
Astro 250 – Planetary Dynamics – Problem Set 3
Do at least 1 problem.

Readings: Murray & Dermott 6.1–6.4 (don’t let the disturbing expansions disturb you),

6.7-6.9, 6.10.1; ALSO check out the lowest order forms of Lagrange’s equations in equations

(8.12)–(8.17).

Problem 1. The Titan ringlet and the 1:0 Apsidal Resonance

The Colombo ringlet, also known informally as the Titan ringlet, is a narrow planetary

ring around Saturn that sits within the 1:0 apsidal resonance established by the largest of

the Saturnian moons, Titan. This means that the precession rate of the apsidal line of the

ringlet matches the mean motion of Titan; Titan appears to pull the ring along.

Denote Titan’s mass over Saturn’s mass by MT/M = 2.366×10−4, its semi-major axis by

aT = 1.22× 106 km, its eccentricity eT = 0, its mean motion by ΩT , and its mean longitude

by λT . Denote a single ring particle’s semi-major axis by a = 77871 km, its eccentricity by

e = 2.6 × 10−4, and its mean motion by Ω = 2.834 × 10−4 rad/ s. These numbers are given

just for reference; the problem below does not require any numerical evaluation.

a) Write down, to leading order in e, the SINGLE term of the disturbing function due

to Titan (the perturber) that represents the 1:0 apsidal resonance. Leave all variables in

symbolic form (do not plug in numbers).

b) Use Lagrange’s equations to compute ȧ, ė, and ˙̃ω for the ring particle. Express

in terms of the constant η = (MT/M)ΩαH10/2, where α = a/aT and H10 = 2b
(1)
1/2(α) +

α(d/dα)b
(1)
1/2(α)− 3α.

c) The above expression for ˙̃ω is incomplete because it only accounts for mean-motion

resonant forcing by Titan. What is missing is forcing by the secular potential. Let’s just say

the complete answer is

˙̃ω = 〈answer in part b〉+ ˙̃ωsec (1)

where ˙̃ωsec = ˙̃ωSaturn + ˙̃ωstuff is the total additional precession rate induced by the oblateness

of Saturn and the secular potential of everything else—nearby rings (remember the Titan

ringlet is just 1 narrow ring embedded in Saturn’s gigantic ring complex), Titan, other

satellites, the Sun, lost pens, etc. In fact, Saturnian oblateness completely overwhelms the

other contributions. There is no need to write out explicitly what all these terms are; we will
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just work with ˙̃ωsec(a). (Those of you who did problem 1 of PS 1 know what this function

is, but the explicit form is not needed for this problem!)

Further define

ε(a) ≡ ˙̃ωsec(a)− ΩT (2)

φ ≡ ω̃ − λT (3)

where φ is the resonant libration angle. Also define a = a0 such that ε(a0) = 0.

Your equations for ė and ˙̃ω are coupled ordinary differential equations. Replace e and φ

in favor of the variables,

h ≡ e cosφ (4)

k ≡ e sinφ (5)

Write down ḣ and k̇ in terms of η, ε, h, and k.

d) Solve your equations for ḣ and k̇. Your solution should contain two arbitrary constants:

an amplitude and a phase associated with a sinusoidal oscillation.

e) Plot possible trajectories in h and k space. Identify the conditions under which φ is

circulating (running the gamut from 0 to 2π) or librating (oscillating about a fixed value).

If the particle is librating, what are the libration centers, 〈φ〉? What libration centers are

associated with a > a0? What centers are associated with a < a0? If you have the correct

solution, you should notice that something terrible happens at a = a0. This is simply a

deficiency of our low-order theory.

Problem 2. Tilted Rings

Consider two planets on circular orbits around a star. The inner planet has mass m1 and

semimajor axis a1, and the outer planet has mass m2 and semimajor axis a2. At t = 0, the

orbit plane of m2 coincides with the x-y plane; the orbit plane of m1 is inclined by i1 and

has longitude of ascending node Ω1 = 0 (on the x-axis); and the two planets happen to be

passing conjunction at mean longitude λ1 = λ2 = 0 (on the x-axis).

a) The period ratio between the two planets (a2/a1)
3/2 is found to be very well approx-

imated by the integer ratio k : j, where k and j are relatively prime (only common factor
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of the two numbers is 1). It is proposed that the two planets occupy a k : j mean-motion

resonance.

How many conjunctions occur before the planets pass conjunction again at λ1 = λ2 = 0?

Argue from this result that when k � j, the mean-motion resonance is weak.

b) Secular approximation: Smear m2 along its orbit so that it becomes a circular wire

of uniform linear mass density. Derive to leading order in i1 the time-averaged disturbing

potential felt by m1 due to m2. You will need to perform two integrals: one over the wire

that is m2 (integral over θ), and a second over the orbit of m1 (integral over ψ). See Figure

1. Use Laplace coefficients (see the integral definition on page 237 of MD).

Hint: Write down z in terms of a1, i1, and ψ. Also write down d in terms of a1, a2, θ,

and z. This d is the denominator of the disturbing potential. Write down the integral over

θ for the potential of the outer wire as evaluated at a single point on the inner orbit. Taylor

expand the integrand in the small parameter z BEFORE trying to perform the integral over

θ. Your θ-integral should produce Laplace coefficients (following the physicist’s maxim that

any integral we can’t do is given an honorary name). Finally time-average (integrate) over

ψ.

You can check your answer by looking up the appropriate secular term (the term that

does not depend on any mean longitudes) in Appendix B of MD. Note that s in the notation

of MD is actually sin i/2.

