Protoplanetary Disks: Updates from Observations

Megan Ansdell, UC Berkeley, 10/9/2017

•	•	۰	•	8
J16124373-3815031	Sz 108B	Sz 113	Sz 90	Sz 74
Sz 118	V856 Sco	Sz 100	J15450887-3417333	Sz 123A
J16083070-3828268	J16000236-4222145	Sz 114	J16070854-3914075	J16011549-4152351
RY Lup	Sz 98	Sz 129	Sz 111	MY Lup

- Disks are made of gas + dust
 - -G/D = 100:1 in ISM
 - ratio must decrease in disks?

Figure 4a The characteristic 'dipole field' pattern created on the surface of a Keplerian disc by loci of points of constant radial velocity. The shaded areas correspond to emission in those parts of the line profile which are shown in Figure 4b

- Dust component:
 - sizes range from sub-µm to planets (?)
 - compositions likely vary (silicates, ices, graphite)
 - detection by continuum (thermal) emission
- Gas component:
 - vast majority of gas in H₂ (but also CO)
 - detected by line emission from molecules in disk

Obs. wavelength ~ grain size (λ >100 μ m)

Why (sub-)mm Emission Traces Dust Mass

3. Mass locked in (sub-)mm grains

Thus (sub-)mm emission traces the amount of sub-mm to cm sized grains, which contain the bulk of the dust mass

ALMA: Revolutionizing (sub-)mm Astronomy

L Mitte Heinstein Heiter at the

66 antennas at 16,500 ft 15 km baselines \rightarrow 10 mas resolution 10 observing bands \rightarrow (sub)-mm

10-100x higher sensitivity & resolution

- Collecting area → sensitivity
 Longest baseline → resolution
 No. of baselines → image fidelity

HL Tau

pre-ALMA resolution 0.2" at 140 pc (30 AU)

HL Tau

15 km baselines at 1mm 0.025" at 140 pc (3.5 AU)

TW Hya 14 km baselines at 870 µm 0.02" at 54 pc (1 AU)

Why Large Surveys?

Protoplanetary disks evolution → initial conditions for planet formation

Why Large Surveys?

Protoplanetary disks trends \rightarrow explain exoplanet trends?

Why are super-Earths so common?Why are Jupiters so rare?

• What are the origins of exoplanet trends with stellar mass?

- Tells us how much material is available for planet formation
- Can be measured efficiently with ALMA for large populations of disks

- Tells us how much material is available for planet formation
- Can be measured efficiently with ALMA for large populations of disks

- Tells us how much material is available for planet formation
- Can be measured efficiently with ALMA for large populations of disks

- Good tracer of H₂
- Weak dipole moment allows detectable emission
- But emits in far-IR (need space-based observatory)

(see Bergin et al. 2013)

- Tells us how much material is available for planet formation
- Can be measured efficiently with ALMA for large populations of disks

GAS FROM CO ISOTOPOLOGUES

- Detectable at sub-mm wavelengths
- Optically thin (traces total disk mass)
- Parametric models + radiative transfer
- Simple CO chemistry (freeze out + photodiss.)
- Efficient to get $M_{\mbox{\scriptsize gas}}$ to within factor of 3

- Measure dust & gas masses for complete populations of protoplanetary disks
- Indicative of how much material is available for planet formation
- Surveyed star-forming regions with distinct ages to study disk evolution

Lupus Clouds

- Young (1-3 Myr)
- Nearby (150 pc)
- 95 protoplanetary disks

Ansdell+2016c

σ Orionis Cluster

- Middle-aged (3–5 Myr)
- Nearby-ish (385 pc)
- 92 protoplanetary disks

Ansdell+2017

Upper Sco Association

- Evolved (5-10 Myr)
- Nearby (145 pc)
- 75 protoplanetary disks

Barenfeld+2016

Protoplanetary Disk Zoo

Lupus ('	1–3 Myr	•)		•							
Sz 83	RY Lup	Sz 98	Sz 129	Sz 111	MY Lup	Sz 71	J16090141-3925119	Sz 69	Sz 110	J15450634-3417378	Sz 66
•	0	•	•	0	•	•	<mark>()</mark>	•	•	•	•
Sz 68	J16083070-3828268	J16000236-4222145	Sz 114	J16070854-3914075	J16011549-4152351	Sz 133	Sz 117	Sz 81A	Sz 88A	Sz 131	J16081497-3857145
•	~		•	/	🦉	1	•	•	•	•	•
Sz 65	Sz 118	V856 Sco	Sz 100	J15450887-3417333	Sz 123A	Sz 84	Sz 130	Sz 97	J16070384-3911113	Sz 95	Sz 96
Sz 73	J16124373-3815031	Sz 108B	Sz 113	Sz 90	Sz 74	J16085324-3914401	J16085373-3914367	Sz 104	J16080017-3902595	J16075475-3915446	J16000060-4221567

Upper Sco (5–10 Myr)

J153548-295855	J155140.214610	J155301-211413 •	J155342-204928	J155829-231007	J155836-225715	J160018-223011 ●	J160140-225810 •	J160141-211138
J160241-213824	J160301-220752 •	J160322-241311 •	J160357-203105	J160357-194210	J160417-194228	J160421-213028	J160439-194245	J160525-203539
J160621-192844	J160622-201124	J160635-251651	J160641-245548 ●	J160643-190805	J160726-243207	J160727-205944 •	J160739-191747	J160757-204008
J160823-193001	J160827-194904	J160900-190836	J160900-190852	J160935-182823	J160940-221759 •	J160953-175447 ø	J160954-190655 •	J160959-180009

Declining Dust Distributions

Cumulative distributions calculated using Kaplan Meier Estimator (to take into account upper limits)

Declining Dust Distributions

Disks that can form giant planet cores (10 M_{\oplus}) (unrealistically assuming 100% efficiency)

- 1-3 Myr: 25%
- 3-5 Myr: 13%
- 5-10 Myr: 5%

Giant planet formation well underway?

