of θ = 50◦ cuts the outermost stream-
lines shown at a radius that is 1% closer downstream than up-
stream. Notice also how the innermost streamlines join onto the
central mass. The surface of revolution they generate encloses
the full Ṁ, and the figure illustrates that mass accretion occurs
in this order of approximation. However, we cannot obtain the
detailed behavior of the flow as it joins onto the mass, since our
perturbation series is only valid well outside r = 1, the boundary
indicated here as the central, dashed circle.

Figure 9 shows the angular variation of f ′0 (dashed curve)
and g−2 (dotted curve) for this same β-value. As in Fig. 8, the
shaded regions mark those sectors where both variables diverge.
By design, the coefficients diverge antisymmetrically as either
cone is approached. This behavior is not evident in the figure,
which appears to show a symmetric divergence. In more detail,
both f ′0 and g−2 first rise when approaching the Mach cone from
downstream, then reach a peak and plunge downward (recall
Fig. 4). They exhibit analogous behavior upstream of the anti-
Mach cone.

The solid curve in Fig. 9 shows the integrated f0. The up-
stream and downstream values of this coefficient match exactly
at the anti-Mach cone. We forced this match by adjusting the
integration constant within the intermediate region. The values
of f0 on either side of the Mach cone have a ratio of 1.6. This
ratio depends both on our choices of f ′(π/2) and g−2(π/2), and
on the precise manner by which we excise the divergent region
surrounding the Mach cone. Within our scheme, the mismatch is
a weak function of the parameter α.

As an additional example, Fig. 10 displays streamlines of the
second-order flow for β = 2.0. Here, both cones are even more

Fig. 10. Streamlines of the second-order flow for β = 2.0, constructed
using f ′0(π/2) = 0.06 and g−2(π) = −0.54. In this case, fluid elements
are nearly following linear trajectories. The innermost streamlines again
reach the central mass at the origin.

removed from the equatorial plane (θM = 30◦), and the fluid el-
ements are nearly following straight-line trajectories. The inner-
most pair shown here nevertheless still bends to reach the ori-
gin. Quantitatively, the fluid is affected significantly by gravity
if it passes within the accretion radius racc, which varies as β−2.
Notice also that the figure of revolution generated by the inner-
most streamlines is much narrower than in Fig. 8. This narrow-
ing reflects the fact that Ṁ decreases steeply with β as the Mach
number climbs significantly above unity.

We remind the reader that both Figs. 8 and 10 are just ap-
proximations to the actual flow. The calculated flow would be-
come more accurate at any fixed r � rs with the inclusion of
higher-order terms in the perturbation series. However, the math-
ematical divergences at the Mach and anti-Mach cones would
remain. Because of these divergences, streamlines tend to bend
unphysically toward both cones. Our procedure above was de-
signed to prevent these divergences from unduly influencing the
shapes of the streamlines, at least to this order in the perturbation
expansion.

5. Friction force

5.1. Integration of the momentum flux

Our reconstruction of the streamlines has a degree of arbitrari-
ness, necessitated by the near-cone divergence in our perturba-
tion series. We will now show that the force evaluation does not
have this limitation, but is exact. Dimensionally, the total rate at
which z-momentum is transported into a sphere surrounding the
mass is

Ṗ = −2 π
∫ π

0
ρ ur uz r2 sin θ dθ − 2 π

∫ π

0
ρ c2

s r2 cos θ sin θ dθ. (53)

The first right-hand term is the net advection of momentum
across the surface, while the second represents the static pres-
sure acting on the sphere. If we let our unit of force be 2πρ0 c2

s r2
s ,

then the corresponding non-dimensional expression is

Ṗ = −
∫ π

0
ρ ur uz r2 sin θ dθ −

∫ π

0
ρ r2 cos θ sin θ dθ. (54)

The next step is to write all velocity components in terms of ψ
and ρ, and then to expand the latter variables in their respective
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perturbation series. These operations produce terms proportional
to r2, r1, r0, etc. We are thus motivated to write

