
Astro 250 – Planetary Dynamics – Solution Set 4

Problem 1 is REQUIRED. Do at least 1 other problem in
addition to Problem 1.

Readings: Murray & Dermott Chapter 8: 8.3–8.7, and Agol et al. 2005 (we read this article

already) on the libration periods and maximum libration amplitudes of first-order resonances

in the high and low-eccentricity limits. I condensed all of this material into lecture on Oct

14, so you can just read your lecture notes.

Problem 2. An Order-of-Magnitude Understanding of First-Order
Resonances

Consider a test particle in a first-order j : j + 1 resonance established by an interior planet.

The interior planet has mass µ and occupies a circular orbit of radius 1, in units where

G = Mcentral = 1. The test particle has eccentricity e.

(a) At the end of lecture on October 14, we derived, following Agol et al. (2005), the libration

period Plib and maximum libration width ∆alib, in the limit of large eccentricity e > µ1/3.

Repeat this derivation, explaining all steps.

I’ll use my notation (not Agol’s) and define ε � 1 using Ω : Ωp = j + ε : j + 1, where Ω

is the mean motion. We can also say Ω/Ωp ∼ (j + 1)/j = (a/ap)
3/2 = (1 + x)3/2 ∼ 1 + 3x/2

from which it follows that the semimajor axis displacement x ∼ 2/(3j).

The synodic period Psyn between successive conjunctions is 2π/|Ωp−Ω| ∼ 2π/[(3Ω/2)x] ∼
1/x ∼ j.

The maximum libration width ∆alib corresponds to a libration amplitude ∆φ ∼ 1. We

want an estimate of the time it takes the line of conjunctions to sweep ∆φ. The number of

conjunctions required (per libration “cycle”) is Nc = ∆φ/∆`, where ∆` is how much the line

of conjunctions sweeps (in inertial space) between conjunctions. We estimate:
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∆` = ΩpPsyn mod 2π (1)

= Ωp
2π

Ωp − Ω
mod 2π (2)

=
2π

1− Ω/Ωp

mod 2π (3)

=
2π

1− (j + ε)/(j + 1)
mod 2π (4)

=
2π(j + 1)

(1− ε)
mod 2π (5)

∼ 2π(j + 1)(1 + ε) mod 2π (6)

∼ 2πjε (7)

So Nc ∼ 1/(jε). And thus Plib = NcPsyn ∼ 1/ε.

Now we need to relate ε to e and µp (perturber mass). The period of the test particle

changes over a libration cycle from j+ε to j. Thus the fractional change in the test particle’s

period is ε/j. But by Kepler’s Third Law, this must also equal the fractional change in the

test particle’s semimajor axis. Thus ε/j ∼ ∆x/a ∼ ∆x.

Now use Tisserand, working in the limit that ∆x � x and ∆e � e (high-eccentricity

limit):

∆(x2) ∼ ∆(e2) (8)

x∆x ∼ e∆e (9)

∆x ∼ e∆e

x
(10)

∆x ∼ e[(µp/x
2)×Nc]

x
(11)

∆x ∼ eµpj
2

ε
(12)

Note that ∆e is the full change of the test particle’s eccentricity over (a quarter of) the

libration cycle. The individual eccentricity kicks add coherently over (a quarter of) the

libration cycle.

Set this ∆x equal to ε/j to find that ε ∼ √eµpj
3/2, and finally ∆x = max ∆a =

√
jeµp

and Plib ∼ 1/ε ∼ 1/(
√

eµpj
3/2) . These are the familiar “square root laws” for a first-order

mean-motion resonance.
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(b) Derive Plib and ∆alib in the limit of low eccentricity e < µ1/3. Note the results you have

derived are not found in Murray & Dermott; apparently MD has the wrong results for the

low e limit. Compare your answer to Agol et al. (2005).

For both parts (a) and (b), you will use the Tisserand relation for the encounter problem:

∆(x2) ∼ ∆(e2), where ∆ denotes the change due to a single encounter (conjunction), and

x � 1 is the semimajor axis difference between the test particle and the perturber.

