Astro 250: Solutions to Problem Set 3
by Eugene Chiang

Problem 1. The Titan ringlet and the 1:0 Apsidal Resonance
The Colombo ringlet, also known informally as the Titan ringlet, is a narrow planetary ring around
Saturn that sits within the 1:0 apsidal resonance established by the largest of the Saturnian moons,
Titan. This means that the precession rate of the apsidal line of the ringlet matches the mean
motion of Titan; Titan appears to pull the ring along.
Denote Titan’s mass over Saturn’s mass by My /M = 2.366 x 1074, its semi-major axis by ar =
1.22 x 108km, and its mean longitude by Ap. Denote a single ring particle’s semi-major azis by
a = 77871 km, its eccentricity by e = 2.6 x 107%, and its mean motion by = 2.834 x 10~ 4rad/s.
a) Write down, to leading order in e, the single term of the disturbing function due to Titan (the
perturber) that represents the 1:0 apsidal resonance. Leave all variables in symbolic form (do not
plug in numbers).

We are the ring; the perturber is outside. The disturbing function due to an exterior perturber

is

~ GMr
=
where a = a/ar, Rp is the direct contribution to the disturbing function, and Rpg is the indirect

R/

(Rp + aREg) (1)

contribution. From the situation at hand, we know the dominant cosine term must be

cos(w — Ar) (2)

To get the strength of the direct term, look at Murray & Dermott’s Table B.4; the relevant term is
4D1.1 where j = 1. The leading term is efao7, where fo7 is given in Table B.7 and equation (B.1).
The strength of the indirect term is given by Table B.5; the relevant term is 4E1.2. The leading

indirect term is 3e/2. Putting it all together, we write

R = GchT [efar cos(w — M) + age cos(w — Ar)] (3)
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where we have looked ahead to part (b) of this problem for the definition of Hjg.
b) Use Lagrange’s equations to compute a, é, and & for the ring particle. Express in terms of the

constant n = (Mry/M)QaH/2, where o = a/ar and Hyg = 2b§1/)2(a) + a(d/da)bgl/)z(a) — 3a.



Lagrange’s equations say @ o OR’'/OX. Since R’ has no dependence on the mean longitude of
the ring particle, . To leading order, Lagrange’s equation for é is
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Apply our usual trick of multiplying numerator and denominator by §2 to find

¢ = — M0l i (5 — \p) = —nsin(@ — M) (9)
Finally, repeat for w:
1 OR
D= —— 10
“ = QaZe de (10)
w=—"cos(@ — Ar) (11)

c) The above expression for & is incomplete because it only accounts for mean-motion resonant
forcing by Titan. What is missing is forcing by the secular potential. Let’s just say the complete

answer 1S

& = (answer in part b) 4 Weec (12)

where d)sec = cfzsatum + (bsmff is the total additional precession rate induced by the oblateness of
Saturn and the secular potential of everything else—nearby rings (remember the Titan ringlet is
gust 1 narrow ring embedded in Saturn’s gigantic ring complex), Titan, other satellites, the Sun,
lost pens, etc. In fact, Saturnian oblateness completely overwhelms the other contributions. There
is no need to write out explicitly what all these terms are; we will just work with Gsee(a). (Those of
you who did problem 1 of PS 1 know what this function is, but the explicit form is not needed for
this problem!)

Equations (9) and (12) are coupled ordinary differential equations. Replace e and ¢ in favor of

the variables,

h=ecosd (13)
k=esing (14)

Write down h and k in terms ofn, €, h, and k.
Well,



e=\/n2+k2 (15)

¢ = (hh + kk)/e = —nsin ¢ (16)

Also,
h = —écos¢— esinpp (17)
= —psingcosd — ko (18)

Now ¢ = @ — Qp = —(n/e) cos ¢ + €(a). Insert this into (18) to find

h = nsin¢cos ¢ — k[—(n/e) cos ¢ + €] (19)
(20)

Insert into (16) to find

k=-n+eh (21)

d) Solve your equations for h and k. Your solution should contain two arbitrary constants: an
amplitude and a phase associated with a sinusoidal oscillation.

Take another time derivative of (20) and substitute for & using (21):

h=—en—éh (22)

The solution of this equation is

h = €free cOS(et 4+ P pree) +1/€ (23)

where efpc. and ¢ are constants of integration. Substitute this solution into (21) and solve to
find

k= €free Sin(Et + ¢free) (24)

e) Plot possible trajectories in h and k space. Identify the conditions under which ¢ is circulating
or librating. If the particle is librating, what are the libration centers, (¢)? What libration centers
are associated with a > ay? What centers are associated with a < ag? If you have the correct
solution, you should notice that something terrible happens at a = ag. This is simply a deficiency
of our low-order theory.