Ṗ = Ṗ2 r2 + Ṗ1 r1 + Ṗ0 r0 + ... (55)

Since Ṗ is also the force on the mass, it should not depend on
distance. It is important, therefore, to check that both Ṗ2 and Ṗ1
vanish identically. This is indeed the case. We refer the reader to
Appendix A for details of the calculation. The terms in Ṗ that are
proportional to negative powers of r diminish at large distance
and need not be calculated explicitly. For the remainder of this
section, we focus on evaluating the term Ṗ0.

The full expression for Ṗ0 may be written as

Ṗ0 = −
∫ π

0
(F1 + F2) dθ, (56)

where

F1 ≡
(
1 + cos2 θ

)
β f ′0 +

(
1 − β2

)
sin θ cos θ g−2

+ f1 f ′1 +
(
f ′1
)2 cot θ,

and

F2 ≡ β2 sin θ cos θ g2
−1 − β sin θ cos θ f1 g−1

−
(
1 + cos2 θ

)
β f ′1 g−1.

If we use Eqs. (15) and (16) for f1 and g−1 in the downstream
region, then we find that this contribution to the full Ṗ0, which
we label Ṗd

0, is

Ṗd
0 = −

∫ θM

0
dθ

[(
1 − β2

)
sin θ cos θ g−2 + β

(
1 + cos2 θ

)
f ′0
]
. (57)

At this point, we may utilize the condition of irrotational-
ity, expressed as Eq. (44). Multiplying this latter equation by
(sin θ cos θ/2) gives

−
(
1 − β2

)
sin θ cos θ g−2 − β cos2 θ f ′0

= sin θ cos θ

(
1
D −

2√D +
1

1 +
√D

)
·

Substitution of this last relation into Eq. (57) transforms the lat-
ter into

Ṗd
0 =

∫ θM

0
dθ sin θ cos θ

(
1

1 +
√D −

2√D

)

+

∫ θM

0
dθ

sin θ cos θ
D − β

∫ θM

0
f ′0 dθ.

Of the three integrals on the right-hand side, the first may be
evaluated analytically, while the second and third are divergent.
After doing the first integral, we have

Ṗd
0 =
−1 − ln 2

β2
+

∫ θM

0
dθ

sin θ cos θ
D − β

∫ θM

0
f ′0 dθ. (58)

Closely analogous reasoning for the upstream contribution, to be
denoted Ṗu

0, gives us

Ṗu
0 =

1 + ln 2
β2

+

∫ π

θ′M
dθ

sin θ cos θ
D − β

∫ π

θ′M
f ′0 dθ. (59)

For the intermediate region, we must now use Eqs. (21) and (22)
for f1 and g−1, with C = +1. We find, for the contribution Ṗi

0, an
equation analogous to (57):

Ṗi
0 = −

∫ θ′M

θM

dθ
[(

1 − β2
)

sin θ cos θ g−2 + β
(
1 + cos2 θ

)
f ′0
]
. (60)

We again avail ourselves of irrotationality, now in the form of
Eq. (46). Multiplication of this last equation by (sin θ cos θ/2)
gives

−
(
1 − β2

)
sin θ cos θ g−2 − β cos2 θ f ′0

= sin θ cos θ

(
1
E −

2√E +
E1/2

β2 sin2 θ

)
·

Thus, Eq. (60) becomes

Ṗi
0 = − β

∫ θ′M

θM

f ′0 dθ

+

∫ θ′M

θM

dθ sin θ cos θ

(
1
E −

2
E1/2

+
E1/2

β2 sin2 θ

)
· (61)

The integrand within the second right-hand term of Eq. (61) is
an odd function. Since the range of integration is symmetric
about θ = π/2, this term vanishes, and we are left with

Ṗi
0 = −β

∫ θ′M

θM

f ′0 dθ. (62)