So everything is the same as part (a) except now the Tisserand relation gives us:

∆(x2) ∼ ∆(e2) (13)

x∆x ∼ (∆e)2 (14)

∆x ∼ (∆e)2

x
(15)

∆x ∼ [(µp/x
2)×Nc]

2

x
(16)

∆x ∼
µ2

pj
3

ε2
(17)

Set this ∆x equal to ε/j to find that ε ∼ µ
2/3
p j4/3, and finally ∆x = max ∆a = µ

2/3
p j1/3

and Plib ∼ 1/ε ∼ 1/(µ
2/3
p j4/3) , in accord with Agol et al. (2005).

Problem 3. Inclination Resonance

In lecture on October 14 (and in Section 8.3 of MD), we understood using simple pictures,

kicks at conjunctions, and Gauss’s perturbation equations (basically ȧ ∝ T ) why first-order

resonances are stable equilibria. We can also understand why a first-order resonance for a

test particle on an eccentric orbit outside a circular planet has a stable point at apoapse; e.g.,

for the 3:2 resonance, the resonance angle φ = 3λ′ − 2λ− ω̃′ librates about π.

Use similar techniques to understand the stability of the corresponding (i′)2 resonance, for

which the resonance angle φ = 6λ′ − 4λ − 2Ω′. Explain using simple pictures, kicks at

conjunctions, and Gauss’s perturbation equations why an inclination resonance can be stable.

About what value does φ librate?

Suppose conjunction occurred at λ′ = Ω′ + π/2− ε, i.e., just shy of when the particle is

at its greatest height above the plane. Then the interaction just before conjunction would

dominate the interaction just after conjunction, because the particle-perturber distance is
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shorter before conjunction than after. Before conjunction, the particle is pulled BACK by

the perturber, so T < 0 which means ȧ < 0. So the orbit shrinks; the particle’s mean motion

increases; and the next conjunction occurs at a greater λ′ (the perturber needs more time to

catch up). So λ′ gets accelerated toward Ω′ + π/2 (first stable point).

Of course if λ′ = Ω′+π/2−ε, then there is another conjunction at λ′ = Ω′+3π/2−ε. The

same dynamics unfolds there: λ′ gets accelerated toward Ω′ + 3π/2 (second stable point).

So the stable point for φ should be π + 2πj, where j is an integer. This works because

φ = 6λ′−4λ−2Ω′ represents the longitude of the line of conjunctions. At conjunction, λ′ = λ;

plugging this into φ gives φ = 2λ′−2Ω′, which if φ = π+2πj, means that λ = Ω′+π/2+πj/2,

which is consistent with what we said above for the stable points.

I think, but have not checked, that the perturbing acceleration T ∝ i2: one power of

i to get the vertical component of the perturbing force, and another power of i to get the

in-orbit-plane component of the vertical component. This would explain why inclination

resonances are second-order in strength.

Problem 4. N petals, forced eccentricities, and another definition
of a resonant width

This problem is relevant for the resonant edges of planetary rings.

The edges of planetary rings are near principal Lindblad resonances of azimuthal wavenum-

ber m established by shepherd satellites. At the exact resonance location,

(m∓ 1)n−mnp ± ˙̃ω = 0 . (18)

Here m is a positive integer, n and np are the mean motions of a ring (test) particle and

of the perturbing shepherd, and ˙̃ω is the apsidal precession rate of the ring particle. The

upper/lower signs correspond to inner/outer Lindblad resonances.

Take the shepherd to be outside the ring. The resonant disturbing function of the shepherd

is

Rp,res =
Gmp

ap

f(α)e cos φ (19)

φ = (m− 1)λ−mλp + ω̃ (20)

where λ’s are mean longitudes, e is the eccentricity of the test particle, and f(α) = f(a/ap)

is a dimensionless function of the ratio of semi-major axes of the particle to the perturber.

f is often of order unity.
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a) Calculate ˙̃ωres and ėres from Rp,res using Lagrange’s planetary equations. (We are

neglecting the variation in semi-major axis in this first cut to the problem. We can always

compute it later.)

Lagrange’s equations to leading order in eccentricity read, ė = (−1/na2e)∂R/∂ω̃ and
˙̃ω = (+1/na2e)∂R/∂e. These give

ė = mp

mc

af(α)
ap

n sin φ (21)

˙̃ω = mp

mc

af(α)
ap

1
e
n cos φ (22)

where mc is the mass of the central object (planet).

b) It is evident that φ̇ = (m−1)n−mnp + ˙̃ω. In reality, ˙̃ω = ˙̃ωres + ˙̃ωsec. For this problem,

we will consider m 6= 1 and say that ˙̃ωsec � ˙̃ωres. (Note that we cannot ignore ˙̃ωsec if m = 1;

see a problem on a previous problem set on the Titan ringlet.) Many planetary rings have

their edges located at m ∼ 10.

