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DYNAMICS OF NARROW RINGS

STANLEY F. DERMOTT
Cornell University

The ring models described here were developed to account for the dynamical
problems posed by the narrow rings of Uranus. Some of these rings'are now
known to be eccentric, inclined, nonuniform in width, optically thick, and
narrow, with very sharp edges. The eccentric rings have common pericenters
and large, positive eccentricity gradients. The theory of shepherding satellites
successfully accounts for most of these features and can also account for some
features of the narrow Saturnian rings, in particular, waves, kinks, and
periodic variations in brightness. Outstanding problems include the putative
relation between eccentricity and inclination displayed by eight of the nine
Uranian rings, and the magnitudes of the tidal torques acting on the shepherd-
ing satellites. The horseshoe-orbit model, although viable, probably has more
application to the narrow rings from which the Saturnian coorbital satellites
Sformed. The angular momentum flow rate due to particle collisions is a
minimum at the Lagrangian equilibrium points L, and L,, and we can expect
accretion to be rapid at these points.

The Voyager 2 image (Fig. 1) of the Saturnian F Ring showing the two
“‘guardian’’ satellites, 1980526 and 1980S27, leaves little doubt that the
theory of shepherding satellites proposed by Goldreich and Tremaine (1979a)
for the Uranian rings is essentially correct. There is no direct evidence that
satellites confine the nine Uranian rings, but this must be regarded as very
likely. The horseshoe-orbit model of Dermott et al. (1979), postulates that
each narrow ring contains a small satellite. While viable, this model cannot
account for some of the observed features of the Uranian rings. However, I
will argue that the model can be applied to the narrow rings from which the
coorbital Saturnian satellites presumably were formed. The aim of this chapter

[ 589 ]
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Fig. 1. Image taken by Voyager 2 of Saturn’s A Ring, showing the narroxlv FRing bracket'ed by
its two shepherding satellites. Because the inner one (1980S27) orbits the planef sh.ghtly
faster than the outer (1980S26), the satellites lap each other every 25 days. When this picture
was taken, the shepherds were << 1800 km apart; they passed each other ~ 2 hr later. Marked
azimuthal variations in the brightness of the F Ring are evident. (Image courtesy of JPL/
NASA.)

therefore will be to give an account of the dynamical processes involved in
both types of ring-satellite gravitational interaction. o

In Sec. I, T describe the problems posed by the narrow Uranian ‘and
Saturpian rings. The initial outstanding problem was that of particle confine-
ment, and a good portion of this chapter is devoted to that problerp alone. I‘n
the model of Goldreich and Tremaine (Sec. II), particle confinement is
achieved by tidal torques exerted on the ring by small near.by satel}ites. The
torque arises from the second-order change in semimajor axis expenenced. by
each ring particle at each close encounter with the shephercyr.lg satelh.te.
However, for the cumulative change in semimajor axis to be finite, the ring
particle must lose some orbital energy between consecutive encounters. This
loss is achieved either by collisions, which result in eccentricity.dampmg,. or
by energy transfer to other ring particles through the excit[atlon of splrjal
density waves. I give a simple derivation of the torque equation and explain
why this torque is correctly described as a tidal torque. In Sec. I, I also
discuss wave formation in very narrow rings and show how these waves could
account for the kinks, braids, and periodic variations in brightness displayed
by the Saturnian F Ring.
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The linear relation between ring width and orbital radius displayed by the
€ Ring of Uranus and some other narrow rings shows that the pericenters of
the particle orbits have a common precession rate, and that the pericenters are
closely aligned (Sec. IIT). Such alignment may be maintained by the ring’s
self-gravitation (Goldreich and Tremaine 1979a,b), in which case the ring
mass and surface density can be deduced from observable ring parameters.
However, it is notable that all the measured eccentricity gradients are close to
unity; this prompted Dermott and Murray (1980) to suggest that the rings
are close-packed at pericenter and that apse alignment is maintained by
particle collisions. This problem has since been complicated by the obser-
vation that some Uranian rings have small inclinations, and by a possible
relationship between a ring’s eccentricity and its inclination (French et al.
1982). Node alignment is easily accommodated by the self-gravitational
model (Borderies et al. 19824; Yoder 1983), but at present there is
no theory to account for the putative relation between eccentricity and in-
clination. In Sec. III, T also discuss how recent developments of the
shepherding-satellite model of Goldreich and Tremaine account for the
existence of rings with very sharp edges.

In the horseshoe-orbit model (Sec. IV), confinement is achieved by the
gravitational action of a satellite embedded in the ring; this satellite also acts
as a source of ring particles. The dynamics of this problem are of particular
interest when the satellite/planet mass ratio, m/M, is very small (m/M)*<<1,
for only then are the horseshoe-orbit solutions of the equations of motion
dominant. I discuss the stability of this type of orbit and the formation of
coorbital satellites. A question of interest here is the complete absence of
coorbital satellites in the Jovian system, in contrast to their relative abun-
dance around Saturn.

The most important recent review to emphasize the dynamics of narrow
rings is by Goldreich and Tremaine (1982). Other reviews include those of Ip
(1980a, b), Dermott (1981a) and Brahic (1982).

I. PROBLEMS
A. Observations.

The models described in this chapter were inspired by the discovery of
the rings of Uranus (Elliot 1977, 1979), so it is appropriate that I describe
these rings first. Here I emphasize only those features which constrain the
models; for a more complete description of the Uranian rings see the chapter
by Elliot and Nicholson in this book.

All the radii of the nine Uranian rings lie in a comparatively narrow range
of radial width < 10,000 km. The innermost ring is 16,000 km above the
planet and the outermost ring is 78,000 km lower than the orbit of Miranda.
The rings are very narrow and optically thick (optical depths 7 <1). In fact,
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only three of the rings have been fully resolved. These have been found to
have nonuniform widths. The width of the € Ring (the outermost one) in-
creases from 21 km at pericenter to 96 km at apocenter and has a mean nor-
mal optical depth 7 = 1 at its widest point; the optical depth at the narrowest
point is too high to be measured reliably. The width of the o Ring increases
from 5 km at pericenter to 10 km at apocenter and the corresponding range of
7 is 1.4 to 0.7. The figures for the B Ring are similar; the range in width is
5 to 11 km and the corresponding range in 7 is ~ 1.5 to 0.35. All the other
rings except the % Ring have widths < 4 km (see chapter by Elliot and
Nicholson; also Nicholson et al. 1982).

The edges of some of the rings are remarkably sharp; witness the Fresnel
diffraction spikes exhibited by, for example, the y Ring. The Voyager 2
photopolarimeter occulation profiles (Lane et al. 1982) have revealed that the
outer edge of Saturn’s A Ring, located at the 7:6 resonance with the larger
coorbital satellite (198081), is sharp on a distance scale <1 km. The outer
edge of Saturn’s B Ring, at the 2:1 resonance with Mimas, is comparably
sharp. In Sec. III, I discuss the role of resonance in the formation of these
sharp edges (Borderies et al. 1982b). The Uranian rings are very dark and
particulate (gaseous rings [Van Flandern 1979] can be discounted for the
reasons given by Fanale et al. [1980], Gradie [1980] and Hunten [1980]).
There appears to be very little material between the rings (Matthews et al.
1982).

Most of the resolved rings show some structure. That of the € Ring has
been described as undulating and appears to be stable, i.e., time independent.
Near apoapse, the optical depth of the « Ring is a minimum near its center: the
so-called ‘‘double-dip’’ structure (see chapter by Elliot and Nicholson). A
similar structure is displayed by the narrow ring in Saturn’s C Ring at 1.29
Saturn radii (R) (Sandel et al. 1982) and by the narrow, optically thick spike
discovered by the Voyager 2 PPS in Saturn’s F Ring (Lane et al. 1982). The
Uranian 7 Ring is broad (width = 50 km) and diffuse with a sharp, unresolved
spike at its inner edge, just inside a region of low optical depth (see Fig. 6 in
chapter by Elliot and Nicholson). The 8 Ring also shows a broad section of
diffuse material.

That the rings may be eccentric was suggested by Elliot et al. (1977),
developed by Lucke (1978), and proved by Nicholson et al. (1978) who
discovered the linear relation between the radii and the radial widths of sec-
tions of the € Ring (see Sec. III). All the Uranian rings, with the possible
exceptions of the n and € Rings, are now known to be both eccentric and
inclined to the equatorial plane of the planet (French et al. 1982). It also
appears that all the rings except the e Ring have ¢ =~ sin i (to within a factor
<5), where ¢ is eccentricity and i inclination, and that both ¢ and i increase
with decreasing semimajor axis a (see Fig. 14 of Elliot and Nicholson, in this
book). If this relation has some physical significance, then the rate of increase
of e with decreasing a is so marked that the inner boundary of the ring system

.
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may be that region where 2ae would be comparable with the mean ring
separation; this would occur atg =~ 38,000 km.

Most of the structure observed in Saturn’s rings is probably due to either
diffusion instabilities (Lin and Bodenheimer 1981; Lukkari 1981; Ward 1981)
or spiral density waves (Goldreich and Tremaine 1978b; Cuzzi et al. 1981).
However, in almost every case where clear gaps appear in the rings, eccentric
ringlets are found (Smith et al. 1981, 1982; Stone and Miner 1982; Lane et al.
1982). Narrow eccentric rings exist at 1.29 R; (associated with the Titan
apsidal resonance [Porco et al. 1982]), at 1.45 Rs, and at 1.95 R,. The latter
is just outside the 2:1 Mimas resonance, but appears to be a Keplerian
ellipse precessing under the influence of Saturn’s oblateness (Smith et al.
1982). In each case, like the eccentric Uranian rings, these rings are widest
at apocenter and narrowest at pericenter.

At least two narrow discontinuous rings, or arcs, exist within the Encke
Division near 2.21 R,. Two separate rings were seen in the Voyager 1 images,
whereas the Voyager 2 images of the gap each show only one ring, but in
different images these arcs appear at more than one radial location suggesting
that the ring or rings may be discontinuous. Both arcs show large azimuthal
variations in brightness on a length scale of 3000 km, and one arc shows kinks
or waves tens of km in amplitude (peak to peak) and 1000 km apart (Smith et
al. 1982; chapter by Cuzzi et al.).

The strangest narrow ring in the solar system is undoubtedly the F Ring of
Sqturp discovered by Pioneer 11 (Gehrels et al. 1980). Voyager 1 images of
this ring revealed ‘‘braids,’” regions where the ring is split into two separate
components (see Fig. 2), clumps, kinks, and large azimuthal variations in
?)n'ghtness (Smith et al. 1981). Braiding was also seen by Voyager 2, but only
in one image (Fig. 3) (Smith et al. 1982). The braids or loops have lengths
between 7000 and 10,000 km; the initial report of a length of 700 km (Smith et
al. 1981) was a mistake (Smith et al. 1982). The spacing of the clumps is
similar, but ranges from 5000 to 13,000 km (Smith et al. 1982). These clumps

appear fuzzy on most images, but at least one clump is sharply defined and
may be a small satellite embedded in the ring (Smith et al. 1982). The widths
of the loops shown in the Voyager 1 images are between 30 and 40 km (Smith
etal. 1981, 1982).

In the Voyager 2 images, the F Ring appeared 500 km wide and consisted
of one bright component and at least four faint components. The Voyager 2
PPS detected a ring of width about 60 km with a sharp, 1 km wide, optically
thick (7 = 1) component (Lane et al. 1982).