Combining Eqs. (58), (59), and (62), we find

Ṗ0 = Ṗd
0 + Ṗu

0 + Ṗi
0

=

∫ θM

0
dθ

sin θ cos θ
D +

∫ π

θ′M
dθ

sin θ cos θ
D − β

∫ π

0
f ′0 dθ. (63)

Within the second right-hand integral, let ν ≡ π − θ. Noting
that π − θ′M = θM , we find
∫ π

θ′M
dθ

sin θ cos θ

1 − β2 sin2 θ
= −

∫ θM

0
dν

sin ν cos ν

1 − β2 sin2 ν
·

Thus, the first and second right-hand integrals of Eq. (63) cancel,
and we have

Ṗ0 = −β
∫ π

0
f ′0 dθ = β f0(0). (64)

Using Eq. (49), and identifying Ṗ0 as the friction force F, we
arrive at our central result:

F = Ṁ β. (65)

Equation (65) is identical to that derived in the subsonic case,
Eq. (I.58). What we have demonstrated is that a single expres-
sion for the force holds at all speeds. Given our assumption of
a steady-state, laminar flow in the far field, this result is ex-
act. Although the force involves the factor Ṁ, our expression
holds even for a porous, non-accreting object, such as a globu-
lar cluster traversing a galactic halo. The result also applies to
a mass that is expelling its own gas, e.g., a wind-emitting star.
In that case, the wind can only penetrate a limited distance be-
fore it shocks against the background flow. The dynamical fric-
tion force then acts on both the mass and its trapped wind. Our
only requirement is that the background gas well outside of rs be
undisturbed.

This last stipulation is overly conservative. Mathematical
convenience originally motivated our choice of rs as the char-
acteristic length scale. For supersonic flows, however, stream-
lines deviate from the background not inside rs, but instead in-
side racc ∼ rs/β

2 < rs. Numerical simulations show this effect
(e.g., Shima et al. 1985; Ruffert 1996; Lee et al. 2013). In con-
clusion, it is the flow outside of racc that physically determines
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Table 1. Results of Ruffert (1996).

R β Ṁ Ṗgrav Ṗadv Ṗtot Ṗtot/Ṁβ f
1.11(–1) 0.6 2.41 3.19 –9.82(–1) 2.21 1.53 1.21
2.04(–1) 1.4 9.94(–1) 1.08(+1) –6.63 4.14 2.98 1.17
4.44(–3) 3.0 7.86(–2) 2.20 –1.26 9.43(–1) 4.00 1.23
4.00(–4) 10.0 1.59(–3) 1.78(–1) –8.91(–2) 8.91(–2) 5.60 1.33

Notes. For the definitions of the quantities displayed, see Sect. 5.2 of the text. All entries are non-dimensional. Figures in parentheses are the
power of ten multiplying the preceding number.

Fig. 11. The dynamical friction force F, shown as a function of the
Mach number β. Our calculated force, taken from Eq. (66), incorporates
the prescription for Ṁ from Moeckel & Throop (2009). The dotted ver-
tical line marks β = 1. Also shown by the broken dashed curve is the
force as calculated by Ostriker (1999). This force diverges at β = 1.

the force, regardless of the domain of validity for our perturba-
tion series.

For computational purposes, we may use in Eq. (65) the in-
terpolation formula for Ṁ given in Eq. (51):

F =
2 β

(
λ2 + β2

)1/2

(
1 + β2

)2
· (66)

We plot this relation in Fig. 11. We also show, for comparison,
the friction force derived by Ostriker (1999), as given in her
Eqs. (14) and (15). For β > 1, her analytic formula includes the
factor α◦ ≡ ln (Vt/R), where t is the time since the gravitational
force is switched on. In the figure, we have set α◦ = 2. Notice
that Ostriker’s force diverges at β = 1, while ours is continuous
at all Mach numbers.