I would make a postscript picture if I had time, but I don’t so here goes: The trajectory in

h-k space is a circle whose center is located at (h = n/e,k = 0), and whose radius is |efpce|-

If |efree| > |n/€|, then the circle encloses the origin and ¢ circulates.




‘If lefree| < |n/€l, then the circle does not enclose the origin and ¢ librates. ‘

If a < ag, then €(a) > 0 (the secular precession rate increases with decreasing distance from the

oblate planet), and the circle is traced out in the clockwise direction at angular speed e. The only

possible libration center ’if a<agis (¢) =0.

All the signs are reversed | if @ > ap, in which case the only possible libration center is (¢) = 7. ‘

Thus, if the ring particle is just outside the resonance (a > ag), then its pericenter is, on average,
directed 180° away from Titan, whereas if it is just inside the resonance, then the pericenter, on
average, points towards Titan. At exact resonance, our low-order theory explodes (it yields an
infinite forced eccentricity, n/¢).

Problem 2. Tilted Rings

Consider two planets on circular orbits around o star. The inner planet has mass my and semimajor
axis ay, and the outer planet has mass mo and semimajor axis as. At t =0, the orbit plane of mo
coincides with the x-y plane; the orbit plane of my is inclined by i1 and has longitude of ascending
node 1 = 0 (on the x-azis); and the two planets happen to be passing conjunction at mean longitude
A1 =X =0 (on the z-azis).

a) The period ratio between the two planets (az/a1)>? is found to be very well approzimated by the
integer ratio k : j, where k and j are relatively prime (only common factor of the two numbers is
1). It is proposed that the two planets occupy a k : j mean-motion resonance.

How many conjunctions occur before the planets pass conjunction again at A1 = Ao = 02 Argue
from this result that when k > j, the mean-motion resonance is weak.

Try drawing a few pictures for yourself for low k and j (e.g., 2:1, 3:2, 3:1, 4:1) and you should

convince yourself that the number of conjunctions is | |k — j| | We can show this more rigorously
by noting that conjunctions occur when the difference in mean longitudes A\ — Ao = 2mi, where
i=0,1,2, ... . Now Ay — A9 = nit —naot = nit(1—j/k) = A1 (1 —j/k). Set this equal to 27i and we
find that A1 (at conjunction) = 27ki/(k — j) and Aa (at conjunction) = 27ji/(k — j). As i cycles
from 0, 1, 2, ..., we ask how many unique longitudes are cycled over. Note that when i = (k — j)
we have \; = 27wk and Ay = 27j which gives the same longitude at conjunction (namely, 0) as
i = 0; i.e., we have cycled back to the beginning. Thus the number of unique longitudes is given
by i=0,1,....k —j — 1, giving a total of |k — j|.
b) Secular approzimation: Smear mo along its orbit so that it becomes a circular wire of uniform
linear mass density. Derive to leading order in i1 the time-averaged disturbing potential felt by mq
due to my. You will need to perform two integrals: one over the wire that is mo (integral over 8),
and a second over the orbit of my (integral over 1)). See Figure 1. Use Laplace coefficients (see the
integral definition on page 237 of MD).

Hint: Write down z in terms of a1, i1, and ¥. Also write down d in terms of a1, as, 0, and
z. This d is the denominator of the disturbing potential. Write down the integral over 0 for the

potential of the outer wire as evaluated at a single point on the inner orbit. Taylor expand the



integrand in the small parameter z BEFORE trying to perform the integral over . Your 0-integral
should produce Laplace coefficients (following the physicist’s mazim that any integral we can’t do is

given an honorary name). Finally time-average (integrate) over 1).

You can check your answer by looking up the appropriate secular term (the term that does not
depend on any mean longitudes) in Appendix B of MD. Note that s in the notation of MD is actually
sini/2.

~~ line of nodes

Figure 1: Schematic of tilted rings problem. The angle 0 is in the x-y plane (in the orbital plane
of ma). The angle v is the orbital plane of my. Note that as shown here in this diagram, the two

planets are not actually passing conjunction.

From the figure,

z =apsinysini (25)

where 1) measures the angle in the plane of orbit-1 measured from one of the nodes (it doesn’t
matter whether it’s the ascending node or descending node because this is a secular calculation
where the objects are smeared into wires with no directions).

Also from the figure,

d* =22+ 2 (26)

=224+ (a2 -2 +dd2— 2a2\/a%jcosé? (27)

where ¢ is the dotted length in the plane of orbit-2 (not labelled), and for the second line we have
applied the law of cosines. (Aside: we will actually never use the length labelled r in the figure;

sorry to mislead).



