
Astro 7B – Problem Set 11

1 The End of the Observable Universe

(or The Beginning of Astronomy)

There is a limit to how far electromagnetic radiation can reach us from the ends of the

universe. That limit is set by the moment of recombination: the moment when electrons

and protons first united to become neutral hydrogen atoms. After recombination,1 photons

are suddenly free to travel across the universe. Before recombination, photons cannot travel

far because they are too busy scattering off free electrons (via Thomson scattering, a.k.a.

Compton scattering). After recombination, the photons free-stream in all directions (except

the small fraction of photons that happen to have wavelengths that match the line transitions

in neutral hydrogen). We detect this radiation today as the cosmic microwave background

(CMB) radiation.

We cannot detect electromagnetic radiation from before the moment of recombination. Try-

ing to see beyond the moment of recombination is tantamount to seeing through an opti-

cally thick cloud of free electrons. Before recombination, the photons from the Big Bang are

trapped in a dense thicket of electrons. After recombination, the photons are free.

Recombination is also called the moment when radiation “de-couples” from matter. Recom-

bination might also be called the moment when conventional astronomy — the study of light

from distant portions of the universe — begins.

In the early universe, matter is squeezed to high density, and frequent collisions between

particles ensure that everything relaxes into thermal equilibrium at a common temperature

T .

Early on, T is so high that almost all hydrogen is ionized. As the universe expands, T falls.

When T is low enough, hydrogen becomes neutral. This is the moment of recombination.

(a) Assume that today (t = t0) the total baryon (read: hydrogen) density is n0 ∼ 10−7

cm−3 — this is a gross average over cosmologically large volumes. Write down an exact

expression for the total baryon density n(t) as a function of n0 and the scale

factor a(t), assuming a(t0) = 1.

(b) The temperature today of the cosmic microwave background is T0 = 2.73 K. Write

down an exact expression for the temperature T (t) of the radiation from the big

1“Recombination” is more properly called “combination” since this is the first time electrons and protons

combine.

1



bang in terms of T0 and the scale factor a(t) (You may find a previous problem

set helpful).

(c) In thermal equilibrium, the number density of free protons np, the number density of free

electrons ne, and the number density of neutral hydrogen atoms nH are given by the Saha

equation:2

npne
nH
∼

(
2πmekT

h2

)3/2

e−χ/kT (1)

Here me is the mass of an electron, k is Boltzmann’s constant, h is Planck’s constant, and

χ = 13.6 eV is the ionization energy for (ground-state) hydrogen.

Assume that the only form of baryonic matter in the universe is hydrogen.3 Define the

moment of recombination as the moment when np = nH (half the hydrogen is neutral and

the other half is ionized).

Use (a), (b), and the Saha equation to calculate the scale factor a(trec) and

temperature T (trec) at the moment of recombination.

(d) Assume that from trec to t0, the universe is flat and matter-dominated.4 For such a

universe, write down an exact expression for a(t) in terms of t and t0 (you may

find a previous problem set helpful). Then combine with (c) to calculate trec in

terms of t0. Finally convert to years knowing that t0 = 13.8 Gyr. This is how old

the universe was at the time of recombination.

2 How to Get to Carnegie Hall (or Practicing Your

Scalings)

The universe divides into (at least) 5 eras: in chronological order: radiation-dominated,

inflation-dominated, radiation-dominated, matter-dominated, and dark-energy-dominated.

In each era, assume that only one kind of energy exists, so that the scale factor a(t) behaves

either as a pure power law or as a pure exponential with time. Approximating a(t) as a

piecewise function is the same approximation we used in class.

2People who are familiar with the Saha equation will appreciate that for this problem we have approxi-

mated the annoying order-unity ratio of partition functions as 1; hence the use of ∼.
3This is not a terrible approximation. By number, hydrogen dominates all other elements by roughly a

factor of 10.
4This is also not a terrible approximation. As we discussed in class, only in recent times (times near t0)

has dark energy become competitive with (dark) matter in terms of the energy density budget.
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This problem gives practice in scalings and in calculating proper distances and horizon

distances. It DOES NOT make the assumption made in class that the current time t0 equals

the time when the energy density of matter equals the energy density of dark energy. That is,

we distinguish now between t0 and tmΛ, where tmΛ equals the time when the energy density

of matter equals the energy density of dark energy.

Unless otherwise noted, all the notation in this problem is identical to the notation used in

lecture.

(a) Write down formulae for the scale factor a(t) for each era:

tmΛ < t < t0: a(t) ∝ exp[(8πGuΛ/3c
2)1/2t]

trm < t < tmΛ: a(t) ∝ t2/3

tf < t < trm: a(t) ∝ t1/2

ti < t < tf : a(t) ∝ exp[(8πGuinflation/3c
2)1/2t]

0 < t < ti: a(t) ∝ t1/2

In other words, find the coefficients to convert the above proportionalities into equalities.

Express your answers in terms of a(t0), uΛ = constant, uinflation = constant, and the various

t’s.

Hint: a(t = 0) = 0.

(b) At t0, astronomers measure ΩΛ,0 ≡ uΛ,0/ucrit,0 = 0.74 and Ωm,0 ≡ um,0/ucrit,0 = 0.26.

Find a(tmΛ), i.e., the scale factor at matter-dark-energy equality, when uΛ = um.

(c) Use your answers in (a) and (b) to solve for tmΛ, the time of matter/dark-energy equality.

Use t0 = 13.8 Gyr, H0 = 70 km/s/Mpc, and express your answer for tmΛ in Gyr.

(d) Calculate the horizon distance dhor(ti) at ti (the horizon distance at the beginning of

inflation), assuming ti = 10−36 s. Express in cm.

(e) Calculate the horizon distance dhor(tf) at tf (the horizon distance just after inflation is

over), assuming N ≡ [8πGuinflation/3c
2]1/2(tf − ti) = 70 (i.e., there were N = 70 e-foldings of

the universe during inflation) and tf = 10−34 s. Express in cm.

(f) Calculate the proper distance to the surface of recombination, evaluated at t0. (Since

we cannot see photons beyond the surface of recombination because the universe is too

optically thick before recombination, we may regard this proper distance as the “size of the

visible-light universe”; see previous problem.) Take trec = 3 × 105 yr and use the fact that

recombination occurs after radiation-matter equality but before matter-dark-energy equality.

Use whatever information you need in previous parts of this problem, and express in Gpc.

3



(g) Calculate the proper distance to the surface of recombination, but now evaluated at tf .

Use trm = 105 yr, and whatever information you need from previous parts of this problem.

Express your answer in cm, and make sure it is much less than your answer in (e), thereby

showing that everything within the visible-light universe was in causal contact thanks to

inflation (i.e., the horizon was inflated to a giant size, growing way, way past the surface of

recombination).
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