5.2. Comparison with simulations

The numerical simulation of gas streaming past a stationary,
gravitating mass has a long history. In an early work, Hunt
(1971) investigated a fluid with an adiabatic index of γ = 5/3,
and with incident Mach numbers ranging from 0.6 to 2.4. A
study more directly relevant to ours is that of Shima et al. (1985),
whose suite of axisymmetric simulations included a γ = 1.1 gas
with Mach numbers again up to 2.4. The authors calculated both
contributions to the friction force F – the gravitational tug from
the wake, determined by integration over the density around the
mass, and the advection of linear momentum through the sur-
face of this body, a force variously called the aerodynamic or
hydrodynamic drag. Despite the nomenclature, they found that
this second contribution is actually a forward thrust, directed op-
positely to the gravitational force. Recall that external gas does

not impact the mass directly, but misses it and enters from down-
stream, thus imparting momentum in the upstream direction.

The total force found by Shima et al. (1985) is greater than
ours. These authors define a drag coefficient cd through the rela-
tion F = 2 π cd ρ0 G2 M2/V2 and an effective accretion radius reff
through Ṁ = π r2

eff ρ0 V . It follows that

F

Ṁ V
=

cd

2

(
racc

reff

)2

·
Using their Table 1 and Fig. 9, we infer that, for β = 0.6, 1.4, and
2.4, F/Ṁ V = 1.0, 2.4, and 3.6, respectively. Note that the radius
R of their accreting object varied with Mach number. It was set
to 0.1 times racc, so that R = 0.2 rs/β

2.
In a later study, Sánchez-Salcedo & Brandenburg (1999)

simulated the flow of an isothermal gas around a mass whose
physical size R excceds racc by a factor of 20 or more. Under
these conditions, the density enhancement in the wake is rela-
tively mild. Sánchez-Salcedo & Brandenburg (1999) switched
on the gravity from the central mass suddenly, as in the cal-
culation of Ostriker (1999). They found that their computed
gravitational portion of the force closely matched Ostriker’s an-
alytical prediction. More recently, Kim & Kim (2009), who
adopted γ = 5/3, showed that this contribution to the force de-
clines when R falls well below racc (see their Fig. 14).

The most thorough numerical investigation of the flow pat-
tern, mass accretion rate, and friction force for the isothermal
case has been that of Ruffert (1996). In this three-dimensional
simulation of a γ = 1.01 gas, both the accretor size and Mach
number were varied, the latter up to β = 10. A general result,
which corroborated and extended those of previous studies, was
that the downstream region exhibited continuing instability for
relatively small masses (R � rs) embedded in supersonic flow.
These, of course, are just the conditions of most interest for
our purposes. Ruffert (1996) reported time-averaged results for
both Ṁ and F in such cases.

Table 1 displays the essential results found by Ruffert (1996),
both for his subsonic simulations (β = 0.6) and supersonic ones.
We have only taken data from the runs in which the central
mass was the smallest size. Here, the radius was 0.02 times racc.
We see that, even for β = 0.6, R is less than rs, as our own
study assumes. In addition to β, other non-dimensional quanti-
ties shown in the table include: Ṁ, the mass accretion rate; Ṗgrav,
the gravitational contribution to the force; Ṗadv, the advective
component; and their sum Ṗtot, which is also the force F. Notice
that Ṗtot is positive, i.e., it points in the +z-direction in Fig. 2.
The quantity Ṗadv is negative in all cases, and smaller in magni-
tude than Ṗtot, so that the net force indeed retards the motion of
the mass relative to the background gas.