The potential of the entire outer wire evaluated at a single point at ¥ on orbit-1 is given by

by) = [ Gl (29)

where p = may/(2masy) is the linear mass density of wire-2. Putting everything we have so far

together yields

do
o) = 52 [ - (29)
(a% + a3 — 2az+/af — 22 cos@)

Now vy — 22 ~ a;(1 — 22/(2a?)). Insert into the integral, and bring as out of the parens:

_ Gm2 db
®(v) 27 / az (1+ a® — 2acosO(1 — 22/(2a%)))1/2 (30

where o = ay/az. Let’s define € = 22/(2a3) and * = 1 + a® — 2acosf. Then the parens in the

integrand equals (z + 2cecos )~ Y/2 ~ 2= 1/2(1 — aecosf/z) and

_ Gmy 1 1 aecos

W) = o / <$1/2 - >d9 (31)
_Gma (L) 1 .

() = @ <2b1/2 - §€O‘b3/2 (32)

Now we insert (25) into e:

)
_Gma [0 _ s

() = 5= | b 22 (33)
Gma [0 @ sin? 4y bél/)Q sin? 1

Now we time-average over the orbit of 1. This amounts to a simple angle-average over 1 because
orbit-1 is circular. So we recognize that [ sin?di/ [ dy = 1/2. And so we have

Gma (1 (0 1) . 2.
(®) = p <2b(1/)2—abg/)251n211/8> (35)

This matches the answer in Appendix B after we realize that in MD’s notation, s = sin(i/2).

Problem 3. The Disturbing Function Referenced to Inertial Coordinates
This problem is derived from Goldreich & Tremaine’s (1980, ApJ, 241, 425, hereafter GT) landmark
treatise on disk-satellite interactions. This paper lays the foundation for understanding planetary

ring shepherding and interactions between planets and circumstellar disks.



In a coordinate system that attaches the origin to the (primary) star of mass M, the perturbation

potential due to a (secondary) planet of mass M, reads

GM,  GM,

|7 — 7Tp| ’Tp’?’

— —

Tp - T

PP (r,0,t) = —

where 7 is the vector position (measured from the origin) where the potential is to be evaluated,
and 7, is the vector displacement from the origin to the planet. Note that in equation (4) of GT,
there is an error; their (Mg/My,)Q%(r) should be replaced by GMs/rs. (This error is not propagated
throughout the remainder of their paper.)

It is useful to expand ¢P in a Fourier series:

P (r,0,t) = Z Z O] (1) cOs{mO — [m€y, + (I — m)rplt}

I=—c0 m=0

where Q, is the mean angular frequency of the planet (the rotational frequency of the guiding
center of the planet’s orbit), and ky is the planet’s epicyclic frequency (the frequency of radial
oscillations due to non-zero eccentricity of the planet). In a frame that rotates at angular frequency
Qp, + (I — m)kp/m, the perturbation potential is time-independent and has an m-fold azimuthal
symmetry.

Assume that the planet’s eccentricity is zero so that |rp| is a constant. FEvaluate the strength of
the “principal m* component” of the potential, &m.m(r). This expression is sufficient to describe
the perturbation potential of a planet on a perfectly circular orbit, and it is the component that es-
tablishes “principal Lindblad resonances” (Galacto-speak) or “first-order mean-motion resonances”
(planeto-speak) in the disk. Principal Lindblad resonances excited in a disk dominate the evolution
of the semi-major axis of the planet; they are responsible for planet migration. Ezxpress your answer
in terms of Laplace coefficients (see the integral definition on page 237 of Murray and Dermott).
Watch out for m =0 and m = 1. Compare your answer to equation (7) of GT.

If the planet has no eccentricity, the problem is relatively easy: in the frame rotating with the
planet, the planet is fixed. Let’s go into this rotating frame, and fix the planet to be on the x-axis
in this frame. Define a to be the semi-major axis of the planet, so that the planet is located at
x = a. Take 9 to be the angle between the x-axis and the position vector, 7, where we wish to
evaluate the potential. By the law of cosines, |7 — 7p|? = r2 + a? — 2ar cos®. And 7, - ¥ = ar cos 1.

