## Astro 7A: Introduction to Astrophysics


$+2+2$


## Tour of the Cosmos

## see the "Logarithmic Map" (astro.princeton.edu/universe)



## The Sun, Our Star



Radius of Sun
$\mathrm{R}_{\odot}=7 \times 10^{8} \mathrm{~m}$
$=7 \times 10^{10} \mathrm{~cm}$
$=100 \mathrm{R}_{\oplus}$

Mass of Sun
$\mathrm{M}_{\odot}=2 \times 10^{30} \mathrm{~kg}$
$=2 \times 10^{33} \mathrm{~g}$
$=3 \times 10^{5} \mathrm{M}_{\oplus}$
Luminosity of Sun
= Radiant power (energy per time)
$\mathrm{L}_{\odot}=4 \times 10^{33} \mathrm{erg} / \mathrm{s}$
$=4 \times 10^{26} \mathrm{~W}(\mathrm{~J} / \mathrm{s})$
$\approx 10^{14} \times$ power used by humanity

The sun is a big hot ball of hydrogen \& helium.
Its surface temperature is $\approx 6000 \mathrm{~K}$.
At the center, the temperature is $\approx 1.5 \times 10^{7} \mathrm{~K}$.
$\odot=$ symbol for Sun
$\oplus$ = symbol for Earth

## The Solar System



Rocky, icy debris left over from formation of solar system
$\Rightarrow$ craters on moon, extinction of dinosaurs, planet formation theory

The Kuiper Belt



## Other Stars

$$
\begin{aligned}
& R \sim 0.1-100 R_{\odot} \\
& M \sim 0.1-100 M_{\odot} \\
& L \sim 10^{-4}-10^{6} L_{\odot}
\end{aligned}
$$



Solar Neighborhood


Distance between stars $\approx 3$ light-years
$\sim 10^{3} \mathrm{x}$ size of solar system


In true relative scale


BRIGHTNESS


TIME IN HOURS

The Kepler Orrery credit: D. Fabrycky

 (O) $0_{1307}^{72}$
(?) $\overbrace{}^{\frac{127}{127}}$



## Barnard 64: A "dark cloud"

## The: Interstellar Mèdiun?

Gas, dust, iosmic rays, magnetic fields

- Recycles stars

Galaxy-scale calormeter.

Orion Nebula


# Galaxies 

Diameter ~ 20 kpc Number of stars $\sim 2 \times 10^{11}$

$$
M \sim 10^{11} M_{\odot}
$$

Rotation period at Sun's

## location $\approx 250 \mathrm{Myr}$

We are here

## The Milky Way Galaxy

Actually, we're here.


## Galaxy zoo



## Dark Matter Halos

$$
\begin{gathered}
M \sim 20 \times M_{\text {stars }} \\
R \sim M p c
\end{gathered}
$$

$\sim 80 \%$ of matter consists neither of protons nor neutrons, but some "cold" (non-relativistic) particle, to be identified

$Z=28.62$


## Universe is expanding---even accelerating by some mysterious "dark energy"

## Gravity pulls dark matter together to form galaxies and clusters of galaxies



Universe is flat in space and has a finite age (14 Gyr)
but we don't know whether it is finite or infinite in space

## Measuring the Radius of the Earth Using Shadows



## Earth-Moon distance in units

 of Earth radii
## Earth-Sun distance (AU) in units of Earth-moon separation



# From the Sun to the Stars: Parallax 

## Transverse Sky Velocity: Proper Motion

## Radial Velocity: Doppler Shift

Simulations at www.astro.ubc.ca/~scharein/a311/Sim.html

## Sample Blinking



## THE ELECTROMAGNETIC SPECTRUM



## Hydra Cluster of Galaxies (Mpc scales)



Optical
( $\sim 100$ galaxies)


X-ray ( 1 keV )
Bremsstrahlung

Radio
Synchrotron



## Sun's Spectrum vs. Thermal Radiator

of a single temperature $\mathrm{T}=5777 \mathrm{~K}$



## Electromagnetic Windows



## Actual Electron Wavefunctions

## Angular momentum $\ell$







## Continuum Spectrum



Cold Gas


Absorption Line Spectrum
Hot Gas


## Lyman Alpha "Forest"



## Not every line is an absorption line

Left: Lyman alpha emission line Right: Mg II "H and K" self-reversed lines





American Astronomical Society * Provided by the NASA Astrophysics Data System

--Our adopted temperature-height distribution for the photosphere (on the right), tem-perature-minimum, chromosphere, and chromosphere-corona transition zone. Also indicated are the regions of formation of the various lines and continua we have studied.