As the seventh column of the table shows, Ṗtot is not equal
to Ṁ β. Even for β ∼ 1, the ratio Ṗtot/Ṁ β exceeds unity, and
inreases with β, as found earlier by Shima et al. (1985). If there
is no error in our theoretical derivation, what could be the source
of this discrepancy?
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A successful simulation must replicate the flow well in in-
side of racc. This task becomes more demanding at higher β,
since racc itself varies as β−2. Following how the gas joins onto
the central object is especially critical. Suppose, for example,
that the velocity of material just outside the gravitating mass
were, for any reason, artificially low in a simulation. Then, for a
given Ṁ, mass conservation dictates that the density close to the
object be increased. Also increased would be the value of Ṗgrav,
which is obtained by integrating over the surrounding density.
Conversely, Ṗadv would be decreased, since it is proportional to
the angle-averaged incoming speed. Both factors would cause
the numerically determined Ṗtot to be too large.

Only a modest lowering of the speed creates a significant rise
in Ṗtot. To illustrate the point, we correct for this effect by lower-
ing the numerically calculated Ṗgrav at each β-value by a factor f ,
where f > 1. Simultaneously, we let Ṗadv be increased by the
same factor. There is some value of f such that Ṗtot equals Ṁ β:

Ṗgrav/ f + f Ṗadv = Ṁ β.

This special f -value is listed in the last column of Table 1. As β
increases by almost a factor of 20, f is always close to unity and
varies only from 1.2 to 1.3. Thus, relatively small errors in the
two force contributions, if they are inversely related, make a big
difference in Ṗtot.

In an earlier paper outlining his numerical method, Ruffert
(1994) stated that he softened the gravitational potential of the
central mass specifically to keep the incoming velocity rela-
tively low and thereby lengthen the computational time step (see
his Sect. 2.4). Needless to say, a softened potential indeed cre-
ates such an effective deceleration. So does numerical viscosity.
In the Piecewise Parabolic code that Ruffert (1994) employed,
the viscosity in a region spanned by N zones scales as N−3

(Porter & Woodward 1994, p. 319). For all his isothermal simu-
lations, Ruffert (1996) used a relatively coarse grid surrounding
the mass, which typically had five zones covering a distance out-
side the object equal to its radius.

Since the work of Ruffert (1996), other researchers have
tackled this flow problem with improved codes. Results have
evolved substantially. From Table 1, Ruffert (1996) found
Ṁ = 0.994 for β = 1.4. In comparison, Eq. (51), which is a fit
from Moeckel & Throop (2009) to their own simulations, gives
Ṁ = 0.409 for the same β-value. A fresh determination of the
force, using modern numerical techniques, would clearly be of
interest.

We stress that both Ṁ and Ṗtot at each β should not only be
calculated in the vicinity of the central mass, but also through a
far-field integration. Agreement of the results obtained by these
two methods would, of course, strongly corroborate the accuracy
of the simulation, and also be a sensitive test that the flow has
indeed reached steady state5.

5.3. Applications of the new force law

For illustrative purposes, we first consider the deceleration of
a gravitating mass traveling through a uniform gas, and subject
only to the force of dynamical friction. While the mass moves,
it simultaneously accretes gas. The force is the rate of change

5 Canto et al (2011) ran a simulation for β = 5 and performed a sur-
face integration of the momentum flux over a large sphere. However,
they considered only the kinetic part of the flux, i.e., the first right-hand
term in our Eq.(53). The second term, from thermal pressure, is of com-
parable magnitude.

Fig. 12. Evolution of the particle’s speed and mass as a function of non-
dimensional time τ. Mass is shown relative to its initial value. The dif-
ferent curves represent different initial speeds: β0 = 0.5, 1.5, and 2.5.
Once the speed of an initially supersonic particle approaches β ∼ 1, it
quickly decelerates. Concurrently, its mass grows rapidly.

of the object’s momentum, so that we have the dimensional
relation

d
dt

(
Ṁ V

)
= −Ṁ V.

Expansion of the derivative and integration yields

V
V0
=

(
M
M0

)−2

, (67)

where V0 and M0 are, respectively, the object’s initial speed and
mass. We previously derived this result in Sect. 4 of Paper I.