B. Confinement.

Interparticle collisions, Poynting-Robertson light drag and plasma drag
cause an unconstrained narrow ring to gradually spread (Goldreich and
Tremaine 19794, 1982). Brahic (1977) has shown that a narrow ring of
uniform surface density, mass m,, mean radius » and width W (<<r) has an
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Fig. 2. Three separate components of Saturn’s F Ring, seen in a Voyager 1 image. Two
prominent bright strands appear twisted and kinked, giving a braided appearance to the ring;
the fainter innermost strand largely lacks such nonuniformities. (Image courtesy of JPL/

NASA))

energy E (at fixed angular momentum) that varies with W as

GMm, W*
E =~ — ————— + constant, @D
32r

where M is the mass of the planet and G the gravitational constant. Thus E is
a maximum when W is a minimum, and any loss of energy will result in
spreading on a timescale ¢4 given by

t; = WIW = —m, Q*W*/(16 E) 2)

where () = (GM/r*)* is the mean angular velocity of the ring. On the micro-
scopic scale, we can relate E to the particle collision frequency w, by
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Ilg. 3. The ()]lly voyager 2 mage of the T Ring that shows braiding. Image courtesy of

E =~ 3vim, w, (1- &) 3)

Whe:re v is the one-dimensional random velocity and ¢ is the coefficient of
restitution of the particles (Goldreich and Tremaine 1982). An alternative

approach is to treat the ring as a differentially rotating fluid of density p in
which a shear stress

_ dQ
S = pwr W “)

generat.es a torque which transfers angular momentum with direction and rate
determined by the angular velocity gradient dQ)/dr (Safronov 1969; Lynden-

B.ell anq Pringle 1974). E is then the work done by the torque. For effective
kinematic viscosity v we have
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o L 046 )
Q 1+7

(Cook and Franklin 1964; Goldreich and Tremaine 197§a). Both approaches
yield the result that ¢; is comparable to the time a par_tlcle needs to random
walk across the ring (Brahic 1977; Goldreich and Tremame 1978a),
e~ o K) ©)
0\ d
i isti i icles. For discussion of the
where d is the characteristic radius of the partic : :
meaning of ‘‘characteristic’’ see Hénon (1981, 1983), Gpldremh and Tremam;
(1982), and the chapter by Weidenschilling et al. For rings located at about
planetary radii,

2x10™ W

w=———7) ke v

Poynting-Robertson light drag causes the orbit of a particle of flensny.p,
and radius d, moving in a circular orbit about a planet of mean orbital radius
a,, to decay on a time scale

8p,dc*

®)
Tor = T 3L olAmad) Qe (508" 1)

where L o is the solar luminosity, ¢ is the velocity of light, i is the inclination
of the particle orbit relative to the ecliptic and

Opr = Qaps + Osca (1—<cosa>) 9

where Q 4 is the absorption coefficient (1 'for a perfect absorber), %S;; 1.s Zk;z
scattering coefficient, and « is the scattering angle (Bum§ et al. . ); o
also the chapter by Mignard. The orbits of pamcles.o.f d1ffer<.=,nt 51:2161:s wr—
decay at different rates and, despite the effect§ of colhslor}s wl.'uch wi ;\:1:1
age out the decay rates, if the surface density of the ring is n;)lt radially
uniform, then we must expect a narrow ring to broaden on a time scale

tspreaa = tpr (W/r) . (10)
For the Uranian rings

tspreaq = 2 X 10° Wd yr, an

where W is in km and d is in cm. Since ¢, increases and #gpreaq decreases if d
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decreases, and vice versa if d increases, it follows that regardless of particle
size narrow rings could not remain narrow for more than about 10" yr. There-
fore, if the observed narrow rings are not young, then they must be confined
(Goldreich and Tremaine 1979a).

If a planet has a magnetic field which maintains a corotating magneto-
sphere, and recent observations of auroral hydrogen Lyman-a emission
(Clarke 1982) indicate that this is the case for Uranus as well as Saturn, then

absorption of this plasma by the ring particles leads to orbital decay on a
timescale

2dp, . 0 5
"7 3re, Q-0 (12)

where ), is the angular velocity of the planet and Py is the plasma density
(Burns et al. 1980). Since the planet is the source of the angular momentum,
then plasma drag, like tidal drag, acts to push the particles away from the
synchronous orbit (see chapter by Griin et al.). For the F Ring of Saturn

Ip =3 X 10'd yr, (13)

where d is in cm. However, since the F Ring partiaily clears out its flux tubes,
the above estimate is a lower limit (Goldreich and Tremaine 1982).

C. Corotational Resonance.

Shortly after the discovery of the narrow Uranian rings, it was suggested
that the observed occultations may have been produced by arcs of particles
librating in stable, corotational resonances (Dermott and Gold 1977). The

dynamics are illustrated in Fig. 4 (see also Greenberg 1984 and the chapter by
Franklinetal.). Ina resonance of the type shown, we have

(P+@N —ph—ges' = ¢ (14)

where A and \' are, respectively, the mean longitudes of a particle and of the
perturbing satellite, &' is the pericenter of the perturbing satellite’s eccentric
orbit, and p and ¢ are integers. In the stable configuration ¢ librates (i.e.
oscillates) about 7 if q=1 (first-order resonance), then all conjunctions of the
satellite and the particle take place near the apocenter of the satellite’s orbit.
Thus, the existence of the resonance guarantees that the separation of particle
and satellite at conjunction is close to a maximum. (If g=2 (second-order
resonance), then only every other conjunction takes place near apocenter, and
so forth.) Resonances can involve the motions of nodes or even combina-
tions of the motions of nodes and of pericenters, but these more complex

cases are not discussed here (see chapters by Franklin et al., and by Shu; also
Greenberg 1984).
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path of perturbing
satellite

PLANET

Fig. 4. Libration of particles in a corotation resonance about a longi.tude whif:h is stationary 12
a frame corotating with the pattern speed of the perturbing potential. In this frz}me, the. pai
of the perturbing satellite is closed and stationary. The cxzfmplc sholwn here is thf% ;5.2 (=
n/n') resonance. Points marked on the path of the pertur'bln.g sat‘elhte derTote positions ;t
equal time intervals. The motion of the perturbing satellite in this frame is slow near the
points marked @, and Q,.

Differentiating Eq. (14) with respect to time and rearranging, we obtain

n'-g'  p

= (15)
n—aos' ptq

Thus, the mean motions relative to the motion of the pericenter are.exactly
commensurate. It follows that, in a frame rotating with the mean r.notlon n of
the particle, the path of the perturbing satellite is closed (s.ee Fig. 4). The
gravitational influence of the perturbing satellite on the 9rb1t of th.e particle
can now be modeled by spreading the mass of the sate.lhte along its closed
path in such a way that the line density at any one po.ix?t 1s proportlonal‘to the
time spent in that part of the path. In Fig. 4, the positions of t'he satellite are
marked at equal time intervals; thus the spacing of these marks' is a measure of
the line density. The line density distribution represents the disturbing pot.en—
tial, and we can say that in a corotational resonance the_resonant particle
corotates with the pattern speed of the disturbing potentlal.. The e).ian}ple
shown in the 3:2 resonance ([p-+q1/p=3/2), for which the line density is a

e
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maximum at the points marked Q. and Q,. Different values of p and q give rise
to different distributions of mass, but in all cases, if the orbital eccentricity of
the satellite is not zero, then the line density distribution is not uniform. It is
this azimuthal nonuniformity which gives rise to the forces that stabilize the
resonance. Consider a particle displaced from the equilibrium point. If the
particle is displaced towards the planet, then its mean motion will be greater
than the resonant mean motion » and, as shown in Fig. 4, it will drift in the
prograde sense. The force on the particle due to the mass distribution at 2,
will then have a greater effect than that at Q,, and will act to increase the
angular momentum of the particle. But, since mean motion decreases with
increasing angular momentum, the net effect of the force is to reverse the
sense of drift. Thus, a displaced particle can librate about a longitude that is
fixed in the rotating reference frame. Particles moving in nested librating
paths (see Fig. 4) will form a compact arc of particles, that is, a narrow
discontinuous ring (Dermott and Gold 1977).

Particle arcs associated with corotational resonances have some inter-
esting properties. Weak external drag forces, such as Poynting-Robertson
light drag, do not necessarily destroy their stability; the perturbing sateilite
can supply the angular momentum removed by the drag force in such a way
that the exact resonance is maintained, and the equilibrium longitude in the
rotating reference frame is merely displaced (Goldreich 1965). Internal dissi-
pation due to particle collisions still leads to ring spreading, but, since for
small displacements the libration period is independent of the libration
amplitude, the shear forces and the net angular momentum flow rates due to
particle collisions are very much less than in an unconstrained ring of similar
proportions (Dermott et al. 1983).

The weakness of this ring model is that for most resonances the arcs are
very narrow (Aksnes 1977; Goldreich and Nicholson 1977). The maximum
width W of an arc of librating particles is determined by the strength of the
average perturbing force and is given by

W=8<;1(I§4{,);a (16)

where a is the semimajor axis of the ring particles, and R is the term in the
expansion of the disturbing function associated with the resonant argument
(Goldreich and Nicholson 1977; Dermott and Murray 1983). For two-body
resonances of the type described by Eq. (14),

alR|  af(c)ym'e™
GM M a7

where the primed quantities refer to the perturbing satellite and o = a/q'.
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TABLE I

Arc Widths of Corotational Resonances

a w
(Planetary

Satellite m' /M e p+q:p Radii) af(e)  (km)
Mimas 7107 0.0201 2:1 1.95 0.750 18
5:3 2.20 2.329 5

198081 810~ 0.0070 5:4 2.17 3.145 8
6:5 2.23 3.946 9

7:6 2.27 4.747 10

Miranda . 107* 0.012 4:1 1.97 0.097 0.1

Values of af{a) and W for a few of the corotational resonances in Saturn’s
rings near Encke’s Gap are given in Table 1. The arcs associated with these
particular resonances are wide and should give rise to observable phenomena.
However, the two-body resonances in the region of the Uranian rings are
high-order resonances (g > 3), so the perturbing forces are weak and the arcs
are narrow (W <1 km). Three-body corotational resonances involving two
satellites of masses m, and m, and a ring particle are also possible, but, since
|R| ocm m,/M*, these resonances tend to be even weaker (Aksnes 1977;
Goldreich and Nicholson 1977).

The corotational resonance model-is a viable ring model in that it can
account for narrow discontinuous arcs of confined particles which are to some
extent stable against the disruptive effects of Poynting-Robertson light drag
and interparticle collisions. However, it was soon realized that the model
could not account for the widths of the Uranian rings, and other models
were sought. We now know that the Uranian rings are not discontimuous
arcs, but arcs associated with known satellites should exist in the Saturnian
ring system.

II. SHEPHERDING SATELLITES

A. Shepherd Dynamics.

The dynamics of the shepherding satellite model of Goldreich and
Tremaine (1979a) are not easily described in a few lines. The impulse approx-
imation of Lin and Papaloizou (1979), the usual simple approach, has
been rejected by Hénon (1983). There is also the problem of explaining
the role of dissipation, since an eccentricity damping term is curiously
absent from the ‘‘standard formula” (Eq. 25) for the torque (Hénon 1983;
Greenberg 1983).
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ariziiiiese Ny Outer

e Satellite

Fig. 5. Schematic diagram showing the action of the shepherding satellites. Arrows on the ring
particle paths show the direction of motion of the particles with respect to the perturbing
satellite. For clarity I assume here that the outer strand of particles is perturbed only by the
outer satellite; in fact both satellites sometimes act on the same particles at the same time,
and at all times each satellite acts on all the strands. At conjunction, a satellite changes the
eccentricity and the semimajor axis of each ring particle. Eccentricity damping by particle
collisions results in a further change in the semimajor axis, but this change is negligible in
comparison with that produced by the satellite interaction.