## Optical Telescope Design



Single-slit diffraction pattern


## Diffraction from Obscurations

## HST Entrance Pupil



PSF


V band (no aberrations) Model

## Scatter from Optical Surface Errors

## Midfrequency Error Map

 Krist \& Burrows (1995)

## PSF



V band (ACS/HRC)
Observed

## Hubble Space Telescope - 2.4 m Telescope in Space: Observes at Visible, IR, \& UV $\lambda$ 's



NICMOS - one of the detectors onboard Hubble

Cannot "resolve" (distinguish, tell apart, ...) sources of light that are too close together "Diffraction limit"


Diffraction-limited performance of 3.6 m CFHT at K band (2.2 microns)

not to be confused with "donuts" (bad focus)

atmosphere refracts starlight in random directions very quickly-stars "twinkle".
telescope view (high magnification)

multiple images created

## Atmospheric "Seeing"

http://www.astronomynotes/com/telescop/s11.htm


WFPC2


## Segmented Mirrors



# Keck Telescopes - 210 m Telescopes Observing at Visible, IR, \& UV $\lambda$ 's 

Operated by Caltech \& UC


On top of Mauna Kea in Hawaii at 14,000 ft. (dormant volcano)



Optical ~0.5 microns
Hubb̈le Space Telescope (2.4-m)

Near-Infrared
$\dot{\sim} 1.5$ micron
1.3-m telescope Mt. Hopkins



## Very Large Array




## Radio jets from quasars on kpc (VLA) to pc (VLBI) scales



## Arecibo - 305 m diameter Radio Telescope in Puerto Rico



## View from beneath Arecibo



Lots of visible light gets through but radio waves $(\lambda>3 \mathrm{~cm})$ are efficiently reflected $\}$
smooth enough for radio $\lambda$ 's, but not for visible $\lambda$ 's


## Brown dwarfs

Too big to be a planet Too small to be a star Binary separation ~ 40 AU

$$
\begin{aligned}
& \mathrm{M} \sim 30 \mathrm{M}_{\mathrm{J}} \\
& \mathrm{~L} \sim 10^{-5} \mathrm{~L}_{\odot}
\end{aligned}
$$

## Extrasolar planets

Super-Earths ( $10 \mathrm{M} \oplus$ )
Mostly detected by stellar to Super-Jupiters $(10 \mathrm{MJ})$

## Doppler effect





$$
-\overline{E_{P}}=2 \overline{K_{T}}=\overline{\sum_{\theta} M_{\sigma v_{\sigma}^{2}}^{2}}=\sum_{\sigma} M_{\sigma} \overline{v_{\theta}^{2}},
$$



The Coma cluster contains about one thousand nebulae. The average mass of one of these nebulae is therefore

$$
\begin{equation*}
\bar{M}>9 \times 10^{60} \mathrm{gr}=4.5 \times 10^{10} M_{\odot} \tag{36}
\end{equation*}
$$

Inasmuch as we have introduced at every step of our argument inequalities which tend to depress the final value of the mass $\mathscr{M}$, the foregoing value (36) should be considered as the lowest estimate for the average mass of nebulae in the Coma cluster. This result is somewhat unexpected, in view of the fact that the luminosity of an average nebula is equal to that of about $8.5 \times 10^{7}$ suns. According to (36), the conversion factor $\gamma$ from luminosity to mass for nebulae in the Coma cluster would be of the order

In his preface to "The Catalogue of Galaxies and Subcompact Galaxies" (also known simply as "The Red Book"), Zwicky described his colleagues "scatterbrains," "sycophants and plain thieves" who "have no love for any of the lone wolves who are not fawners and apple polishers," who "doctor their observational data to hide their shortcomings and to make the majority of the astronomers accept and believe in some of their most prejudicial and erroneous presentations and interpretations of facts," and who therefore publish "useless trash in the bulging astronomical journals."[1]


Fritz Zwicky
"Lone Wolf"

## Sampling of Binaries



## Visual Binary



## Astrometric Binary

## Optical image of Sirius (MisDoreld Obeseratery)




## Eclipsing Binaries

Animation by R. Pogge, Ohio State


## Spectroscopic Binary Simulator



## Cygnus X-1

$\mathrm{mi} \sim 30 \mathrm{M}$ i unknown

## $\mathrm{m}_{2}>10 \mathrm{M}_{\odot}$

PRIMARY ORBIT AND ABSORPTION LNES OF CYG X-I




$$
\begin{aligned}
& \mathrm{HD} 80606, \mathrm{~m}_{1}=0.9 \mathrm{M}_{\odot} \\
& \mathrm{e}=0.934 \\
& \mathrm{~m}_{2} \sin \mathrm{i}=4 \mathrm{M}_{\mathrm{J}}=\mathrm{m}_{2}!
\end{aligned}
$$



## Planetary Systems in Solar Neighborhood



http://exoplanets.org


Dwarf Stars (Luminosity Class V)


## Spectral Classes

| Spectral Class | Approximate <br> Temperature (K) | Hydrogen <br> Balmer Lines | Other Spectral |
| :--- | :--- | :--- | :--- |
| $\mathbf{O}$ | 40,000 | Weak | Ionized helium |
| B | 20,000 | Medium | Neutral helium |
| A | 10,000 | Strong | Ionized calcium weak |
| F | 7,500 | Medium | Ionized calcium weak |
| $\mathbf{G}$ | 5,500 | Weak | Ionized calcium medium |
| $\mathbf{K}$ | 4,500 | Very weak | Ionized calcium strong |
| M | 3,000 | Very weak | Titanium oxide strong |

## Strength Of Line



Figure 8.9 The dependence of spectral line strengths on temperature.