Pursuing the same reasoning as before, we use Ṁ from
Eq. (51) to derive the non-dimensional equation governing the
velocity evolution:

(
1
β

)
dβ
dτ
= −

4
(
λ2 + β2

)1/2

(
1 + β2

)2

(
β0

β

)1/2

· (68)

Here β0 is the initial speed, and τ ≡ t/t0 a non-dimensional time.
We have used as our fiducial dimensional time

t0 ≡ M0

2πρ0csr2
s
· (69)

Here the denominator is the fiducial mass accretion rate from
Sect. 4.4. Thus, the quantity t0 is a characteristic growth time for
the mass when β � 1, but departs from that time in the supersonic
case.

The upper and lower panels of Fig. 12 show the evolution of
the velocity and mass, respectively, for various β0-values. Here
we obtained the mass using Eq. (67). The figure includes one
subsonic case, β0 = 0.5. Notice that, when the mass starts out at
supersonic speed, it first decelerates gradually, then much more
sharply as β nears unity. Concurrently, its mass climbs rapidly,
ultimately increasing at the Bondi rate appropriate for a station-
ary particle.

Turning to more concrete astrophysical applications, the fric-
tional force may play an important role in the dynamical evolu-
tion of planets. In a relatively large fraction of exoplanets dis-
covered through radial velocity studies, the normal to the orbital
plane is misaligned with the stellar spin axis (Albrecht et al.
2012). Recently, Teyssandier et al. (2013) have simulated the
evolution of an inclined, eccentric planet at the early epoch when
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a circumstellar disk is still present. As the planet plunges through
the disk periodically, it experiences an impulsive frictional drag
that gradually decreases both its orbital inclination and eccen-
tricity, leading eventually to a coplanar, circular orbit.

In their numerical study, Teyssandier et al. (2013) found that
planets with the mass of Neptune or lower can maintain their or-
bital inclination over the disk lifetime. On the other hand, Jovian
and higher-mass planets cannot, as a result of the increased dy-
namical friction experienced during each disk crossing. The crit-
ical mass separating these two regimes must depend on the pre-
scription for the frictional drag.

Teyssandier et al. (2013) used, for this drag, both that arising
from direct impact with the gas and the hypersonic limit of the
force derived by Ostriker (1999). In our non-dimensional units,
their adopted dynamical friction force FT is

FT =
2I
β2
,

where the factor I is

I ≡ ln (H/R).

Here, R is the radius of the planet and H is the disk’s semi-
thickness, which they used in place of Ostriker’s term V t. The
ratio of our derived force F to this one is

F
FT
=
β3

(
λ2 + β2

)1/2

(
1 + β2

)2 I ,

which approaches I−1 for β� 1. In their Sect. 2.4, Teyssandier
et al. (2013) quote a characteristic value of I ≈ 6. Adoption of
the new, diminished friction force could significantly influence
the alignment of orbital planes, and thus the fraction of mis-
aligned planets that survive the disk era.

On vastly larger scales, dynamical friction also plays a role
in the assembly of supermassive black holes. Accretion onto
these 109 M
 objects powers the bright quasars detected at
redshifts of z ∼ 6, i.e., about 1 Gyr after the Big Bang. The
most popular hypothesis is that supermassive black holes arise
through the merger of “seed” black holes (M ∼ 102 M
), which
are in turn the remnants of the first stellar generation (Heger et al.
2003). The mergers occur within the dark matter haloes of coa-
lescing galaxies. An individual black hole also accretes gas that
has settled toward the center of its parent halo.

In a combined semi-analytic and numerical study, Tanaka &
Haiman (2009) showed that seed black holes can indeed form
a supermassive one in the requsite time, provided they remain
embedded in the halo’s gas component. Mass buildup is delayed
by the large recoil velocities in the coalesced product of each
black hole merger. (Asymmetric gravitation radiation carries off
the remaining momentum.) Promoting the merger process is dy-
namical friction, which can return far-flung black holes to the
halo center. For their detailed numerical simulations, Tanaka &
Haiman (2009) assumed the total friction force to be

Ftot = FDF + Ṁ V,

where Ṁ is the mass accretion rate of surrounding gas. They
took the dynamical friction force FDF to be the sum of that due
to the collisionless sea of dark matter and that created by the gas.
For the latter, Tanaka & Haiman (2009) adopted the formula of
Ostriker (1999).