A qualitative description of the mechanism is given in Fig. 5. On en-
counter with a nearby satellite, a ring particle briefly experiences an attractive
fgrce in the direction of the satellite. For a particle initially moving in a
cugular orbit, this causes the excitation of a small eccentricity ¢ and a change
Sa in its semimajor axis in such a direction that the particle appears to have

been repelled by the satellite. The change 8 in the angular momentum % of
the particle is given by

oh da )

T e (18)
Hox.vever, even though we usually have ea>>8q, Sa/a>>¢* (see Eq. 21) and
oh is effectively determined by 8a alone. But, paradoxically, 8a/a, which is
of second order in m'/M, can be calculated from e, which is of first order in

m'/M, using the Jacobi integral for the circular restricted three-body problem,
or equivalently Tisserand’s relation:

a' a\* 1
—+ 2 (—a—) (1-¢)" =C + @ mM) 19)

where C is a constant (Goldreich and Tremaine 1982). Substituting

Aa = a—a' into Eq. (19) and expanding binomially, we obtain (Dermott
and Murray 19814)

3 /Aag,\? ,
T( )—eﬁc—3 (20)

al

where the subscript n refers to values after the nth encounter with the perturb-
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ing satellite. Thus, an increase in e always proc.iuces an increase. in the separa-
tion {Aa| of the semimajor axes of the ring particle and the satellite. o
For the configuration shown in Fig. 5, 82 = Aa, — Aa,, and substitution
into Eq. (20) yields
da 2

t i
a 0

e can be estimated from Gauss’s form of the perturbation equation:

de . L (D sinf + 2T cosf) (22)
dt  na

where D and 7' are the radial and tangential forces -(per unit mass) on the
particle due to the satellite, and f is the particle’s true anorpa.ly. If we neglect
T and assume that a radial force Gm'/Ada, acts for a time 2A.a0/ Ua (as
in the impulse approximation), where U = 3nAa /2a is the ‘relatxive: .angular
velocity of the particle and the satellite, and th.at during thls.bne.f interval
(0.2P where P is the orbital period of the particle), the particle is always
close to quadrature and sin f=~1, then we obtain

. ;"L.( e ) (23)
3 M \Aag,

(cf. Lin and Papaloizou 1979). A more accurate calc.ulat-ion by Julian and
Toomre (1966) shows that the coefficient in this equat1.01.1 is ?.24 rather than
4/3. That our approximation underestimates the. coefficient is partly.due to
neglecting the tangential force. Although the sign of T cjhanges during the
encounter, the sign of cos f also changes and <T cosf > is actually far from
igible.
negh’lg":)bcalculate the mean torque I exerted on the ring, we must now make? an
assumption about the effects of repeated encounters betweeg a ring .partlcle
and a satellite. In Fig. 5 I assume that collisions between the ring Pamcles act
to damp the excited eccentricity, and that at the next en'counter w1t}} the sarﬁe
satellite the particle is again moving in a circular OI'.blt and experiences the
same exchange of angular momentum 8A. Since the time between encoun.ters
is 27r/U, Eqgs. (18), (21) and (23) (with coefficient 2.24 rather than 4/3) yield

Sh

e (24)
I'=h=75"0"
Gm' \*
_ = ) (25)
=0.399 (nAa:) m,
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In this case, a damping factor does not appear in the equation for the torque
because it is assumed that between encounters the excited eccentricity is
totally damped.

At the other extreme, if the excited eccentricity is completely undamped,
then the evolution of Aa due to repeated encounters is described by the Jacobi
integral, or more approximately by Eq. (20). Using first-order perturbation
theory it can be shown that e does not increase indefinitely but merely oscil-
lates about some mean, and it follows from this and Eq. (20) that to second-
order in m'/M, in accord with Poisson’s theorem on the invariability of
semimajor axes, Aaq must also oscillate about some mean and that the torque
o1 average is zero. '

Between these two extremes, we must expect the torque to depend on the
rate of eccentricity damping. The following argument makes it clear that this
is the case. The existence of a torque I' implies that work is performed and

that the total mechanical energy £ of the system decreases, i.e., is dissipated
as heat, at a rate

E=-UT. (26)
If AE is the energy dissipated in the time 277/U between encounters, then
AE = 27T Q27

and, from Egs. (18), (21), and (23), we have

1
AE = = my (ean)’ . (28)

That is, AE may be thought of as the kinetic energy associated with the radial

or eccentric motion of the ring particles. The magnitude of the torque is
related to the rate at which this energy is dissipated.

B. Wave Formation.

In a frame corotating with the perturbing satellite, all particles initially
moving in circular orbits must follow identical paths after encounter. It fol-

lows that each satellite generates a standing wave of amplitude 4 = egq and
wavelength

=2 A
iy 3mla, 29)

(see Fig. 5). In the inertial frame, each particle moves in an independent
Keplerian ellipse, but the pericenters of these elliptical orbits and the phases
of the particles on the orbits are such that the locus of the particles is a
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sinusoidal wave that moves through the ring with the angular velocity of the
perturbing satellite (Dermott 19815). For the F Ring of Saturn

A =6 X 10" m'/M) (Aa,) " km 30)
where Ag, is in km, and
{ =94Aq, . 3D

Just as the Moon is attracted by the tidal wave that it raises on the Earth,
the satellite is attracted by the tidal wave that it raises on the ring, and
the calculation of this force gives us another way of estimating the torque T".
For heuristic purposes, the ring particles are shown in Fig. 6 as unperturbed
(x=0) before encounter (y<<0), and with a displacement

x = ea sin(2mwy/ 1) (32)

after encounter (y>0). The torque can easily be shown to be

37 ,Gm' \?
=224 ﬁ(?&?) m, (33)

(cf. Eq. 25), where

¢ (/Aa,)sin (2y/3Aa,) d (/Aa,) _1 34
B J (1 + ¢/Aa) )} 6 -

0

Thus, in this approximation the coefficient in Eq. (33) is 0.18 r.ather than
0.399. This discrepancy is due to my oversimplified representation of the
particle path. The wave is only truly sinusoidal when y is large (.>> {). Also,
the phase of the wave in Fig. 6 is not an accurate representatlor} qf t.he true
phase, but the basic physics is correct. Note that the mean torque is finite onl.y
if the wave maintains a constant phase with respect to the satellite. For this
reason, a satellite only interacts with its own wave; the waves raised by o.t}?er
satellites have no direct effect, although effects may arise if the eccentricity
damping mechanism is nonlinear.

C. Lindblad Resonance.

In any narrow section of a ring, the perturbations of th.e ring particle
orbits are highly coherent, and, although particle collisions will .aCt to damp
the waves, the process may be slow. For this reason, the magmtu@e of the
torque given by Eq. (25) may in some circumstances be an overestimate. If
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Fig. 6. The tidal torque estimated from the force on the satellite due to the wave. The integral
(Eq. 34) is dominated by contributions from those particles with |y|< ¢ /2. Since d'<d,
those particles with y>0 exert a greater force on the satellite than corresponding unperturbed
particles with y<0. Thus, the resultant force accelerates the motion of the satellite and
tetards the motion of the ring particles. The arrow on the wave shows the direction of motion
of the ring particles with respect to the outer perturbing satellite.

the waves survive from one encounter to the next, then we must consider the
possibility of resonance (see chapter by Franklin et al.). This will occur

wherever the local ring circumference is an integral number of wavelengths,
that is, wherever

2maltl =p+1 (35)

where p is an integer = 0. Consecutive perturbations will then be in phase and
a wave with amplitude significantly > A may result.
The approximate resonance condition can also be written

n' P p+q
— Of —
. ptq p

. (36)

depending on whether the perturbing satellite is outside or inside the ring,

respectively. For a satellite outside the ring (n'<n) the exact resonance con-
dition is

pn—p+g)n'+qg&w=0 €7))

where @ is the pericenter of the ring particle orbit. For Lindblad resonance,
the order of the resonance g must be unity. (There are also Lindblad reso-
nances with terms in @', but those are not discussed here; see Greenberg 1984
and chapters by Franklin et al., and by Shu.) If the particle is locked in
resonance and the forced eccentricity is small, then the pericenters of the ring
particle orbits are not aligned; rather, @, @, and the mean longitude or phase
of each particle are such that conjunctions of the particle and the satellite
always occur at an apse of the particle’s orbit. The magnitude of the forced
eccentricity, in the absence of damping, is given by




i

Satellite

Ring particle paths in fmme
corotating with the satellite

Fig. 7. Ring particle paths in a frame corotating with the perturbing satellite, il.l}ls.trating 'the
dynamics of Lindblad resonance. Resonant gravitational interactions at radii in the ring
where the ratio of the satellite and ring particle mean motions are close to p/(p +1), where p
is an integer, generate a system of waves which are stationary in the rotating fr::me. The
waves on opposite sides of the exact resonance have a phase difference of 180°; the re-
sultant wave pattern consists of p+1 equally spaced loops. The variations of S}lrface d'en—
sity associated with this pattern can act on the other ring particles to excite a spiral
density wave (see Fig. 11). (Figure copyright of Nature, MacMillan Journals Ltd.)
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o Perturbing
Satellite

@
Planet

Fig. 8. Path of a particle in a reference frame rotating with the perturbing satellite. The par-
ticle is trapped in a 3:1 resonance for which (p+gn'—pn—q&=0, p=1, and g=2. In this
frame, all paths for which g#1 are self-intersecting. Thus, in a densely populated ring of
particles, Lindblad resonances for which g+ 1 cannot be established.

|1 oD f(pn
€= _2—(p+l)n'-pn (38)

(Greenberg 1973). Thus e increases markedly as the exact resonance is ap-
proached. At the exact resonance, the phase of the response changes by 180°.
Similar behavior is observed in any driven harmonic oscillator. For particles
outside the exact resonance, conjunction always occurs at apocenter, whereas
for particles inside the exact Tesonance, conjunction always occurs at peri-
center. Thus, the satellite excites a wave pattern of p +1 equally spaced loops
which corotate with the perturbing satellite (see Fig. 7).

The particle path pattern shown in Fig. 7 is one of streamline flow for
which interparticle collisions are a minimum. Such nonintersecting nested
paths are possible only if g=1 and every conjunction takes place at the same
point in the orbit. If g>1, then, no matter how small the forced eccentricity,
each particle path always intersects itself (see Fig. 8). Obviously, in a densely
populated ring of particles, resonant orbits that intersect can neither be estab-
lished nor maintained.

Evenif g=1, then, because of the phase change at exact resonance, orbits
close enough to exact resonance can still intersect. In Fig. 7, these orbits have
been eliminated. The edges of the empty loops are then defined by those orbits
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Fig. 9. Particle paths displaced 8a(=W/4) from exact resonance. Since ea = 8a and
e = 0.546(n/M)/(8ala), we have W = 2.96 (n/M)*a.

that are displaced from exact resonance by a distance 8a, such that the
resultant forced eccentricity is 8a/a (see Fig. 9). If p is large, then

M
¢ = 0.546 M) (39)
Sala

and e is independent of p. Hence, since ea = 8a,

"M
0.546 —(m—)~ =8a (40)
Sala
and
W = 48a = 2.96 (m'IM) *a. (41)

Thus, W is approximately the same for all first-order resonances. Approxi-
mate values of these loop widths for Lindblad resonances in Saturn’s rings are
givenin Table II. If ea = 84, then

d(ea)
——dl a| - 1 (42)
and where the loop width is a maximum the streamlines converge on common
points. This occurs at apocenter or pericenter, depending on whether the
particle orbits are outside or inside exact resonance. The finite size of the ring
particles would prevent such close packing of the particles from occurring,
and thus the above value for W should be regarded as an underestimate.

The particle path pattern shown in Fig. 7 represents the undamped con-
figuration. The lag angle between the equilibrium, or steady-state, tide and
the tide-raising satellite is zero and there is no torque. Any dissipation of the
energy stored in the tidal wave due to interparticle collisions results in a lag in
the tidal response of the ring. The resultant torque is proportional to the
magnitude of that lag. Figure 10 is a schematic representation of the config-
uration at the outer edge of the Saturnian B Ring, which is just inside the 2:1
resonance with Mimas.
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TABLE I
Loop Widths of Lindblad Resonances

Wa
Satellite m'/M (km)
Mimas 7 x107° 94
1980S1 8§ x 10~ 32
198083 107° 11
1980826 6 x 107" 9
1980827 10~° 11
1980528 2 x 107 2

#*We assume that p is large and thatq = 2 planetary radii.