Angular momentum $\ell$

$$
\begin{array}{ccccc}
l=0 & l=1 & l=2 & l=3 & l=4 \\
\mathbf{s} & \mathbf{p} & \mathbf{d} & \mathbf{e} & \mathbf{f} \\
\cdot & & & & \\
& & & & \mathbf{m}=0
\end{array}
$$

Electron
Wavefunctions


1.7 cm
(continuum)

$10830 \AA$ infrared filter

$300 \AA$
UV

$100 \AA$
X-ray


## Saha Eqn: Ionization of Hydrogen


all neutral

## Boltzmann + Saha

Fraction of Hydrogen Atoms in the $n=2$ "excited state"
(electrons in this energy level produce the
"Balmer"
absorption lines)


Temperature (K)

## Photoionization Cross Sections



Fio. 1.-Photoabsorption cross-sections of the abundant elements in the interstellar medium as a function of wavelength

## Photoionization Cross Section for gas of "cosmic" composition



Fig. 2.-Effective cross-section (cross-section per hydrogen atom or proton) of the interstellar medium.


## "Cosmic" Composition (by number)




## Stromatolites

Blue-green algae that can make rock formations

Fossil stromatolites imply Earth had life (Sun was shining)
$>3$ billion years ago




## Binding energy per nucleon




## C) JAXA

## IKAROS

"Interplanetary Kite-craft Accelerated by Radiation of the Sun"





## Luminosity generated by the pp chain in the Sun

$\mathrm{L}_{\mathrm{r}}$ : luminosity flowing through a spherical shell of radius $r$


## The Stellar "Main Sequence"



## Effective Temperature

## Hertzprung-Russell (H-R) diagram

## Main Sequence

## Radiative-convective boundary is at $\approx 0.7 \mathrm{R}_{\odot}$ in the sun




## simulation of convection near the radiative-convective boundary in the sun



Convectively unstable

Convectively stable

## Convection vs. Radiation




Barnard 64: A "dark cloud"

## Orion Nebula



Gas, dust, cosmic rays, magnetic field's

- Recycles stars

Galaxy-scale calorimeter.

Planetary nurseries: Circumstellar disks



## Brown Dwarf Cooling Curves

Dots mark 50\% depletion due to thermonuclear burning


## Brown Dwarfs in the Infra-red

## Molecular Absorption Bands



## Brown Dwarfs Aren't Brown



Na and K kill Y and G; Above spectrum = 1 R + 0.3 G + 0.42 B

## Brown Dwarfs are Magenta


"Superstar" Eta Carina: 100-150 M॰ lost $\sim 30 \mathrm{M}$ © in previous eruptions Eruptions driven by radiation pressure!

## "Shell Burning"

Hydrogen-rich outer layer

after the core has fused all its H to He , core contracts

Fusion kicks in again in Hydrogen-rich shell surrounding He core


## Same Process Repeats

Shell \& Core Fusion of Heavier \& Heavier Elements as Core Contracts \& Heats Up

## Luminosity Increases as Core Contracts

Star continues to expand

## Evolution of Sun in the HR Diagram



Effective Temperature

## Red Giant Phase



Future: very hot core + cool surface. Large size but less mass; very bright.


## Main-Sequence "Turn-Off" Dating



## Planetary Nebula

"Cat's Eye Nebula"<br>( N lines = red<br>O lines = blue \& green)




## Sirius A and B

## Sirius B is a white dwarf




Neutron Star (Berkeley sized)

White Dwarf
(Earth sized)


Fig. 6.-Portions of the light curve of PG 1159-035 as scen simultaneously by the 1.5 m telescope in Chile (top curve), the 0.9 m telescope in Texas (middle curve), and the 0.6 m telescope in Hawaii (bottom curve).


## Whole Earth Telescope

## Binding Energy Curve



Atomic Mass

## Supernova



After
Before

## Supernova Remnants



X-rays are emission lines from different elements ( $\mathrm{N}, \mathrm{O}, \mathrm{Fe}$ ) created by fusion in the star \& its explosion


## SN "Light Curves" - Flux vs. Time



## Type II Supernova



## The Neutrino Signature from SN 1987A



SN 1987A
D~50 kpc
(in a small neighbor of the MW)

19 Neutrino events in 13 seconds.
$\mathrm{E} \sim 2-310^{46} \mathrm{~J}$ inferred in nu's

Type Ia Supernova


Pulsars = Rotating neutron stars emitting beams of particles and radiation


Pulsar periods range from 1 millisecond to 10 seconds


Voyager's
"Golden Record" Cover


Accretion disks surrounding black holes radiate

## Gravity warps space (and time)

## Kepler's laws break down

Even photons with no mass can have their trajectories bent
("gravitational lensing")