According to our own study, the last term above encom-
passes the entire gaseous dynamical friction. That is, the dy-
namical friction force assumed in the simulations is too large in

magnitude. A diminished Ftot would increase the frequency of
black hole ejections, as well as the time over which black holes
flung outward remain on their extended orbits. In summary, the
growth of supermassive black holes is delayed. As in the plan-
etary problem, a revised calculation incorporating the corrected
dynamical friction would be of interest.

6. Discussion

Two key assumptions underlie our derivation, and we reiterate
these as a cautionary note. The first is that the geometric size
of the gravitating mass be appropriately small. Specifically, we
assume that R � racc. In the opposite extreme, R � racc, the
main force acting on the object is not gravitational in origin, but
comes from the direct impact of surrounding gas. This impact
force is given dimensionally by Fimp ≈ πρ0R2V2. The ratio of
this force to that of dynamical friction is

Fimp

F
≈ 1

Ṁβ3

(
R

racc

)2

, (70)

where Ṁ is non-dimensional. According to Eq. (51), the prod-
uct Ṁβ3 approaches a constant for β� 1.

Our second assumption is that the gas surrounding the object
be sufficiently rarefied that its self-gravity is negligible. Once the
amount of mass within the radius racc becomes comparable to or
exceeds that of the central object, the problem becomes one of
gravitational collapse. Here, accretion generally does not occur
in a steady-state manner (see also Sect. 5 of Lee et al. 2013).

The present dynamical friction calculation differs sharply
both in approach and result from previous efforts. Starting with
Bondi & Hoyle (1944), all other researchers have obtained ex-
pressions for the force that contain a Coulomb logarithm. This
term arises from integrating over the perturbed gas, usually in
the downstream wake (Bondi & Hoyle 1944; Ostriker 1999).
Dokuchaev (1964) also obtained this term, but by integrating the
acoustic energy flux over a large sphere surrounding the gravitat-
ing mass. His derivation is thus closer in spirit to ours. However,
we are dubious of his basic premise that the total energy loss as-
sociated with the moving mass is fully accounted for by this out-
going, acoustic disturbance. Accretion generates shocks close to
the mass, and the power from radiating shocks could in princi-
ple rival the acoustic loss, for a sufficiently high velocity. On the
other hand, the total inflow of linear momentum is always trans-
ported unaltered to the object itself, provided the surrounding
flow is steady-state.

The strategy we adopted was to use a spherical coordinate
system and expand the far-field perturbations of the stream func-
tion and density in power series in the radius r. We found that
various coefficients in these series diverged at both the Mach and
anti-Mach cones. Since the series themselves are only valid far
from the gravitating mass, these divergences are purely math-
ematical, and result from the specific form of the perturbation
series. It may be, therefore, that all divergences could be elim-
inated through an appropriate change of independent variables.
We leave this technical issue as a topic of future study.

Turning to our specific result, we find it compelling that the
friction force in the present, supersonic case is identical in form
to that found in Paper I for objects moving subsonically. Our fi-
nal expression is, in fact, so simple that it raises the question of
whether the complex machinery we brought to bear was neces-
sary for its derivation. As one alternative path, consider the fact
that the velocity V is the momentum per unit mass carried by
the background gas. Multiplying V by Ṁ, the mass accreted per
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time, immediately yields the rate of momentum input, which is
the force.