D. Spiral Density Waves.

If a ring has sufficiently high surface density, then the azimuthal variation
of the gravitational potential associated with the p+1 loops at a Lindblad
resonance can act on the orbits of the other ring particles, to generate a spiral
density wave with p+1 arms. The theory of this important ring phe-
nomenon has been described in great detail by Goldreich and Tremaine
(1978b,c, 1979¢, 1980, 1981, 1982) and is reviewed in the chapter by Shu.
Here, I content myself with a few qualitative remarks.

Outside the region of exact resonance, the particle paths in a frame
corotating with the perturbing satellite are closed and contain the same
number of waves. However, each closed path is displaced azimuthally with
respect to its neighbor, and it follows from geometrical considerations that a
spiral density wave must result (see Figs. 11 and 12). The whole pattern is
stationary in the corotating reference frame. Thus, the gravitational potential
associated with the spiral arms acts on the ring particles with the same fre-
quency as the disturbing potential, and the pattern is self-enhancing.

The magnitude of the torque that now arises from the force between the
satellite and the spiral arms is still determined by the rate of energy dissipa-
tion, but this energy is now dissipated at locations well-removed from the
exact resonance. This process has been well described by Harris and Ward
(1982) who compare the spiral density waves with *‘water waves [that] propa-
gate away and leave the site of the original disturbance calm . . .ready for the

~next impulse.”” Consistent with this view, detailed calculations by Goldreich

and Tremaine (1978b,c, 1979¢) show that the magnitude of the torque is given
by Eq. (25), that is, by the formula for waves in very narrow rings in which
the wave energy is completely dissipated between impluses.
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SATURN

Mimas

Fig. 10. Particle paths (streamlines) near the 2:1 Lindblad resonance associated with Mimas
(located at the outer edge of the Saturnian B Ring). The radial arrows show the direction of
angular momentum flow, determined by the local angular velocity gradient. Streamline #3
is critical, having two azimuthal positions (marked with dots) where the angular velocity
gradient is zero. Streamline #4 has a limited azimuthal domain in which angular momentum
flows inward. For streamline #35, the outward angular momentum flow between A and B
and between C and D is exactly balanced by the inward flow between B and C and between
D and A, and the net flow across the streamline is zero. According to Borderies et al.
(1982b), this streamline marks the ring boundary; they have shown that such boundaries can
be remarkably sharp. (Figure by P. Goldreich, personal communication.)

For an inner Lindblad resonance, for which (according to Eq. 37) the
perturbing satellite is outside the ring and n/n'=~(p+1)/p, the spiral density
wave is only present outside the resonance and the torque on the ring is
negative. The density wave carries negative energy and angular momentum
and propagates towards the satellites. This wave is damped by particle colli-
sions, and those particles involved in the damping lose energy and angular
momentum and move inwards towards the planet and away from the perturb-
ing satellite. Consequently, just outside the exact resonance a broad gap may
open up (Goldreich and Tremaine 1978b, 1982). Gaps and density waves
associated with inner Lindblad resonances have been observed in Saturn’s
rings (Cuzzi et al. 1981). For an outer Lindblad resonance, for which the
perturbing satellite is inside the ring and n/n'~ p/(p+1), the torque on the
ring is positive and damping of the density waves causes the particles to move
away from the planet and away from the perturbing satellite. In both cases, the
perturbing satellite acts to repel the ring particles.
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I%V 11. Schematic diagram of the. particle path pattern and the associated trailing spiral density
av; genﬁ:rated by the p=1 Lindblad resonance. The pattern is stationary in a frame c
rotating with the perturbing satellite. ”

.ng particles trapped in a corotational resonance form a compact arc of
partlc‘les (see Fig. 4), and the azimuthal variation of the gravitational potential
as§001ated with this arc can also act on the other ring particles to generate a
spiral density wave (Goldreich and Tremaine 1979¢,1982). Unlike Lindblad
Tesonances, corotational resonances are not confined to first-order (g=1)
resonances, so the number of possible resonant locations in a ring can be
la.rge. However, the width of a corotational arc is Iess than the width of a
Lmdbla.d. loop by a factor ~e'?? (gee Egs. 16, 17, and 41) and, since the
eccentricities of satellites in the solar system tend to be small, the gr,avitational

lnj lllellce Of a COIOtathIlal resonamnce

E. Goldreich-Tremaine Model.

. If a wide, diffuse ring is bounded by two satellites, then the repulsive
gctlon of the satellites will reduce the ring width until the confining torques
Just counteract the tendency for the ring to spread (Goldreich and Tremaine
197?41). .(This shepherding action will not occur if the motion of the ring
particles is retrograde with respect to that of the satellites. In that case, the two
torques would act on the ring in the same sense and the space bet\;/een the
satellites would be swept clear of particles.)

. (I;s;equilibﬁum, the net external torque on the ring is zero. Hence, from
q. ,
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Fig. 12. Schematic diagram of the particle path pattern and the associated trailing spiral d'ensit.y
wave generated by the p =4 Lindblad resonance. If the ratio of the resonant mean motions is
pl(p+1), thenp +1 spiral arms are generated.

Mout  Min (43)
Aa?)m Aazin

where the subscripts ‘out’ and ‘in’ refer to the outer and inner satellites
respectively. It follows from Eq. (23) that the amplitudes of the two waves
raised on the ring are equal, although their wavelengths may be quite

different. .
Collisions between the ring particles generate a torque

dQ
2wra’ov ——-‘ = 37a’ovn “44)
da

where o is the surface density of the ring. This is the magnitude of the torque
that must be applied to the ring to maintain an equilibrium With W. The
excess torque on each half of the ring due to variations of satellite torques
across the ring is of magnitude

W<Aa™>|T| (45)

where |I'] is the magnitude of the total torque exerted on the ring by each
satellite. Equating Eqgs. (44) and (45), and assuming for convenience that
Aa gy = Aay, = Aa and that v = nd’r, we obtain

o
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157\t M ,Aa.:
W= (%) w(T)

3 ) (46)

m\ a
where d is the ‘‘characteristic” size of the ring particles (Goldreich and
Tremaine 1979a; see also discussion in chapter by Weidenschilling et al.).
Plausible shepherd satellites, for example with m/M ~ 10" and Aa ~500
km, would give the observed width for the Uranian rings, assuming cm-sized
particles. However, the observed width of Saturn’s F Ring is ~500 times that
given by Eq. (46). Perhaps the problem is that the torque formulae do not
strictly apply when the orbits are eccentric. Showalter and Burns (1982) argue
that the F Ring particles are appreciably “‘stirred’’ at each close encounter
with the shepherding satellites and that this could account for the excessive
width of the ring.

The torque I" exerted by the ring on each satellite pushes the satellites
away from the ring at rates given by

I'=h = —mnaa . 47

The timescale for the rate of change of Aa

Toep = ——=—

a 4  mm,

Aa 5 M° (ﬁ)s - 48)

a

can be used to place bounds on the surface densities of the rings. Using
o = 7 p.d and Eq. (46), we can eliminate mm,./M* from Eq. (48) to obtain

pr\ /Aa

2
Teep = 3 X 10" 7 (7) (a—) yr (49)

where p, and o are given in cgs units. If we demand that Tyep, >5 X 10° yr,
then, with cgs units,

o <200 T%pr% (Aa/a)% . (50)

Thus, for the Uranian rings we must have o<1 gcm™, a value which in itself
is not objectionable. However, Goldreich and Tremaine (1979a,b) consider
that the apse alignment of the e Ring is maintained by self-gravitation (see
Sec. II), in which case o =~ 25g cm™. If Aa/a~10"2 (and in this argument
Aa should be regarded as the smaller of Aa,y and Aayy), then their value for
o yields Te, =107 yr. If this were the case, we would have to conclude
that the € Ring is very young.

The easiest way out of this dilemma is to allow that o is <1 gem™ and
that apse alignment is not maintained by self-gravitation (Dermott and Murray
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i oy be pred in coraaonl rsonanes
ii%hgetiztﬁgggk; %lrl:fli:l satellites. Since thef: tacﬁqtllllz es):gtleictlet;yi Itll:,z 121,25 \;\:101&12
have to increase the angular momentum o olved In the
resonance, Ty, would be larger by a .factor zm*/m, wh::eoz;l thf tOSSible
;’;ﬂ;ﬂi‘iﬁ;ig vt?cein;f; (;nfa?t:e S:ifélsnz; ?EXQI;} iionances foI; which
¢ =gn — @+qns +prs (51)
B atiich ot Nl 197 Frecdmin ot a.
ggg;@ﬁiiﬁ?hﬁiﬁstgrplezgna(r)lces may be too weak to trfclp the satellites.
The equation of motion of the resonant argument b is

¢ =— o'sind + glarae (52)
where 7 gpag is the rate of change of the mean motion of the guardian satellite
rag

due to the ring torque:

G (53)

r‘ldrag Aa

The libration frequency o is related to the width W of the corotation arc (see
Eq. (16) by

o W _ 3aR| ) . (54)
n 8a ( GM

For stability, the sign of ¢ must reverse (Goldreich 1965), hence

* 55
|gF aragl < @ (55)
For the guardian satellites of the Uranian rings, we need
GM 56)

Teep > 5 X 107 (W) yr.

If we allow that o =~ 1 g cm™, then for resonant trapping :)\/Sef ngfii
a|R|/GM >107"°; there are indeed many 3-body resonar}cf:es tzh;t5 sl (I:m)iz is
requirement (Goldreich and Nicholson 1977). H:)weve(ri,fl ror'esona ft trapp,ing
is perhaps the case for the € Ring, then Tsep =~ 107 yr and fo

B , and only two,
we need a [R|/GM > 10". It so happens that there are two y
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resonances close to the € Ring that satisfy this requirement. The p =7
Miranda-Ariel resonance has a strength =2 X 107 and the Miranda 4:1
‘resonances have strengths =~ 10" (¢ sin®L ; term) and ~6 X 107 (¢” term).
However, these resonances have semimajor axes of 50887 km, 51470 km, and
51520 km respectively (data and formulae from Freedman et al. 1983). Thus,
the Miranda-Ariel resonance lies ~ 100 km outside the pericenter of the
€ Ring at 50782 km, and the Miranda 4:1 resonances lie ~ 100 km inside
the apocenter at 51595 km. Unless the pericenters of the satellites and the
ring orbits are permanently aligned (and this possibility is easily dismissed),
these resonances cannot be the locations of the guardian satellites.

I conclude that, unless resonances involving unseen satellites that orbit
between the rings and Miranda and have masses > 107" M anchor the guardian
satellites, we must have ¢ ~ | g cm™, and that the apse alignment of the
€ Ring is not maintained by self-gravitation. But there is another possibility:
Eq. (25) may greatly overestimate the magnitude of the ring torque. That
the actual torques are probably much less than those given by Eq. (25)
is suggested by the observation (Smith et al. 1981, 1982) that compar-

atively massive satellites exist close to the Saturnian A Ring. Goldreich and
Tremaine (1982) estimate that

Teep=15%x10"° G'_le_3 Ag* yr (57

where R, is the satellite radius in cm; Aa is now the separation in cm of the
satellite from the outer edge of the A Ring, and o isin g cm™. T'sep for 198081
and 1980S27 may be as small as 7 X 107 and 6 x 10° yr, respectively. The
orbits of these satellites are well determined, and they are not stabilized by
any known resonance (Goldreich and Tremaine 1982). In the case of 1980827,
if we require T'gep, > 5 X 10° yr, then < 107 of the energy associated with the
excited eccentricities must be dissipated between encounters. If resonances in
the A Ring associated with this satellite are strong enough to open gaps, then
T'sep may be larger, but only by a factor =~ 4 (Goldreich and Tremaine 1982).
Perhaps we should consider the possibility that the rings are young.