- Implies solids > cm already formed
- Evidence of overcoming "fragmentation barrier"

Giant planet formation rare?

- Implies most disk just lack sufficient dust
- Consistent with exoplanet statistics

	Stellar mass	Orbital radius	Planet mass	Frequency
Micro- lensing	0.14 -1.0 M⊚	0.5 -10 AU	0.3 -10 M _{Jup}	17% Cassan+2012
Direct Imaging	0.1 - 0.7 M⊚	< 20 AU	1.0 -13 M _{Jup}	6.5% Montet+2014
	0.1 - 0.6 M⊚	10 -100 AU	1.0 -13 M _{Jup}	<16% Bowler+2015

$M_{dust} - M \star Correlation$

Linear fit from Bayesian Linear Regression method of Kelly 2007 (to take into account upper limits, errors on both axes, intrinsic scatter)

$M_{dust} - M \star Correlation$

The M_{dust} - M_{\star} relation fundamentally explains the f_{giant} - M_{\star} relation?

- Giant planets form more efficiently in highermass disks around higher-mass stars
- Due to higher Σ + faster T_{dym} → faster core growth and larger formation zones

(e.g., Ikoma+2000, Ida & Lin 2005, Kennedy & Kenyon 2008)

Steepening of M_{dust} - M + relation points to different evolution around low-mass stars

- Growth of mm-size dust into > cm-sized bodies more efficient around low-mass stars?
- Inward drift of mm-size grains more efficient around lower-mass stars?

(e.g., Pascucci+2016)

Low Gas Masses

Typical gas masses $\lesssim 1 M_{JUP}$ in Lupus (1-3 Myr)

- Explained by stratified nature of disks?
- Supports that giant planet formation is rare or rapid

Low Gas Masses

Typical gas masses $\lesssim 1 M_{JUP}$ in Lupus (1-3 Myr)

- Explained by stratified nature of disks?
- Supports that giant planet formation is rare or rapid

Low Gas Masses

Typical gas masses $\lesssim 1 M_{JUP}$ in Lupus (1-3 Myr)

- Explained by stratified nature of disks?
- Supports that giant planet formation is rare or rapid

Removal of gas-rich atmosphere via winds?

Additional depletion of volatile carbon?

HD vs. CO Gas Masses

Andrews+2016

Ruane+2017

Different gas mass estimates for TW Hydrae:

- HD: M_{gas} > 0.05 M_☉ Bergin+2013
- CO: M_{gas} ≈ 5x10-4 M_☉ Williams & Best (2014)
- HD with updated vertical structure: M_{gas} ≈ 6-9x10⁻³ M_☉ Trapman+2017

If 10 Myr with 50 M_{Jup} then where are the gas giants? No non accreting Jupiter-mass planets found with direct imaging

Only two other gas masses from HD (biased to brightest/massive disks)

- GM Aur: 2.5-20.4x10⁻² M_{\odot}
- DM Tau: 1.0-4.7x10⁻² M_☉

Consistent with CO mass of 0.9x10⁻² M_☉ Williams & Best (2-14)

External Photoevaporation

- No massive (>9 M_{\oplus}) disks at < 0.03 pc (EUV)
- Normal at 0.03-0.30 pc (FUV) and beyond

External Photoevaporation

- No massive (>9 M_{\oplus}) disks at < 0.03 pc (EUV)
- Normal at 0.03-0.30 pc (FUV) and beyond

- No massive (>3M⊕) disks at <0.5 pc
- Smooth trend <0.5 pc to cluster edge
- Gas detections at edges of cluster

External photoevaporation effects disks throughout OB clusters

Close (-ish) binaries inhibiting planet formation?

The (Taurus) disk view:

- $a > 300 \text{ AU} \rightarrow \text{same as isolated stars}$
- $a = 30-300 \rightarrow 5x$ fainter
- $a < 30 \rightarrow 25x$ fainter
- circumbinary \rightarrow same as isolated stars

The (Kepler) exoplanet view:

a < 100 AU → planet-hosting binaries rarer than "field" binary population

What about the inner disk?

Difficult to observe < 1 AU scales: small angular scales and bright host star

The "dipper" stars

Cody+2014

- Dip periods < 1 week
- Dip durations ~0.5-2 days
- Dip depths up to ~60% in flux

Not planetary!

- Young (<10 Myr) stars with disks
- Exhibit dimming events in optical LCs
- Quasi-periodic or aperiodic behavior

What is causing the "dipper" phenomenon?

Inner dusty warps in nearly edge-on disks passing along line of sight

Are dippers too common (20-30% of disks) for edge-on disk scenario?

Kurosawa & Romanova 2013

K2: New Insights Into Dippers

Space-based optical photometry along ecliptic

- High precision (~mmag)
- High cadence (~30 min)
- Long-term (~80 days)

K2/C2 observed closer + older SFRs

Ansdell+2016

- USco (10 Myr @ 140 pc)
- ρ Oph (2 Myr @ 120 pc)

K2: New Insights Into Dippers

Non-accreting Dippers?

Mostly WTTS when using Ha emission to identify CTTS (White & Basri 2003)

Weak or no accretion when using $\text{Pa} \pmb{\gamma}$ emission as tracer of accretion

Dipper Disks Not Inclined to Edge-on Orbits...

Dippers not inclined toward edge-on orbits?

Dipper Disks Not Inclined to Edge-on Orbits...

Increasing Evidence for Warps in Inner Disk

AA Tau (the original dipper) is not edge on! Evidence for warps from HCO+ velocity profile