This concise derivation is intuitively appealing, but is also
incorrect. While V is the limiting velocity of background gas at
infinite distance from the mass, the true velocity differs at any
finite r. Similarly, the true density differs from its background
value. These differences are relatively small, but they are inte-
grated over a large surface to obtain the net inflow of momentum.
As may be seen in Sect. 5.1, this inflow is Ṁ V plus several cor-
rection terms of comparable magnitude. These additional terms
cancel exactly, by virtue of the fact that the flow is irrotational.
A more explicit demonstration of the analogous, subsonic result
is in Sect. 5.2 of Paper I.

In any event, we do agree that a simpler derivation of our
result should exist, provided the far-field flow is irrotational.
Equivalently, the generalized derivation must apply to barytropic
fluids, i.e., those in which P is a function only of ρ. In support
of this contention, we note that Khajenabi & Dib (2012) uti-
lized our technique of far-field integration to show that F = Ṁ V
holds for an object moving subsonically through an isentropic
fluid with arbitrary adiabatic index γ. We expect that analogous
reasoning will yield the same result for an isentropic fluid in the
supersonic regime. At that point, the stage will be set for the new
derivation, one that avoids a detailed description of the far-field
flow. Whether one will still need to assume a steady-state mass
accretion rate, as we have done, or be able to derive this rate
from first principles, remains to be seen.
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Appendix A: Background and first-order
contributions to the momentum influx

Here we evaluate Ṗ2 and Ṗ1, the first two coefficients on the
right-hand side of Eq. (55). We will show that both coefficients
are zero. The first is

Ṗ2 = −
∫ π

0

[(
f ′2
)2 cot θ + 2 f2 f ′2 + cos θ sin θ

]
dθ. (A.1)

Substituting f2 = β sin θ/2, this becomes

Ṗ2 = −
(
1 + β2

) ∫ π

0
sin θ cos θ dθ = 0.

The background flow, while it certainly carries z-momentum,
makes no net contribution to the influx.

The integral expression for the second coefficient is length-
ier, and we write it as

Ṗ1 = −
∫ π

0
(C1 + C2) dθ, (A.2)

where

C1 ≡ 2 f ′2 f ′1 cot θ + 2 f2 f ′1 + f ′2 f1,

and

C2 ≡ g−1 sin θ cos θ − (
f ′2
)2 g−1 cot θ − 2 f2 f ′2 g−1.

It is convenient to split up the integral in Eq. (A.2) by region. For
the downstream part, which we denote as Ṗd

1, we use Eqs. (15)
and (16) for f1 and g−1. We find, after algebraic simplification,
that

Ṗd
1 = −

∫ θM

0
dθ

(
β2 sin θ cos θ
D1/2

+ cos θ sin θ

)
. (A.3)

We now use the identity

dD1/2

dθ
= −β

2 sin θ cos θ
D1/2

,

to conclude that

Ṗd
1 =

∫ θM

0
dD1/2 −

∫ θM

0
d
(
sin2 θ/2

)

= −1 − 1
2 β2
· (A.4)

Similarly, the upstream part is

Ṗu
1 =

∫ π

θ′M
dD1/2 −

∫ π

θ′M
d
(
sin2 θ/2

)

= 1 +
1

2 β2
, (A.5)

so that

Ṗd
1 + Ṗu

1 = 0. (A.6)

For the intermediate piece, to be denoted Ṗi
1, we use Eqs. (21)

and (22) for f1 and g−1. Although we have established that
C = +1, we will see that Ṗi

1 is independent of this parameter,
so we retain the original notation. After algebraic manipulation,
we find

Ṗi
1 = −

∫ θ′M

θM

dθ

(
βC sin θ cos θ
E1/2

+ cos θ sin θ

)
. (A.7)

Using the identity

dE1/2

dθ
=
β2 sin θ cos θ
E1/2

,

we infer that

Ṗi
1 = −C

∫ θ′M

θM

dE1/2 −
∫ θ′M

θM

d
(
sin2 θ/2

)

= 0. (A.8)

In summary, we have

Ṗ1 = Ṗd
1 + Ṗu

1 + Ṗi
1 = 0. (A.9)
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