F. Kinks, Braids and Eccentric Rings.

The theory that I have described so far is appropriate for near-circular
satellite and ring orbits. Tt may be applicable to some of the Uranian rings,
but for eccentric rings, particularly the Saturnian F Ring, modifications are
necessary.

All aspects of the F Ring appear somewhat extreme. The amplitudes 4 of
the waves on the ring are ~6(1000 km/Aa)* km (see Eq. 30) and thus are
comparable with the 30 km width of the main ring. For the Uranian rings,
with plausible values m/M ~ 10~ and Aa~ 500 km, the wave amplitudes are
probably very much less than the ring widths,
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Fig. 13. (a) Wave pattern for a satellite-generated wave of l.ength 37Aa, V‘vhf:re /.Sa ‘1; ;‘},1:1 ;rrllega:;ll
distance of the satellite from the ring particles. There is a small vanau;m 1?}1 avelengh
across a ring of finite width. The resultant particle path pe.lttern could lea t: e formation
of shock fronts and, if the ring contains gaps, loops. ‘Tl‘us coul(_i accqunt or so. oo
features seen in the Saturnian F Ring. (b) Radial variation of ring width associate

the wave pattern shown in (a).

For a ring of finite width, there is a variation of wavelength across the
ring and this can lead to the formation of shocks (see Fig. 13). The shock front

will form at a distance

_ 3Aq° 58)
Y= 24
from the perturbing satellite. Fory <2ma, we require
M4
Aa <300 L) km (59)
10
for the Uranian rings, and
miM %
Aa <1400 (~—1—0_——) km (60)

for the F Ring. Thus, in both cases shocks m.ay form bet}veen'encouite;s
with the perturbing satellites. The shocks will have radial widths h.
For the Uranian rings this may be very small (<0.1 km), whereas fo¥btl e
F Ring the radial width of the shocked region could be far from negligible.

|
.
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Shock fronts are likely sites for the formation of temporary particle
clumps, thus I would expect these to have a mean azimuthal separation of
one wavelength {. These shocks and the associated variations of ring
width (see Fig. 13) may also contribute to the marked periodic variations
in brightness observed in the F Ring and in narrow rings in Encke’s gap
(Gehrels et al. 1980; Smith et al. 1981,1982).

The lines drawn in Fig. 13 represent the boundaries of a narrow ring, but
they could equally well represent the boundaries of a narrow gap within a
ring. In that case, near the shock the gap would degenerate into a series of
loops or braids of width 2% and length {, where W is the unperturbed width
of the gap. The width of the loops could not exceed 44 (= 24 km for the
F Ring). The gap would be expunged at the shock and thus would have to
be regenerated by some agency. A natural suggestion is that small satellites
(or large particles) exist in the ring.

The width of the Lindblad loops is

’ ( 10_9 ) ( 1)
( 10_9 ) ( )

for the F Ring. Thus, we could only expect to observe these loops in the F
Ring. It was in fact suggested that these loops could account for the braided
appearance of the ring (Dermott 19815). However, first-order resonances
are separated by a distance

3A4°
ST (63)

For the F Ring s = 7 km, which is << W. Thus, even if the F Ring were
circular the resonant configuration could not be established. For the Uranian
rings, assuming Aa ~ 500 km, s is large enough that the resonances are
probably well separated. Borderies et al. (1982b) consider that Lindblad reso-
nances define the edge of each narrow ring. This is certainly possible, but for
some of the narrow rings the interior of the ring may be free of resonances.
Perhaps s defines the minimum width of a sharp-edged ring.

If aring is appreciably ecceniric, then there is no direct application of our
discussion of corotational and Lindblad resonance; the only resonance that
can exist is an “‘eccentric’’ resonance (Goldreich and Tremaine 1981). How-
ever, the perturbations can be divided into corotational terms that perturb the
mean longitude and Lindblad terms that perturb the eccentricity. Both terms
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act to change the ring eccentricity e,. If ¢, << Aa/a, then the resultant time
scale (e,/¢,) is

el 3

where the subscript s refers to the guardian satellite (Goldreich and Tremaine
1982). Using Eq. (46) for the ring width W and o = 7 p,d to eliminate m,/M
and Aa/a, we obtain

T.=8x 107 (v/c) Wp, /o) yr (65)

for the Uranian rings, where quantities on the right are given in cgs units.
If no gaps are present in the ring, then the corotation terms dominate,
¢ = — 0.148, and the eccentricity damps. If gaps open at the first-order
resonances in the ring, then the Lindblad terms dominate, ¢ = + 1.52, and
the eccentricity grows (Goldreich and Tremaine 1981, 1982). Both timescales
are uncomfortably short. We now know that only the n Ring appears to
be truly circular (French et al. 1982).

The perturbation of a narrow, eccentric ring by a nearby satellite has been
studied numerically by Showalter and Burns (1982). They do not take account
of interparticle collisions which, particularly in the case of the F Ring, can
have a major influence on the particle flow patterns even on timescales as
short as the period between encounters. Nevertheless, their methods are well
suited for studying the dynamics of encounter, and they have revealed a
number of interesting phenomena.

Their satellite-ring configuration is shown in Fig. 14. Only the range of
variation of the ring-satellite separation is significant. If the eccentricities are
small, then for a given value of this range the separate eccentricities and
orientations of the satellite and ring orbits do not matter. The encounter
dynamics can be accurately modeled by the simplest configuration, that of a
circular ring and a nearby satellite in an eccentric orbit (Showalter and Burns
1982).

There are large, qualitative differences between this case and that of a
satellite in a circular orbit. At encounter, there is now a large (first-order in
m/M) change da in the semimajor axis of the ring particle orbit. For all
encounter phases, we estimate that

4

Bal= — a’es

. l + 0gm/MY (66)

2
Aa

where Se is the forced eccentricity still given by Eq. 23 and ¢, is the eccen-
tricity of the satellite orbit. However, the actual magnitude and the sign of
da vary systematically with the phase of the encounter. The change in sign of

DYNAMICS OF NARROW RINGS 619

Q Outer Satellite

Fig. 14. Wave pattern for a wave, also of length 37Aa, where Aa is mean distance of the
satellite from the ring, generated by a satellite in an eccentric orbit. This wave is not
sinusoidal. In a frame rotating with the mean motion of the perturbing satellite, the path of
the satellite is an ellipse with semimajor and semiminor axes 2ae and ae, respectively.

8a is particularly important, since it follows that there is a tendency
for gap formation, or at least appreciable azimuthal variations in the particle
number density on a scale of one wavelength . These variations could be
largely responsible for the marked variations in brightness observed in the
F Ring, although as I have discussed there could be other contributing factors.

The long-term variations of the eccentricities of narrow rings have been
studied by Borderies et al. (19834). In their model, both the ring and the
nearby satellite are replaced by one dimensional elliptical wires of line den-
sities m,/27a and m,/27ma, respectively. The radial force between these wires
determines the variation of the eccentricity and apse precession rate @y, of the
ring (see Sec. III). The relative influence of the satellite and the quadrupole
moment of the planet/, on @, is determined by the ratio

r.= (67)

2

F )

a a

where B is the radius of the planet. For the Uranian rings, we can again use
Eq. (46) to obtain

1
r,= T 7t (Wp,la) (Aala)? . (68)

Thus, for these rings, I',>>1 and the influence of J . is dominant. However,
for the inner guardian satellite of the F Ring, I', = 16.8 and there are small but
appreciable variations in both ¢, and e, on a timescale of 18 yr (Borderies et
al. 1983q).

The configuration of the F Ring and the inner guardian, 1980827, at the
time of the Voyager 2 encounter is shown in Fig. 15. The distance of closest
approach was then =~ 483 km. The corresponding radial separation Ar of the
apocenter and pericenter distances was + 134 = 142 km, and the separation
Aa of the semimajor axes was 832 = 30 km (Synott et al. 1983). 1980527 has
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Fig. 15. (a) Configuration of the Saturnian F Ring and inner shepherding satellite (1980527)
orbits, at the time of Voyager 2 encounter. (b) The configuration expected in 1993.

a long semiaxis of 70 km (Smith et al. 1982). Thus, even if ths: o.rbital
elements were to remain constant, the satellite and the ring must periodically
experience very close encounters. In fact, perturbations by 1980827 act to
increase the eccentricity of the F Ring and Ar is reduced to + 47 + 142 km
(Borderies et al. 1983a). Here, the uncertainty in Ar has been estimated from
the uncertainties in the orbital elements and no account has been taken of the
effect of these uncertainties on the variation of the eccentricity. ‘
The period between close encounters is largely determined by J, and is
= 18 yr. Taking the figures for Ar at face value, it would appear that every 18
yr the satellite may enter the ring. I consider this to be unhke'ly. Negle-ctmg
the gravitational field of the satellite, I calculate that the relative vilocny gf
the satellite and the ring particles at closest approachis 39 + 14 m s ..Th1s is
comparable with the escape velocity (38 m s™) of the isolated §atell¥te (the
satellite is close to the Roche limit and so the actual escape velocity will vary

.
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with position on the surface of the satellite, and in places will be considerably
less than this value; see chapter by Weidenschilling et al.). If the satellite and ;
the ring orbits intersect, then particles would be swept onto the satellite
surface intermittently for a period as long as 2 yr, and this catastrophe would
be repeated every 18 yr. If the satellite has an energy absorbing regolith, then I
would not expect those particles that impinge on the satellite to survive.
However, it is probably significant that Ar is comparable with the satellite
radius. T would guess that either the mechanism that acts to increase the
eccentricity of the ring switches off when Ar is small, or the ring is eventually
destroyed. We might ask what is special about the F Ring and its inner
guardian. The values of m /M and Ag/a are not markedly different from those
values suggested for the Uranian rings (Goldreich and Tremaine 19794).

Perhaps the eccentricities of the Uranian rings are limited by close encounters
with their guardians.

III. APSE AND NODE ALIGNMENT

Several types of eccentric rings are now known to exist in the solar
system. Rings with forced eccentricities associated with Lindblad resonances
have been found in Saturn’s rings (Smith et al. 1981, 1982). If p = 0 in Eq.
(37), then @ = n' and the line of apses rotates with the perturbing satellite.
The eccentric Saturnian ring at 1.29R, is locked in a p = 0 Lindblad resonance
with Titan (Porco et al. 1983). In terms of the wave description (see Fig. 7),
the ring contains a single wave and the resultant shape is an ellipse with Saturn
at one focus. If p = 1, then the ring contains two waves and the resultant
shape is a non-Keplerian ellipse centered on the planet (see Figs. 10 and 11 in
Sec. II.C). As predicted by Goldreich and Tremaine (1978b), particles in the
outer edge of the Saturnian B Ring are observed to be locked in a p=1
Lindblad resonance with Mimas (Smith et al. 1981, 1982).

The eccentric Uranian rings, the eccentric Saturnian rings at 1.45 R, and
in the Maxwell gap, and the Saturnian F Ring have free eccentricities, and
their precession rates are largely determined by the dynamical oblateness of
the planet J,. The rings which are wide enough to be resolved, and whose
geometry is well determined (the a, 8 and € Uranian rings and the Saturnian
rings at 1.29 R, and 1.45 Ry), all have markedly nonuniform widths. In all
cases, the widths are a minimum at pericenter and a maximum at apocenter
(see Fig. 16).

