
Astronomy 3
Problem Set 3 Solutions

Problem 1: You can estimate the lifetime of the Sun using simple math. The to-
tal mass of the Sun is about 2 · 1030 kg, of which about 75% was hydrogen when the Sun
formed. Only about 13% of this hydrogen is available for thermonuclear fusion; the rest
remains in the outer layers of the Sun.
(1) Based on the given information, calculate the total mass of hydrogen available for fusion
over the lifetime of the Sun.
(2) How much energy will have been released by the Sun when the hydrogen in part (1) is
consumed?
(3) The Suns luminosity is 4 · 1026 Watts, where 1 Watt is equal to 1 Joule per second. At
this rate, how many seconds would it take to consume the hydrogen that you calculated
above? How many billion years is it?
(4) How old is the Sun now? How many more years will it remain as a main sequence
(i.e.hydrogen-burning) star?

Solution

75% of 2 · 1030 kg is hydrogen. 13% of that 75% of 2 · 1030 kg is available for fusion.

0.13 · 0.75 · 2 · 1030 kg = 0.195 · 1030 kg

MH = 1.95 · 1029 kg

That hydrogen is available for fusion. Over the lifetime of the Sun, it will be converted into
helium. Not all of that mass will become helium though. 0.7% of it will be burned off as
energy.

lost mass = 0.007 · 1.95 · 1029 kg = 1.365 · 1027 kg

This lost mass is converted into energy according to the famous relation E = mc2.

E = mc2 = (1.365 · 1027 kg)(3 · 108 m/s)2 = 1.365 · 1027 · 9 · 1016 kg m2 s−2

The units kg m2 s2 are equivalent to the SI unit of energy, the joule (J).

E ≈ 1.23 · 1044 J

The Sun will burn through this at a rate of 4 · 1026 W .

time =
Energy

Power
=

1.23 · 1044 J

4 · 1026 W
= 3.075 · 1017 s
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t� ≈ 3.08 · 1017 s ≈ 9.77 billion years

The Sun, according to the Internet, is around 4.5 billion years old right now. Rounding our
answer to 10 billion years, the Sun has about 5.5 billion years left.

Problem 2: White dwarfs are dense. Sirius B is the first white dwarf ever discovered.
It is the binary companion star of Sirius A, the brightest star in the sky. The surface
temperature of Sirius B is about 5 times that of the Sun, but its luminosity is only 0.0025
times that of the Sun, and its radius is 0.01 times that of the Sun.
(1) The mass of Sirius B is very similar to that of the Sun. The Suns average density is
1.5 g/cm3. What is the average density of Sirius B? (Hint: Recall density is equal to mass
divided by volume, and volume is proportional to R3, where R is the radius.)
(2) Calculate the mass of a teaspoonful of the Sun in kilograms. (Assume a teaspoon holds
a volume of 1 cm3.) What about the mass of a teaspoonful of Sirius B in kilograms? How
does each of them compare to your (approximate) mass?

Solution

We will assume that Sirius B has the same mass as the Sun. We know density (ρ) is
proportional to mass / volume, which in turn is proportional to mass / radius3. We won’t
worry about constants here. It doesn’t hurt to add in the 4π

3
component of volume, but it

doesn’t make much of a difference on an astronomical scale (and the answer looks nicer).
The Sun’s density is given by:

ρ� ∝
M�
R3
�

Substituting in what we know about Sirius B, its density is given by:

ρSB ∝
MSB

R3
SB

∝
M�

(0.01R�)3
∝

M�
(10−2 ·R�)3

∝
M�

10−6 R3
�
∝ 106 ·

M�
R3
�

We know that M�/R3
� ∝ ρ�, so we can substitute that back into the Sirius B relation:

ρSB ∝ 106 · ρ�

Substituting in the numerical value for ρ�:

ρSB ≈ 1.5 · 106 g/cm3

If a teaspoon is about 1 cm3, then one teaspoon of the Sun is:

Mtsp,� = ρ� · 1 cm3 = 1.5 g/cm3 · 1 cm3 = 1.5 g

A teaspoon of the Sun weighs little more than a paperclip. How about Sirius B?

Mtsp,SB = ρSB · 1 cm3 = 1.5 · 106 g/cm3 · 1 cm3 = 1.5 · 106 g

A teaspoon of Sirius B weighs in at 1500 kg; that’s something like 21x the average human
body mass of 70 kg.
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Problem 3: Neutron stars are denser. A neutron star has a much higher density than
a white dwarf: about 4 · 1014 g/cm3!
(1) Again, suppose a teaspoon holds a volume of 1 cm3. What is the mass of a teaspoonful of
a neutron star in kilograms? Calculate how many people of your (approximate) mass must
stand on a scale in order to balance a teaspoonful of a neutron star. How does it compare
to the world population? (Are you impressed?)
(2) Using the density given above and the equation that relates mass, density, and radius
of a spherical object, calculate the radius in kilometers of a 1.5 M neutron star. (Use
1 M� = 2 · 1033 g). How does this radius compare to the approximate size of the City of
Berkeley?

Solution

This conversion is pretty straightforward:

Mtsp,NS = 4 · 1014 g/cm3 · 10−3 kg/g · 1 cm3 = 4 · 1011 kg

An average human body mass is 70 kg.

N =
4 · 1011 kg

70 kg/person
≈ 5.7 · 109 people

A teaspoon of a neutron star weighs as much as almost 6 billion people: almost the entire
human population. You should be impressed.
The density-mass-volume relation is:

ρ =
M

V

Assuming a spherical neutron star, V = 4π
3
R3.

ρ =
M

4π
3
R3

Solving for R:

R =

[
3M

4πρ

] 1
3

=

[
3 · 1.5 · 2 · 1033 g

4 · π · 4 · 1014 g/cm3

] 1
3

=

[
9

16π
· 1033−14 cm3

] 1
3

= (1.79 · 1018 cm3)
1
3

R ≈ 1.2 · 106 cm

R ≈ 12 km

Berkeley has a radius of something like 2 or 3 km, so a neutron star is only 4 to 6 times
the size of Berkeley. Of course, you might measure the entire city to be 6 km across, or you
might measure campus to be something like 1 km; it doesn’t really matter. The idea is that
a neutron star with a mass of 1.5 M� is about the size of a small city.
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