Then we can re-write the potential in terms of coordinates in this rotating frame as

GM, GM,
0,t) = ———= L T 36
¢p(rv 7) |,’;»_7;»p| + "l“p‘?’ Tp-T ( )
GM, GM

= — P 37
(r2 + a2 — 2ar cos))1/2 T ar cos ¢ (37)

Now let’s examine the Fourier series. The problem asks us to examine [ = m. Then



o0

¢ (r,0,t) = Y b, m(r) cos{m[f — Qut]} (38)

m=0
Recognize that 1) = 0 —Q,,t (0 is the position angle in inertial space.) To get the Fourier amplitude,

@hn.m (1), multiply the above by cosm and integrate over ¢ from 0 to 27:

2m 2
(z)p(Ta ¢) cosmy dyp = ¢£n,m (T‘) cos” mypdyp = W(ﬁfn,m (lf m # 0) (39)

0 0

where we have recalled the wonderful orthogonality property that fozﬂ cosmi cosnypdyp = 0 if
m # n. Apply the same operation to (37): multiply (37) by cosm and integrate over a full cycle

of ¢

2 cos my
1+ 6., = —-GM, d
(1 0m 0) 7 &, m p/o (r2 + a2 — 2ar cos ) 1/2 ¥

M 2m
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where § = r/a. If m # 1, then the second integral vanishes. For the first integral, we adopt the
physicist’s convention that for any integral we can’t do, we bequeath it a special name. Let’s call

it a “Laplace coefficient.”

my _ 1 [*T cos map dip
b2 =5 /0 (1 —2Bcostp + (32)1/2 (43)

If m = 1, then the second integral in (42) equals

M, m M,
¢ QPT/ cospcosmpdyp = ¢ 2pr7r (44)
a 0 a
M
= g (5)
a
Putting it all together,
gn,m - _Giwp {b(1772)(1 + (sm,O)i1 - 5m,lﬁ} (46)




Congratulations: you have derived equation (7) of Goldreich & Tremaine (1980) (Only 103 equa-

P

tions left to go). GT go on to derive expressions for ¢}, 41 the strengths of leading-order pertur-

bations due to the finite eccentricity of the perturber; these will give rise to so-called “first-order
Lindblad resonances” and “first-order co-rotation resonances;” here “first-order” is first-order in
the eccentricity of the perturber.

Notice that in ¢h, , the indirect term only kicks in for m = 1, and it serves to weaken the

potential.

Problem 4. Poincare, Lagrange, and Hamilton

Hamilton’s equations read:

pi = OH/0q; (47)
i = —0H/0p; (48)

Any set of variables {q;,p;} that satisfy Hamilton’s equations are called “canonical.”

Unfortunately, the Keplerian osculating elements are not canonical variables. However, appropri-
ately constructed combinations of the Kepler elements are canonical. One such combination is

Poincare’s set:

@ =A p1=/pa (49)
Q@ =-w pQZM(l—Vl—ez) (50)
3 =—Q p3=+/pa(l—e?)(1—cosi) (51)

(See section 2.10 of MD but note that they add an extra p* into their equations for which we have

no use.)

Insert Poincare’s canonical variables as written above into Hamilton’s equations to derive La-
grange’s equations (6.145), (6.146), and (6.148)—(6.150). Ignore (6.147) for which we will have no
use in this course. Everywhere you see € in (6.145)-(6.150) replace it with \ (see discussion on
page 252).

This is more-or-less a plug-and-chug problem. Historically this is not the way Lagrange actually
derived his equations. But the problem does highlight the fact that Lagrange’s equations are really

just Hamilton’s equations, re-written in a nice practical way for celestial mechanicians.

Hint: OR/de = 32 (OR/Op;)(dpi/de), and similarly for the other Kepler elements.

Note first that Hamilton’s equations as written above utilize the “celestial mechanician’s Hamil-

tonian”, ie., H = —Hppyicist's: Thus H = Hgepler + R, where R is the celestial mechanician’s



disturbing function. (Had we used the physicist’s H and celestial mechanician’s R, then we would
have written H = Hgepler — R.) Furthermore, Hgepler = 12/ (2p3)

Start with pi: p1 = pt/?a=Y24/2 = O(Hgepler + R)/OX, whence a = -29R/OX. This is (6.145).

Next consider po: po = /a~2a(1 — V1 —e€2)/2 — Jpa(l — e?)7V/2(—2e)¢/2 = —O(Hgep +
R)/0& = —0R/0w. Solving for é using (6.145) gives (6.146).

The derivation of 4 follows similarly: consider p3 = —3(Hkep + R)/0Q = —OR/0Q and use
(6.145) and (6.146). Finally use the trig identity (1 — cosi)/sini = tan(i/2) to get (6.150).

To get , use the hint: dR/di = (JR/dp3)dp3/di (the other two terms in the sum involve dpy /i
and dp; /0i which are both zero). Note that —9(Hyep + R)/Ops = —OR/dp3 = —Q according to
Hamilton’s equations, and we get (6.148).

To get @, use the hint: IR/de = (OR/dp3)dps/de + (OR/Op2)dpa/de (the term involving
dp1/0e = 0). Note —9(Hxkep + R)/Op2 = —OR/Ops = —w, use (6.148), and we get (6.149).
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