Similarly ignore ėsec.

Define ε(a) = (m− 1)n−mnp to write

φ̇ = ε(a) + ˙̃ωres (23)

Now take the particle to be firmly in the resonance with vanishingly small libration amplitude;

that is, consider the limit ė → 0 and φ̇ → 0. What are the equilibrium values for e and φ?

The value for e that you have deduced is called the “forced eccentricity” (as opposed to the

“free eccentricity,” which is the amplitude of libration in (h = e cos φ, k = e sin φ) space; see

problem on previous problem set on the Titan ringlet). Remember that ε(a) can be either

negative or positive, so you should never get a negative eccentricity.

ė = 0 demands φ = 0, π . φ̇ = 0 demands ˙̃ωres = −ε(a). Recognize that our answer is

part (a) is actually ˙̃ωres. Then use (22) to solve for e = |(mpaf(α)/mcap)(n/ε)| , where have

not bothered to worry about the sign of ε and the sign of cos φ.

c) Express the eccentricity e in terms of the distance, x = a− a0, where (m− 1)n(a0) =

mnp. Of course, we are considering x � a0.

Write n = [mnp/(m−1)](1+x/a0)
−3/2 ≈ [mnp/(m−1)](1−3x/2a0) and insert into part

(c) to find

e = |mp

mc

√
ap

a0

f(α)
m

2a0

3x
| (24)
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d) In the frame co-rotating with the shepherd (which we take to be moving on a perfectly

circular orbit), SKETCH APPROXIMATELY the trajectories of ring particles for a few

values of x, both positive and negative. You may find it helpful to think in terms of epicyclic

frequency, κ = n− ˙̃ω (the frequency of radial oscillations), and the Doppler-shifted azimuthal

frequency, n − np. The particle will make a certain number of radial oscillations for every

azimuthal oscillation.

For a resonant particle with zero libration amplitude, φ̇ = 0 = (m− 1)n−mnp + ˙̃ω. The

epicyclic frequency κ = n − ˙̃ω = n + (m − 1)n −mnp = m(n − np). Then in one synodic

period, 2π/(n−np), the particle completes m radial oscillations. The amplitude of the radial

oscillation, i.e., the maximum radial deviation from the guiding circle, is ea.

Go into the frame rotating with the mean motion of the shepherd, and have the shepherd’s

(fixed) position be on the x-axis in this frame. Then the ring particle will trace out an m-

petalled pattern in this frame; i.e. a flower with m number of petals. When the ring particle

achieves conjunction with the shepherd, whether the particle is at its apoapse or at its

periapse depends on whether a < a0 or a > a0. If a > a0, then ε < 0 which in turn implies

that the libration center φ = 0. If φ = 0, then at conjunction (λ = λp), λ = ω̃—the particle

is at its periapse. Thus, at a > a0, we orient an m-petalled flower (or an m-toothed gear,

if you like) such that a trough lies on the x-axis. If a < a0, we orient the m-petalled flower

such that a crest lies on the x-axis. The height of the petals decreases as the distance from

exact resonance increases; in other words, as |x| increases, ea decreases.

e) What is the value of xcrit > 0 for which a trajectory at x = xcrit just collides with a

trajectory at x = −xcrit (i.e., on the flip side of the resonance)? This is an estimate of the

“width” of the resonance; it is an estimate of the width of the region near the edge of the

planetary ring where perturbations by the shepherd satellite are greatest; within xcrit of a0, the

velocity dispersion of ring particles can be substantially greater than the velocity dispersion

of ring particles in the remainder of the ring that are well removed from the resonance.

The amplitude of each petal is ea0; a petal at x < 0 just touches the petal at x > 0 when

ea0 = x = xcrit. Insert (24) into this equation to find

xcrit =

√
mp

mc

2f(α)
3m

(
ap

a0

)1/2

a0 (25)

To order of magnitude, xcrit ≈
√

mp/mca0. For satellites shepherding the ε ring of

Uranus, this distance is a few km. Thus, in the ε ring which measures ∼60 km radially, you

should imagine the last few km near either resonant edge being stirred up dramatically by

the shepherds.
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