
Astro 7B – Problem Set 10

1 Old School Universe

Taken from Ryden and Peterson 23.4.

In the good old days before we had any data, many of us imagined ourselves to live in a

“Newtonian” universe: one filled only with ordinary matter, and one which is spatially flat

(Euclidean, where triangles look like triangles and all the rules of elementary school geometry

are valid). A flat universe is one whose average density ρ (averaged over cosmologically large

volumes, i.e., Gpc3) equals the critical density ρc. In a flat universe, the “scale factor” a(t)

obeys:

ȧ2

a2
=

8πGρc
3

(1)

The scale factor is the “Adobe Illustrator” expansion parameter for space. It measures how

big the universe is at any given time. By convention, we set a(t = tnow) = 1 at the current

time. Thus, in the past, a(t < tnow) < 1; and in the future, a(t > tnow) > 1 (assuming an

expanding universe).

Note that the critical density ρc changes with time. In a flat universe, at any given time,

the actual density just follows the critical density: ρ(t) = ρc(t).

(a) Assume that at t = tnow, ρc = ρc,now. Write down an expression for ρ(t) = ρc(t)

in terms of ρc,now and a(t). Remember that for our Newtonian universe, there is only

ordinary matter. Think about how the density of ordinary matter changes as space expands.

You might find aspects of a previous problem set on “stretchy photons” helpful.

(b) Insert your answer for (a) into equation (1) and solve for a(t).

Your answer for a(t) should depend only on t and tnow. Use the boundary condi-

tions a(tnow) = 1 and a(t = 0) = 0 to substitute away Gρc,now from your answer.

(c) What is tnow in terms of the Hubble constant now, Hnow? Use the fact that

H(t) ≡ ȧ(t)/a(t).

(d) Today we know that (i) Hnow = 70 km/s/Mpc and (ii) the oldest stars in the universe

have an age of t∗ = 13 Gyr. Explain why these two observations are or are not

consistent with a flat Newtonian universe (remember, the universe must be at

least as old as the things that are in it).
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2 Taylor Expansions of Space

In class we expanded the scale factor (a.k.a. the cosmological expansion parameter) a(t) as

a power series:

a(t) = a(t0) + ȧ(t0)(t− t0) +
1

2
ä(t0)(t− t0)2 + ... (2)

We rewrote this using standard notation, defining the Hubble constant H0 ≡ ȧ(t0)/a(t0) and

the deceleration parameter q0 ≡ −ä(t0)/[a(t0)H
2
0 ]:

a(t) = 1 +H0(t− t0)−
q0
2

[H0(t− t0)]2 + ... (3)

In everything that follows in this problem, we will assume that

ε(t) ≡ H0(t− t0)� 1 . (4)

This assumption says that we are considering only times in the not-too-distant past; i.e.,

time intervals (t− t0) so short that space expands just a bit. In other words, our expressions

will be valid only for the low-redshift (z � 1 = local = nearby) universe. However, at the

end of this problem, we will abuse our derivation and cavalierly use our expressions at z ∼ 1;

this is quantitatively inaccurate but is good enough to get a qualitative feeling for how the

redshift-magnitude plot should look.

Equation (3) rewritten with (4) equals:

a(t) = 1 + ε− q0
2
ε2 + ... (5)

(a) In class we derived an expression for the co-moving coordinate r of an object (assuming

that r = 0 corresponds to you = the observer):

r =

∫ t0

te

c dt

a(t)
(6)

This is the co-moving coordinate of an object (read: supernova) which emitted a photon

at time te (subscript e for “emit”) — a photon that was later detected by you at time t0
(subscript 0 = “nought” = “now”).

Insert (5) into (6), and use (4) to derive:

r = c(t0 − te) +
1

2
cH0(t0 − te)2 + ... (7)
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Important: You are going to have to Taylor expand.

(b) Express a(te)/a(to) in terms of the redshift z of the emitting object. Your

expression should be exact, given the formula presented in class (and in either

textbook).

(c) Taylor expand your answer in (b) in powers of z. Then combine with (5) to

find:

ε(te) = −z + (1 + q0/2)z2 + ... (8)

Important: when Taylor-expanding, keep terms of order z2.

Depending on how you solve it, you may be dealing with a quadratic at some point; if so,

your solution for ε(te) will have two roots. Decide the sign of ε(te) and thus the appropriate

root.

(d) Insert (8) into (7) to find:

r = cH−1
0

[
z − 1

2
z2(1 + q0)

]
(9)

(e) In class we derived the “luminosity distance” as the distance inferred from a standard

candle:

dL = a(t0)r(1 + z) (10)

Use (d) to find:

dL = cH−1
0

[
z +

1

2
z2(1− q0)

]
(11)

(f) Recall how “apparent magnitude” m is a measure of flux F :

m = −2.5 log10

(
F

Fref

)
(12)

where Fref is some internationally agreed-upon reference flux.

Recall also how “absolute magnitude” M is a measure of luminosity:

M = −2.5 log10

(
F10

Fref

)
(13)
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where F10 is the flux that the object would have IF it were a luminosity distance of 10 pc

away from the observer.

The source (read: supernova) actually has a luminosity distance of dL. Express F10 in

terms of F and dL. Thereby show that:

m−M = 2.5 log10

(
dL

10 pc

)2

(14)

The quantity m−M (apparent minus absolute magnitude) is called the “distance modulus”.

It is a (perverse) measure of distance (actually, luminosity distance).

(g) Combine (14) and (11) to find:

m−M = 5 log10

[
cH−1

0 [z + z2(1− q0)/2]

10 pc

]
(15)

Take H0 = 70 km/s/Mpc. Plot m −M versus z, for z between 0.01 and 1, for 3

sample values of q0 ∈ (1/2, 0,−1). Your plot should have 3 curves on it corresponding to

the 3 example values of q0. Optional: you can compare your figure to Figures 24.5 and 24.6

of Ryden & Peterson, or Figure 29.26 or 29.27 of Carroll & Ostlie.

(Congratulations — now all you need are some real data to overlay on your plot to see which

curve the data best matches, and you can reproduce a Nobel-Prize-winning result.)
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