The variation in width of these rings implies either that there is a variation
in eccentricity across the ring (Nicholson et al. 1978) or that the pericenters of
the particle orbits are systematically misaligned, or both (Dermott and Murray
1980). We define the mean eccentricity gradient of the ring g, by

_de 60
gr_a 861 ( )
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Ay

Fig. 16. Composite image of Saturn’s C Ring. The horizontal line through the c.enter marks the
border between the two images; at the top is shown the trailing ansa of the. rings, and at .the
bottom the leading ansa. The dark gap in the center of both images contains a narrow ring
which is clearly both eccentric and of nonuniform width. (Image courtesy of JPL/NASA.)

where de and 8q are the differences in the eccentricities and the semi@ajor
axes of the Keplerian orbits that define the inner and outer edges of the ring . If
the pericenters are aligned, then the variation of the radial ring width W with

the true anomaly f is given by
W =3da[l — (g,+e)cosf]. (70)
Since, if e<<< 1, the orbital radius r varies as
r=a(l —ecosf), an

it follows that the harmonic variations of W and r are in phase and.that .W
varies linearly with » (Nicholson et al. 1978). Any departure fr.om linearity
would imply a misalignment of pericenters. For the Uranian e Rlng, at least,
this misalignment must be <<0°2 (Dermott and Murray 1980). Since W cannot
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TABLE III
Eccentric Rings of Nonuniform Width
<W> e J.Blay

Planet Ring (km) x1¢* x1¢* 2
Uranus? @ 7.5 7.2 2.3 0.35
Uranus? B 7.8 4.5 2.1 0.35
Uranus? € 58 79.2 1.2 0.65
Saturn® 1.29R, 25 2.7 46.9 0.35
Saturn® 1.45R, 69 3.9 26.1 0.55

“Data from chapter by Elliot and Nicholson in this book.
"Data from Porco et al. (1983).
Data from Esposito et al. (1983).

be negative (the particle orbits cannot intersect), we must have |g, + ¢|<1.
However, it is interesting and probably significant that all the observed values
of g, are positive and all are close to the critical value of unity (see Table III).

If the pericenters precessed under the influence of J, alone, then the
differential precession rate across a ring would be

do -21 =&
@), =T (e

o T . (i)z . (72)

Thus, if no other forces acted, the pericenters would rapidly disperse.

A. Self-gravitation.

Goldreich and Tremaine (1979a,b) consider that apse alignment is main-
tained by the self-gravitation of the ring particles. The contribution of the
self-gravitation of the ring to d@/da, which arises from the variation of the
radial forces acting on the particles with true anomaly, is given by

de na’c, 7
(da), TS (73)
where, for most mass distributions,
37T<W>gr 4
B~ — (74)

If

), (&), -0
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then

S P
oy

B
gr=+23e<W>J, (7) (76)

where p, is the density of the planet. Thus, knowledge of the ring geometry
yields an estimate of the mean surface mass density o, of the ring. Note that
self-gravity only acts to align the pericenters if the eccentricity gradient g, is
positive and the radial forces are a maximum at pericenter. This is in accord
with the observations. The surface mass densities of the Saturnian rings esti-
mated from Eq. (76) are also in accord with independent estimates based
on the relation between optical depth and surface mass density established
from both the radial wavelengths of density waves and the scattering of the
Voyager 1 radio signal (Borderies et al. 19824; see also the chapter by Elliot
and Nicholson in this book).

The self-gravitation model of apse alignment has now been extended to
node alignment (Borderies et al. 1982a; Yoder 1982). The analysis predicts
that if the self-gravitation of the ring alone acts to align the apses and the
nodes, then we must have

di e
—_—=— an
i e
where 8/ is the variation of the inclination of the particle orbits across the ring.
Yoder (1982) has also shown that the configuration of aligned pericenters and
nodes is stable against small displacements. An eccentric ring is stable even if
its inclination is zero, but a ring with an appreciable inclination is only stable
if it is also eccentric (Yoder 1982).

B. Embedded Rings.

The eccentric Saturnian rings at 1.29 R and 1.45 R; have special loca-
tions. In both cases, the rings are very close to the outer edges of the clear
gaps in which they lie (Porco et al. 1983; Esposito et al. 1983). In the case of
the 1.45 R, ring, the particles in the outer edge of the eccentric ring may even
brush the surrounding disk at their apocenters (Esposito et al. 1983). These
configurations may not be fortuitious. The closeness of the rings to the sur-
rounding disk leaves little room for shepherding satellites. However, the ring
particle orbits will be perturbed at each close encounter with the disk. Perhaps
this interaction results in shepherding action.

The location of the rings may also have some other significance. The
contribution of a circular disk to the differential precession of a nearby narrow
eccentric ring is given by

(78)

(di3> _ (1+y)na'oc,
a

da MAa®

. . . @@ @O

DYNAMICS OF NARROW RINGS 625

(cf. Eq. 73) where

3 .1 5, 1,
Y= 48T 5 848+ g g T 5 8agrt ... (79)

where g (= ae/Aa) is the eccentricity gradient between the ring and the inner
edge of the circular disk, Aa(<0) is the corresponding difference in the
semimajor axes and o is the surface mass density of the disk. Regardless of
the sign of g, (d@/da), is only positive if the eccentric ring is close to the
inside edge of the disk. That this is the case for the Saturnian rings suggests
that the disk may have a role in their apse alignment. Using Egs. (72), (78)
and (79), I calculate that even if the rings were massless (o, = 0), dé¥/da
would be zero where

A Tg 3
a=-56 (W) km (80)

in the case of the 1.45 R, ring, and where

Aa = —42 (—~—-—-100gcm_2) km (81)

in the case of the 1.29 R, ring (neglecting the contribution of Titan to d@/da).
Thus, the disk may partly determine the local eccentricity gradients of the
outer edges of the rings; these local gradients may even be negative. This
might imply that the eccentricity gradients at the edges may differ appreciably
from the observed mean eccentricity gradients, and may be equal to those
critical values for which the angular momentum flux rates are zero and the
edges are sharp (Borderies et al. 19825, 19835).

C. Precessional Pinch.

Dermott and Murray (1980) pointed out that by itself self-gravitation does
not explain why all the observed values of g, are close to unity. If g, is
determined by three presumably independent parameters of the ring (e, <W>
and o), then it is unreasonable to expect those quantities to be always such
that g, =~ 0.5 (see Table III). They argued that the ring particles may be
close-packed at pericenter and that close-packing may prevent differential
precession. Figure 17 gives an heuristic description of how differential preces-
sion, particle collisions, and self-gravitation acting together always transform
a narrow eccentric ring of uniform width into a ring with a large positive
eccentricity gradient and aligned pericenters. Equilibrium (Fig. 17d) is only
reached when the particles are so close together at pericenter that the ring
width there cannot be reduced any further. Since differential precession al-
ways acts to reduce the ring width, it must then cease.
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Mean Pericenter

Mean Pericenter

Differential
Precession

Pinch

Mean Pericenter Pinch in Stable Equilibrium

Ecceniricity
Gradient Growth

Fig. 17. Possible evolution of a narrow eccentric ring du.e to differe.ntial pltecession. .(a)
Initially the pericenters are aligned and the ring width is uniform. (b) Differential prec‘essmn
produces a harmonic variation of width with the pinch (Wy;,) located l?efore Pencenter
(f = — m/2). The pericenters of the eccentric orbits are denoted by filled circles; the
mean pericenter of the ring by an open circle. As the pericenter§ separate, W'.m" decreases.
Dermott and Murray (1980) contend that close packing of pa.mc%es Z.lt the pinch p}'cvents
Winin from being reduced to zero. (c) The further evolution ojf Fhe ring AlS now determined Py
self-gravitation, resulting in the growth of a positive eccentricity gradlen.t. As the eccenltnc-
ity gradient increases, the pinch moves in a prograde sense towards pericenter. (d) Only at
pericenter is the pinch in stable equilibrium.

The only alternative to this argument is to allow thate, <W>, o, and g,
are not independent parameters (Dermott and Murray 1980). The' coupled
evolution of these parameters has now been solved by. Borderies et. al.
(1983¢). In their model, self-gravitation is always responsible for the align-
ment of the pericenters, and evolution of the parameters only ceases when
close-packing of the particles at pericenter limits the growth of the mean

eccentricity ¢.
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D. Sharp Edges.

The particle dynamics of an eccentric ring with a large eccentricity gra-
dient are quite different from those of a circular ring, because both the relative
velocities of the particles and their collision frequencies can vary markedly
with true anomaly (Dermott and Murray 1980). The radial variation of angular
frequency f for a ring with aligned pericenters is given by

( 1 ——i—grcosf)
(1—g, cosf)

g{_3

dr ~ 2

n
— (82)
a

and, if g, > 3/4, then the angular velocity gradient at pericenter is positive.
Borderies et al. (19825) have shown that this change of sign has a profound
effect on the angular momentum transfer rate due to particle collisions, and
probably accounts for the existence of rings with very sharp edges. Their
model is shown in Fig. 10 (see Sec. I1.C).

Using the fluid approximation (Eq. 4), Borderies et al. have shown that
the net angular momentum flow rate is zero and the ring edge is sharp when
the magnitude of the eccentricity gradient at the ring edge is (3/4)%. [Note that
in their model the fundamental quantity is the azimuthal variation of the radial
width of adjacent streamlines, and that this is determined by the eccentricity
gradient g, alone only when the pericenters are aligned (see Dermott and
Murray 1980, and Eq. 70). Their more general treatment also allows for the
azimuthal variation of radial width associated with misalignment of pericen-
ters (this effect is shown in Fig. 17). For very narrow rings, the latter effect
can be dominant.] A more sophisticated analysis, using the Boltzmann equa-
tion, shows that the critical eccentricity gradient varies with the mean optical
depth of the ring 7 (Borderies et al. 1983b). For 7 > 3, the critical gradient is
close to the fluid limit 0.866, but the critical gradient decreases with  and for
T=0.25itis as low as 0.5. The local eccentricity gradient, ade/da, is strongly
radially dependent near any Lindblad resonance (see Eq. 38) (and, perhaps,
near the inner edge of a disk). For this reason, Borderies et al. (19824)
consider that the sharp edges of all rings in the solar system are probably
associated with Lindblad resonances.

IV. HORSESHOE ORBITS

Dermott et al. (1979) proposed that each narrow ring contains a small
satellite that maintains solid particles in stable, horseshoe orbits about its
Lagrangian equilibrium points (Fig. 18). The case for which the ring-satellite
has zero eccentricity can be studied by considering the Jacobi integral. In a
rotating reference frame in which the satellite is fixed, this integral is (Brown
1911)




628 S. F DERMOTT

Sm?e!li'fe'

Fig. 18. Ring model of Dermott et al. (1979); each ring contains a small satellite which
maintains particles in horseshoe orbits. Loose solid particles leave the satellite surface and
enter orbits closely similar to that of the satellite (which can be both eccentric and inclined to
the equatorial plane of the planet). The gravitational force of the satellite in a 1:1 resonance
with the ring particles provides the critical phenomenon needed to define a narrow ring.
(Figure copyright of Nature, MacMillan Journals Ltd.)

2 m 2
— 4 [+ A=V +C 83
r+r+M(A+A) (83)

where r is the distance of the particle from the center of the planet, A is the
distance from the satellite, and V' is the speed in the rotating reference frame
(Fig. 19). The unit of distance is the separation of the satellite from the center
of the planet, and the unit of time is chosen such that the mean motion n of the
satellite is given by

nf=1+mM . (84)

This requires GM = 1. The curves V* = 0 for a range of values of the Jacobi
constant C are called zero-velocity curves, and define regions of the plane
within which the particle is confined to move.