2.

line of nodes
a2
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a) We’ll calculate the torque by writing the potential and taking its derivative with
respect to angle1. Let’s first find the potential due to the outer wire at a single point
on the inner wire located a height z above the plane of the outer wire. From the
diagram we see that the squared distance between our point on the inner wire and
a given point on the outer wire is

d2 = (a2
1 − z2) + a2

2 − 2(a2
1 − z2)1/2a2 cos θ + z2

" a2
1 + a2

2 − 2a1a2 cos θ + z2 a2

a1
cos θ .

Let the mass of our point on the inner wire be dm1. We know the mass per unit
angle of the outer wire is m2/(2π), so the potential is

U = Gdm1

∫ 2π

0

m2dθ

2π

(
a2

1 + a2
2 − 2a1a2 cos θ + z2 a2

a1
cos θ

)−1/2

.

The torque on the inner wire should tend to rotate the inner wire about the line of
nodes. From the diagram we see that such a rotation would increase or decrease the
inclination angle between the wires. So the angle with respect to which we should
differentiate U to get the torque is i. Since i comes into our expression for U only
via z = a1 sin ψ sin i, the torque on our point on the inner wire is

−dU

di
= Gdm1

∫ 2π

0

m2dθ

2π

z
a2

a1
cos θ · a1 sin ψ cos i

a3
2

(
1 + α2 − 2α cos θ +

z2

a1a2
cos θ

)3/2

" 1

2

Gdm1m2

a2
αb(1)

3/2(α) sin2 ψ sin i cos i .

1We could also find the torque by first calculating the force on each point of the inner wire and taking the
cross product of the radius vector and this force. In particular, we’d have to consider both the radial and
vertical components of the force: though the net vertical force and the net radial force on the inner wire are
both zero, both components of the force generate nonzero torques. Imagine the inner wire is fixed so the only
way it can move is by rotating about the line of nodes. If you were to hold the inner wire at the point shown
in the diagram and pull in the −z direction, there would clearly be a torque on the wire. But if you were to
pull radially outwards on the same point, the inner wire would also tend to move towards the plane of the outer
wire. To do a real calculation we’d need the angles between these forces and r, etc., which would be somewhat
more involved than the potential method used here. Sorry I was confused about this.
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Figure 1: Schematic of tilted rings problem. The angle θ is in the x-y plane (in the orbital

plane of m2). The angle ψ is the orbital plane of m1. Note that as shown here in this

diagram, the two planets are not actually passing conjunction.
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Problem 3. Principal Lindblad Resonances

This problem is derived from Goldreich & Tremaine’s (1980, ApJ, 241, 425, hereafter

GT) paper on disk-satellite interactions.

In a coordinate system that attaches the origin to the (primary) star of mass M , the

perturbation potential due to a (secondary) planet of mass Mp reads

φp(r, θ, t) = − GMp

|~r − ~rp|
+
GMp

|rp|3
~rp · ~r

where ~r is the vector position (measured from the origin) where the potential is to be

evaluated, and ~rp is the vector displacement from the origin to the planet. Note that in

equation (4) of GT, there is an error; their (Ms/Mp)Ω
2(r) should be replaced by GMs/r

3
s .

(This error does not propagate to the rest of their paper.)

It is useful to expand φp in a Fourier series:

φp(r, θ, t) =
∞∑

l=−∞

∞∑
m=0

φp
l,m(r) cos{mθ − [mΩp + (l −m)κp]t}

where Ωp is the mean angular frequency of the planet (the rotational frequency of the guiding

center of the planet’s orbit), and κp is the planet’s epicyclic frequency (the frequency of radial

oscillations due to non-zero eccentricity of the planet). In a frame that rotates at angular

frequency Ωp + (l − m)κp/m, the perturbation potential is time-independent and has an

m-fold azimuthal symmetry.

Assume that the planet’s eccentricity is zero so that |rp| is a constant. Evaluate the

strength of the “principal mth component” of the potential, φp
m,m(r). This expression is

sufficient to describe the perturbation potential of a planet on a perfectly circular orbit,

and it is the component that establishes “principal Lindblad resonances” (Galacto-speak)

or “first-order mean-motion resonances” (planeto-speak) in the disk. Principal Lindblad

resonances excited in a disk dominate the evolution of the semi-major axis of the planet;

they are responsible for planet migration.

Express your answer in terms of Laplace coefficients (see the integral definition on page

237 of Murray and Dermott). Watch out for the cases m = 0 and m = 1. Compare your

answer to equation (7) of GT.
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Problem 4. Poincare, Lagrange, and Hamilton

Hamilton’s equations read:

ṗi = ∂H/∂qi (6)

q̇i = −∂H/∂pi (7)

Any set of variables {qi, pi} that satisfy Hamilton’s equations are called “canonical.”

Unfortunately, the Keplerian osculating elements are not canonical variables. However,

appropriately constructed combinations of the Kepler elements are canonical. One such

combination is Poincare’s set:

q1 = λ p1 =
√
µa (8)

q2 = −ω̃ p2 =
√
µa

(
1−

√
1− e2

)
(9)

q3 = −Ω p3 =
√
µa(1− e2) (1− cos i) (10)

(See section 2.10 of MD but note that they add an extra µ∗ into their equations for which

we have no use.)

Insert Poincare’s canonical variables as written above into Hamilton’s equations to derive

Lagrange’s equations (6.145), (6.146), and (6.148)–(6.150). Ignore (6.147) for which we will

have no use in this course. Everywhere you see ε in (6.145)–(6.150) replace it with λ (see

discussion on page 252).

This is more-or-less a plug-and-chug problem. Historically this is not the way Lagrange

actually derived his equations. But the problem does highlight the fact that Lagrange’s

equations are really just Hamilton’s equations, re-written in a nice practical way for celestial

mechanicians.

Hint: ∂R/∂e =
∑3

i=1(∂R/∂pi)(∂pi/∂e), and similarly for the other Kepler elements.
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