
Astro 250 – Planetary Dynamics – Problem Set 5

Do at least 1 problem.

Readings: Murray & Dermott 7.1–7.2, 7.4–7.5, 7.7–7.8, 7.10–7.11

Problem 1. Precessing Planes and the Invariable Plane

Consider a star of mass mc orbited by two planets on nearly circular orbits. The
mass and semi-major axis of the inner planet are m1 and a1, respectively, and those of
the outer planet, m2 = (1/2) ×m1 and a2 = 4 × a1. The mutual inclination between
the two orbits is i� 1. This problem explores the inclination and nodal behavior of the
two planets.

a) What is the inclination of each planet with respect to the invariable plane of the
system? The invariable plane is perpendicular to the total (vector) angular momentum
of all planetary orbits. Neglect the contribution of orbital eccentricity to the angular
momentum. Call these inclinations i1 and i2.

b) Take for the rest of this problem your reference plane to be the invariable plane.
Use lowest-order secular theory to compute the frequencies of nodal precession of each
of the two planets, Ω̇1 and Ω̇2. Check that these rates do not have any dependence on
i1 and i2. They should depend only on the masses and semi-major axes. Be sure to
include the sign.

c) How do i1, i2, and i vary in time?

d) Place a test particle in the invariable plane on a circular orbit at a semi-major
axis of at = 2 × a2. Does the inclination of the particle with respect to the invariable
plane remain zero? If you laid a disk of test particles in the invariable plane, would it
remain there?

Problem 2. The Warp Radius of the Laplacian Plane

By now we are used to the idea that an oblate planet induces apsidal (and nodal)
precession in a satellite’s orbit. This problem explores the effect of the parent star on
satellite precession rates.

Consider a star-planet-satellite system. Recognize that from the satellite’s point-of-
view, the parent star appears to revolve around the planet; the star can be considered
merely another (very massive) satellite on an exterior orbit about the planet. (Who says
that the Sun doesn’t revolve around the Earth?)

a) Use secular theory to derive the rate of nodal precession of the satellite induced
by the star, Ω̇c. Take the mass of the star to be mc, the planet mass to be mp, the
satellite mass to be zero, the satellite’s distance to the planet to be a, and the planet’s
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distance to the star to be r. Assume that the satellite’s orbit plane about the planet is
at low, but non-zero, inclination with respect to the planet’s orbit plane about the star.

b) Take the leading term of equation (6.250) of Murray & Dermott for the nodal
precession rate of the satellite induced by the planet’s J2 (oblateness). Those of you
who solved problem 1 of problem set #1 should find the leading term of this expression
not surprising. Compare this rate, Ω̇p, to Ω̇c and solve for the critical planetocentric
radius, aw, at which these rates are equal. This is approximately the radius where the
Laplacian plane warps. The Laplacian plane is that plane about which test particles
nodally precess. At a < aw, the Laplacian plane aligns itself with the planet’s equator
plane. At a > aw, the Laplacian plane aligns itself with the planet’s orbital plane.

c) Is the Earth’s Moon inside or outside aw? Repeat for the Saturnian satellites,
Mimas and Titan.

Problem 3. Ring locking

Narrow rings encircle Uranus and Saturn that are apsidally locked. That is, for a
given ring, the inner elliptical edge of the ring is observed to be nearly perfectly apsidally
aligned with the outer elliptical edge of the ring. Apsidal locking is puzzling because
planetary oblateness (J2) induces differential apsidal precession across the ring. The
inner edge wants to precess faster than the outer edge (because the former sits at a
smaller semi-major axis than the latter); the edges would precess into one another on
fast (∼102 yr) timescales; streamlines would cross, and the eccentricities of ring particles
would be collisionally damped to zero. But the eccentricities of rings are not zero. How
can a given ring maintain apsidal lock and precess about the planet as if it were a rigid
body? Those of you who watched the Hubble Space Telescope movie of the Uranian
epsilon ring in the first class know first-hand that indeed that ring is eccentric and that
it rigidly precesses, giving rise to the “pulsing” effect in the movie. This problem takes
a first qualitative step towards understanding apsidal locking.

Idealize a given elliptical ring by two infinitesimally narrow, massive elliptical wires
that are in the same plane and that are perfectly apsidally aligned. Take the eccentricity
and semi-major axis of the inner wire to be e1 and a1, respectively, and those of the
outer wire to be e2 and a2. Take e1, e2 � 1 and ∆a ≡ a2 − a1 � a1, a2.

Put both massive wires around an oblate planet. The mutual gravitational attraction
of the wires induces differential precession. Planetary oblateness induces differential
precession. In fact, the two effects can exactly balance. Use the form of Gauss’s equation
and your knowledge of secular theory to deduce the sign of ∆e ≡ e2 − e1. In other
words, for the wire ringlets to remain apsidally aligned, must the distance between the
two ringlets be smallest at apoapse or smallest at periapse?

Problem 4. Eigenvalues and Eigenvectors of 2-planet Laplace-Lagrange

Murray & Dermott, Problem 7.1
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