The shapes and widths of these curves are very good guides to the
geometry of the actual particle paths. Dermott and Murray (1981a) have
shown that, if (n/M)*<<1, there is a close correspondence between a parti-
cle’s path and its associated zero-velocity curve. If a particle is moving in a

]
|
1
{
|
i
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PLANET

Fig. 19. Schematic diagram showing the Lagrangian equilibrium points and the critical zero-
velocity curves. The critical horseshoe curve actually passes through L, and L, and the
critical tadpole curve passes through L,. Horseshoe orbits will exist between these two
extremes. The rectangular coordinate frame is centered on the planet and corotates with the
satellite.

near-circular orbit, and the radial displacement of its associated zero-velocity
curve from the unit circle is ,, then the radial displacement of the particle
path at the same longitude is 2W,; if the particle orbit has a small eccentricity,
then this statement applies to the motion of the guiding center.

Tadpole orbits encompass either L, or L, alone, whereas horseshoe orbits
encompass L,, L, and L; (Fig. 19). In most of the past work on the three-body
problem, emphasis has been placed on the tadpole solutions, since these
describe the motion of the Trojan asteroids with respect to Jupiter. Until the
Voyager encounters with Saturn, examples of horseshoe orbits in the solar
system were unknown. Dermott et al. (1979, 1980) pointed out that for two
reasons we must expect horseshoe orbits in the solar system to be associated
only with very small satellites. First, the ratio of the widths of those regions
where, respectlvely, tadpole alone and tadpole and horseshoe orbits are possi-
ble is =~ (m/M )6 and it follows that the horseshoe orbit region is only domi-
nant if (n/M)*<< 1. The second reason obtains from a study of orbital
stability.
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For motion in a horseshoe orbit it is convenient to write the Jacobi
constant C as

C=3+a (%’;—) (85)

where a is a constant < 3%, If we write
a=as+ Aa (86)

where g and a, are the semimajor axes of a ring particle and a ring satellite
respectively, then

Aa =2 (—63“—) (%) a (87)

and the distance of closest approach of a particle (or its guiding center) to the
satellite is

y = %(i)%as (88)

(Dermott and Murray 1981a). o .
Dermott et al. (1980, 1981a) have found by numerical integration of par-
ticular cases that the type of path followed by a particle depends on .the value
of «. For large values of a(>1) the particles either strike the satellite or are
scattered, but for small values of a (<1) the particles are apparf?ntly repelled
by the satellite and motion in horseshoe orbits is possible (for a simple discus-
sion of the dynamics involved see Dermott et al. 1979). The nature of the path
changes dramatically as « is reduced, and for very small values c?f o the
horseshoe paths are almost perfectly symmetric with respect to the unit circle.
If we write

Aa,

as

Aaj

as

{3

where the subscript j refers to the number of consecutive e'ncounters with the
satellite that the particle experiences, then we find that n 1pcreases to values
>0.7 (j=1) and = 1.2 (j=2) as « decreases to <0.2 (Fig. 20). Thus, for
small values of « the orbits are near-periodic and Aa, and Aq, are equal
to order m/M. This symmetry is not a property of the circular orbit case
alone. Fig. 20 shows that there is no substantial difference between the
cases of circular and eccentric orbits.
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Fig. 20. Summary of horseshoe paths. n is a measure of the symmetry of the horseshoe path
(see Eq. 89). « is the impact parameter, proportional to Aa”. The circular points refer to
changes in the semimajor axis a of the particle orbit after a single encounter with the
satellite: filled circles refer to the circular orbit case (es = 0, where ¢, is the eccentricity of
the satellite orbit); open circles refer to the elliptical orbit case with e, = 0.01. The trian-
gular points refer to the total change in a after two consecutive encounters: filled triangles,
es = 0; open triangles, e, = 0.01.

The effect on the horseshoe orbit of a ring particle by an external force
due, for example, to Poynting-Robertson light drag can now be understood.
If & is small, then Aa, and Aa, are always equal; drag forces have little in-
fluence on the encounter dynamics. Therefore, if the ring were very narrow
and the magnitudes of the drag forces acting on the particle were the same
in both halves of the horseshoe path, then the orbital decay of the particle
achieved in one half of the path would in effect be cancelled by that achieved
in the other half (Fig. 21). Since the drag force extracts angular momentum
from the system, some orbital decay would of course occur, but the satellite
would supply angular momentum to the particle to maintain the 1:1 resonance
and the orbit of the ring particle and the satellite would decay together at
some rate r times less than that of an unconstrained particle, where
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Angular Separation of Particle and Satellite

Fig. 21. Path of a particle moving in a horseshoe orbit around a ring-satellite of mass ratio
m/M = 107" (circular orbit case). The dashed line refers to the particle path in the absence
of drag, and the solid line shows the effect of an external drag force. Since @ < 0.2, both
paths are highly symmetric about the line a = 1 and both paths are closed (to order m/M).
Thus, even in the presence of drag, the particle orbit is stable; the ring-satellite provides
the energy and angular momentum needed to maintain the 1:1 resonance.

m,

————— 90
d mg + m, ©

(Dermott et al. 1979, 1980; Dermott 1981a). Thus, even if a ring consisted of
very small particles (d<<<0.1 cm), if m;>>m, then Poynting-Robertson
light drag acting over times comparable with the age of the solar system
would not result in significant orbital decay or ring spreading. However,
second-order effects associated with the variation of the magnitude of the
mean drag force with distance from the planet may not be negligible.

From Fig. 21, we see that orbital decay on the inside of the horseshoe acts
to increase the width W of the path, whereas that on the outside acts to
decrease it. If ¢ << 0 and d|al/da < O, then one might expect W to increase
with time. However, since the particle’s orbital period decreases with increas-
ing a (Kepler’s third law), the particle spends a greater time on the outside
than on the inside of the horseshoe path, and the sign of W is found to depend
on the magnitude of d|d|/da. If ¢ = —k’a®, where k is a constant, then
wiw = (3+n) (d/a) and, if n > —3, then W <0 and the particles are driven
towards L, and L,. From Eq. (8), we see that this is the case for the Poynting-
Robertson light drag.
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Fig. 22. Values of L for solar system bodies. If the evolution of the semimajor axis of a small
satellite moving in a horseshoe orbit due to encounters with a primary or more massive
coorbital satellite can be described by a random-walk process, then the lifetime L of the
small satellite can be estimated from the mass ratio m/M , where m is the mass of the primary

satellite and M is the mass of the planet. Horseshoe orbits may be associated only with very
small or young primary satellites.

If Eq. (89) were sufficient to describe the effects of particle and satellite
encounters, then I would expect particles to be lost from horseshoe orbits due

to a random walk of the quantity |Ag,|— |Aa,|. Ifn = 1 in Eq. (89), then this
would occur on a time scale

T
L= Gty oD

where T is the orbital period of the satellite (Dermott et al. 1980). Values of I,
for various bodies in the solar system are shown in Fig. 22. On this basis,
Dermott et al. (1980) suggested that very small satellites which lie outside the
Roche zone may be associated with narrow rings of primordial material that
they have yet to accrete. Their numerical investigations and those of Dermott
and Murray (1981a) were not very extensive. Thus Eq. (91) cannot be re-
garded as well supported. Nevertheless, it is encouraging that those satellites
since discovered to be associated with companions in horseshoe orbits, have
lifetime L>5 X 10° yr; these are the coorbital satellites 1980S1 and 198083
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(Smith et al. 1981, 1982) and Mimas (Simpson et al. 1980; Van Allen et al.
1980; Stone and Miner 1982; Van Allen 1982).

It is natural to suggest that the coorbital satellites 1980S1 and 1980S3 are
direct collision products, but I consider this unlikely. Dermott and Murray
(1981a) have shown that high-« orbits are very unstable. A satellite could not
remain in such an orbit for long without either being scattered away from the
more massive satellite or colliding with it. Since any objects which leave the
surface of the main satellite must, if they move in horseshoe orbits at all,
move in high-a orbits, it is improbable that the present orbital configuration,
characterized by a very low a value (0.025), was formed in that way. Similar
arguments apply to the formation of the coorbital satellites of Mimas, Dione,
and Tethys. If collisions have had a role in the formation of coorbital satel-
lites, then I consider that the formation of a narrow ring of coorbital debris
out of which the coorbital satellites then accrete is a necessary intermediate
step. I can see no other way of placing large quantities of material in the
low-a orbits necessary for orbital stability and satellite survival (Dermott
and Murray 19815; Yoder et al. 1983).

The existence of satellites in horseshoe orbits lends support to the horse-
shoe orbit ring model. However, other observations argue against it. In par-
ticular, occultation data show that the structure of some of the Uranian rings is
highly complex. Such asymmetric profiles could not possibly be modeled by a
ring which contains a single satellite. Whether small satellites exist in Saturn’s
rings that maintain rings of particles on horseshoe paths is not known, but I
would argue that they probably do.

Acknowledgment. This research was supported by the National Aeronautics
and Space Administration.

REFERENCES

Aksnes, K. 1977. Quantitative analysis of the Dermott-Gold theory for Uranus’s rings. Nature
269:783. ‘ .

Borderies, N., Goldreich, P., and Tremaine, S. 1982a. Precession of inclined rings. Icarus
(in press). )

Borderies, N., Goldreich, P., and Tremaine, S. 1982b. Sharp edges of planetary rings. Icarus
(in press). . . o

Borderies, N., Goldreich, P. and Tremaine, S. 1983a. The variations in eccentricity and apse
precession rate of a narrow ring perturbed by a close satellite. Icarus 53:84 —89:

Borderies, N., Goldreich, P. and Tremaine, S. 1983b. Perturbed particle disks. Icarus
55:124-132. _ o )
Borderies, N., Goldreich, P. and Tremaine, S. 1983¢. The dynamics of elliptical rings. Icarus
(in press). i ) ) )
Brahic, A. 1977. Systems of colliding bodies in a gravitational field. I. Numerical simulation
of the standard model. Astron. Astrophys. 54:895 -907.

Brahic, A. 1982. The rings of Uranus. In Uranus and the Outer Planets, ed. G. Hunt (Cam-
bridge: Cambridge Univ. Press), pp. 211-236. )

Brown, E. W. 1911. On a new family of periodic orbits in the problem of three bodies. Mon.
Not. Roy. Astron. Soc. 71:438 -454.

DYNAMICS OF NARROW RINGS 635

Burns, J. A., Lamy, P. L., and Soter, S. 1979. Radiation forces on small particles in the solar
system. Icarus 40:1 -48.

Burns, J. A., Showalter, M. R., Cuzzi, J. N., and Pollack, J. B. 1980. Physical processes in
Jupiter’s ring: Clues to its origin by Jove! Icarus 44:339-360.

Clarke, J. T. 1982. Detection of auroral hydrogen Lyman-alpha emission from Uranus.
Astrophys. J. 263:L105-L109.

Cook, A. F., and Franklin, F. A. 1964. Rediscussion of Maxwell’s Adams prize essay on the
stability of Saturn’s rings. Astron. J. 69:173 -200.

Cuzzi, J. N. 1982. Mysteries of the ringed planets. Nature 300:485 -486.

Cuzzi, J. N., Lissauer, J. J., and Shu, F. H. 1981. Density waves in Saturn’s rings. Nature
292:703-707.

Dermott, S. F. 1981a. The origin of planetary rings. Phil. Trans. Roy. Soc. London. A303:
261-279.

Dermott, S. F. 19815. The braided F ring of Saturn. Nature 290:54-57.

Dermott, S. F., and Gold. T. 1977. The rings of Uranus: theory. Nature 267:590 —-593.

Dermott, S. F., Gold, T., and Sinclair, A. T. 1979. The rings of Uranus: Nature and origin.
Astron. J. 84:1225-1234.

Dermott, S. F., and Murray, C. D. 1980. Origin of the eccentricity gradient and the apse
alignment of the € ring of Uranus. Jcarus 43:338-349.

Dermott, S. F., and Murray, C. D. 1981a. The dynamics of tadpole and horseshoe orbits. I.
Theory. Icarus 48:1-11.

Dermott, S. F., Murray, C. D., and Sinclair, A. T. 1980. The narrow rings of Jupiter, Saturn
and Uranus. Nature 284:309 -313.

Dermott, S. F., and Murray, C. D. 19815. The dynamics of tadpole and horseshoe orbits. II.
The coorbital satellites of Saturn. Icarus 48:12—22.

Dermott, S. F., and Murray, C. D. 1983. Kirkwood gaps in the distribution of the asteroids. I.
The 3:1 resonance with Jupiter. In preparation.

Dermott, S. F., Murray, C. D., and Williams, I. P. 1984. Drag forces in the three-body
problem and the formation of coorbital satellites. In preparation.

Elliot, J. L. 1979. Stellar occultation studies of the solar system. Ann. Rev. Astron. Astrophys.
17:445 -475.

Elliot, J. L., Dunham, E. W., and Mink, D. J. 1977. The rings of Uranus. Nature 267:328 ~
330.

Esposito, L. W., Borderies, N., Goldreich, P., Cuzzi, J. N., Holberg, J. B., Lane, A. L.,
Pomphrey, R. B., Terrile, R. J., Lissauer, J. J., Marouf, E. A., and Tyler, G. L. 1983.
The eccentric ringlet in the Huygens gap at 1.45 Saturn radii: Multi-instrument Voyager
observations. Science 222:57—60.

Fanale, F. P., Veeder, G., Matson, D. L., and Johnson, T. V. 1980. Rings of Uranus: Proposed
model is unworkable. Science 208:626.

Freedman, A. P., Tremaine, S., and Eliot, J. L. 1983. Weak dynamical effects in the Uranian
ring system. Astrophys. J. In press.

French, R. G., Elliot, J. L., and Allen, D. A. 1982. Inclinations of the Uranian rings. Nature
298:827-829.

Gehrels, T., Baker, L. R., Beshore, E., Bleman, C., Burke, J. J., Castillo, N. D., Dacosta,
B., Degewij, J., Doose, L. R., Fountain, J. W., Gotobed, G., Kenknight, C. E., Kingston,
R., McLaughlin, G., McMillan, R., Murphy, R., Smith, P. H., Stoll, C. P., Strickland,
R. N., Tomasko, M. G., Wijesinghe, M. P., Coffeen, D. L., and Esposito, L. 1980.
Imaging photopolarimeter on Pioneer Saturn. Science 207:434 —439.

Goldreich, P. 1965. An explanation of the frequent occurrence of commensurable mean mo-
tions in the solar system. Mon. Not. Roy. Astron. Soc. 130:159 -181.

Goldreich, P., and Nicholson, P. 1977. The revenge of tiny Miranda. Nature 269:783 -785.

Goldreich, P., and Tremaine, S. 1978a. The velocity dispersion in Saturn’s rings. Icarus
34:227-239.

Goldreich, P., and Tremaine, S. 1978b. The formation of the Cassini Division in Saturn’s
rings. Icarus 34:240-253.

Goldreich, P., and Tremaine, S. 1978¢. The excitation and evolution of density waves.
Astrophys. J. 222:850—858.




636 S. F. DERMOTT

Goldreich, P., and Tremaine, S. 1979a. Towards a theory for the uranian rings. Nature
277:97-99.

Goldreich, P., and Tremaine, S. 1979b. Precession of the € ring of Uranus. Astron. J.
84:1638 -1641.

Goldreich, P., and Tremaine, S. 1979¢. The excitation of density waves at the Lindblad and
corotation resonances by an external potential. Astrophys. J. 233:857-871.

Goldreich, P., and Tremaine, S. 1980. Disk-satellite interactions. Astrophys. J. 241:425 -441.

Goldreich, P., and Tremaine, S. 1981. The origin of the eccentricities of the rings of Uranus.
Astrophys. J. 243:1062-1075.

Goldreich, P., and Tremaine, S. 1982. The dynamics of planetary rings. Ann. Rev. Astron.
Astrophys. 20:249-283.

Gradie, J. 1980. Rings of Uranus: Proposed model is unworkable. Science 208:625-626.

Greenberg, R. 1973. Evolution of satellite resonances by tidal dissipation. Astron. J.
78:338 -346.

Greenberg, R. 1983. The role of dissipation in shepherding of ring particles. Icarus 53:
207-218.

Greenberg, R. 1984. Resonances in the Saturn system. In Sarurn, eds. T. Gehrels and M. S.
Matthews (Tucson: Univ. Arizona Press). In press.

Harris, A. W., and Ward, W. R. 1982. Dynamical constraints on the formation and evolution
of planetary bodies. Ann. Rev. Earth Planet. Sci. 10:61 -108.

Harris, A. W., and Ward, W. R. 1983. On the radial structure of planetary rings. Proceedings
of I.A.U. Colloguium 75 Planetary Rings, ed. A. Brahic, Toulouse, France, Aug. 1982.

Hénon, M. 1981. A simple model of Saturn’s rings. Nature 293:33 -35.

Hénon, M. 1983. A simple model of Saturn’s rings-revisited. Proceedings of [.A.U.
Colloquium 75 Planetary Rings, ed. A. Brahic, Toulouse, France, Aug. 1982.

Holberg, J. B., Forrester, W. T., and Lissauer, J. J. 1982. Identification of resonance features
within the rings of Saturn. Nature 297:115-120.

Hunten, D. M. 1980. Rings of Uranus: Proposed model is unworkable. Science 208:625 -626.

Ip, W. H. 1980a. Physical studies of planetary rings. Space Sci. Rev. 26:39-96.

Ip, W. H. 1980b. New progress in the physical studies of planetary rings. Space Sci. Rev.
26:97 -109.

Julian, W. H., and Toomre, A. 1966. Non-axisymmetric responses of differentially rotating
disks of stars. Astrophys. J. 146:810-832.

Lane, A. L., Hord, C. W., West, R. A., Esposito, L. W., Coffeen, D. L., Sato, M., Simmons,
K., Pomphrey, R. B. and Morxis, R. B. 1982. Photopolarimetry from Voyager 2: Prelimi-
nary results on Saturn, Titan and the rings. Science 215:537 -543.

Lin , D. N. C., and Bodenheimer, P. 1981. On the stability of Saturn’s rings. Astrophys. J.

248:1.83-L86.
Lin, D. N. C., and Papaloizou, J. 1979. Tidal torques on accretion discs in binary systems with

extreme mass ratios. Mon. Not. Roy. Astr. Soc. 186:799-812.

Lucke, R. L. 1978. Uranus and the shape of elliptical rings. Nature 272:148.

Lukkari, J. 1981. Collisional amplification of density fluctuations in Saturn’s rings. Nature
292:433 -435.

Lynden-Bell, D., and Pringle, J. E. 1974. The evolution of viscous discs and the origin of the
nebular variables. Mon. Not. Roy. Astron. Soc. 168:603 —637.

Matthews, K., Neugebauer, G., and Nicholson, P. D. 1982. Maps of the rings of Uranus at a
wavelength of 2.2 microns. Icarus 52:126-135.

Nicholson, P. D., Matthews, K., and Goldreich, P. (1982). Radial widths, optical depths and
eccentricities of the Uranian rings. Astron. J. 87:433 -447.

Nicholson, P. D., Persson, S. E., Matthews, K., Goldreich, P., and Neugebauer, G. 1978. The
rings of Uranus: Results of the 1978 10 April occultation. Astron. J. 83:1240-1248.

Porco, C., Borderies, N., Danielson, G. E., Goldreich, P., Holberg, J. B., Lane, A. L., and
Nicholson, P. D. 1983. The eccentric ringlet at 1.29 R. Proceedings of I.A.U. Colloquium
75 Planetary Rings, ed. A. Brahic, Toulouse, France, Aug. 1982.

Safronov, V. §. 1969. Evolution of the Protoplanetary Cloud and Formation of the Earth and
Planets. Moscow: Nanka. Transl. Israel Program for Scientific Translations, 1972. NASA
TTF-677.

Sandel, B. R., Shemansky, D. E., Broadfoot, A. L., Holberg, J. B., Smith, G. R., Mec-
Connell, J. C., Strobel, D. F., Atreya, S. K., Donahue, T. M., Moos, H. W., Hunten,

DYNAMICS OF NARROW RINGS 637

D. M., Pomphrey, R. B., and Linick, S. 1982. Extreme ultraviolet observations from the
Voyager 2 encounter with Saturn. Science 215:548-553.

Showalter, M. R., and Burns, J. A. 1982. A numerical study of Saturn’s F Ring. Icarus
52:526-544.

Sicardy, B., Combes, M., Brahic, A., Bouchet, P., Perrier, C., and Courtin, R. 1983. The 15
August 1980 otcultation by the Uranian system: structure of the rings and temperature of
the upper atmosphere. Icarus 52:454 -472.

Simpson, J. A., Bastian, T. S, Chenette, D. L., McKibben, R. B., and Pyle, K. R. 1980. The
trapped radiations of Saturn and their absorption by satellites and rings. J. Geophys. Res.
85:5731-5762.

Smith, B. A., Soderblom, L. A., Johnson, T, V., Ingersoll, A. P., Collins, S. A., Shoemaker,
E. M., Hunt, G. E., Carr, M. H., Davies, M. E., Cook, A. F,, Boyce, J., Danielson,
G. E., Owen, T., Sagan, C., Beebe, R. F., Veverka, J., Strom, R. G., McCauley,
J. F., Morrison, D., Briggs, G. A., and Suomi, V. E. 1981. Encounter with Saturn:
Voyager 1 imaging science results. Science 212:163 —191.

Smith, B. A., Soderblom, L., Beebe, R., Boyce, J., Briggs, G., Bunker, A., Collins, S. A.,
Hansen, C. J., Johnson, T. V., Mitchell, J. L., Terrile, R. J., Carr, M., Cook, A. F.,
Cuzzi, J., Pollack, J. B., Danielson, G. E., Ingersoll, A., Davies, M. E., Hunt, G. E.,
Masursky, H., Shoemaker, E., Morrison, D., Owen, T., Sagan, C., Veverka, J., Strom,
R., and Suomi, V. E. 1982. A new look at the Saturn system : The Voyager 2 images.
Science 215:504 -537.

Stone, E. C., and Miner, E. D. 1982. Voyager 2 encounter with the saturnian system. Science
215:499 -504.

Synott, 8. P., Terrile, R. J., Jacobson, R. A., and Smith, B. A. 1983. Orbit’s of Saturn’s F
Ring and its shepherding satellites. Icarus 53:156 —158.

Van Allen, J. A. 1982. Findings on rings and inner satellites of Saturn by Pioneer 11. Jcarus
51:509 -527.

Van Allen, J. A., Thomsen, M. F., and Randall, B. A. 1980. The energetic charged particle
absorption signature of Mimas. J. Geophys. Res. 85:5709-5718.

Vanl(;l;ndern, T. C. 1979. Rings of Uranus: invisible and impossible? Science 204:1076—

Vogt, R. E., Chenette, D. L., Cummings, A. C., Garrard, T. L., Stone, E. C., Schardt,
:A. W., Trainor, J. H., Lal, N., and McDonald, F. B. 1982. Energetic charged particles
in Saturn’s magnetosphere: Voyager 2 results. Science: 215:577 ~582.

Ward, W. R. 1981. On the radial structure of Saturn’s ring. Geophys. Res. Lett. 8:64]1 ~643.
Yoder, C. F. 1983. The gravitational interaction between inclined, elliptical rings. Proceedings
of I.LA.U. Colloguium 75 Planetary Rings, ed. A. Brahic, Toulouse, France, Aug. 1982.
Yoder, C. F., Colombo, G., Synnott, S. P., and Yoder, K. A. 1983. Theory of motion of

Saturn’s coorbiting satellites. Icarus 53:431-443.




