
Astro 250: Solutions to Problem Set 5

by Eugene Chiang

Problem 1. Precessing Planes and the Invariable Plane

Consider a star of mass mc orbited by two planets on nearly circular orbits. The
mass and semi-major axis of the inner planet are m1 and a1, respectively, and those of
the outer planet, m2 = (1/2)×m1 and a2 = 4× a1. The mutual inclination between the
two orbits is i � 1. This problem explores the inclination and nodal behavior of the two
planets.

a) What is the inclination of each planet with respect to the invariable plane of the
system? The invariable plane is perpendicular to the total (vector) angular momentum
of all planetary orbits. Neglect the contribution of orbital eccentricity to the angular
momentum. Call these inclinations i1 and i2.

The masses and semi-major axes of the two planets are so chosen as to make the
arithmetic easy; the norm of each planet’s angular momentum is the same as the other,
|~l1| = |~l2| = m1

√
Gmca1. Orient the x-y axes in the invariable plane so that the y-axis

lies along the line of intersection between the two orbit planes (the nodal line). Then
in the x-z plane, the total angular momentum vector lies along the z-axis, while ~l1 lies
(say) in quadrant II and makes an angle with respect to the z-axis of i1 > 0, while ~l2
lies in quadrant I and makes an angle with respect to the z-axis of i2 > 0. Remember
that the mutual inclination i = i1 + i2. Then the total angular momentum vector is

~ltot = |l1|(cos i1 + cos i2)ẑ + |l1|(sin i2 − sin i1)x̂ (1)

while

~l1 = |l1| cos i1ẑ − |l1| sin i1x̂ (2)
~l2 = |l1| cos i2ẑ + |l1| sin i2x̂ (3)

From ~l1 ·~ltot = |l1||ltot| cos i1, it is straightforward to derive that

√
1 + cos i

2
= cos i1 (4)

from which it is clear in the small angle limit that i1 = i/2 . A similar calculation yields
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i2 = i/2 . Thus the invariable plane lies right in between the two orbit planes, as it must
since each planet contains as much scalar orbital angular momentum as the other.

b) Take for the rest of this problem your reference plane to be the invariable plane. Use
lowest-order secular theory to compute the frequencies of nodal precession of each of the
two planets, Ω̇1 and Ω̇2. Check that these rates do not have any dependence on i1 and
i2. They should depend only on the masses and semi-major axes. Be sure to include the
sign.

Equation (7.31) of Murray & Dermott gives the answer: for two planets about a
star, there is only 1 non-zero nodal eigenfrequency, Ω̇1 = Ω̇2 = f = B11 + B22. There
can be only 1 non-zero eigenfrequency because inclinations are always mutual; for two
planets, there is only 1 mutual inclination. The diagonal matrix elements Bjj are given
by equation (7.11). Plugging in numbers gives

Ω̇1 = Ω̇2 = −n1
64

m1
mc

b
(1)
3/2(0.25) (5)

c) How do i1, i2, and i vary in time?

The inclination and nodal behavior for two planets is given by (7.29). One constraint
is that initially, |Ω1−Ω2| = π. But this is true for all time because of our answer in (b).
From (7.29), we have

p1 = i1 sinΩ1 = I11 sin(ft + γ1) + I12 sin γ2 (6)
q1 = i1 cos Ω1 = I11 cos(ft + γ1) + I12 cos γ2 (7)
p2 = i2 sinΩ2 = I21 sin(ft + γ1) + I22 sin γ2 (8)
q2 = i2 cos Ω2 = I21 cos(ft + γ1) + I22 cos γ2 (9)

We are free to choose the initial orientations of the two planes so that Ω1(t = 0) = π/2
and Ω2(t = 0) = 3π/2. This choice renders the initial p1 = i1(t = 0), q1 = 0, p2 =
−i2(t = 0) = −i1(t = 0), q2 = 0. Then

I11 sin γ1 + I12 sin γ2 = i1(t = 0) (10)
I11 cos γ1 = −I12 cos γ2 (11)

I21 sin γ1 + I22 sin γ2 = −i1(t = 0) (12)
I21 cos γ1 = −I22 cos γ2 (13)

These look like 4 equations in 6 unknowns. But in general they really represent 4 equa-
tions in 4 unknowns. Remember that I11 is related to I21 since both are components of
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the same eigenvector of non-trivial eigenvalue. The components of the other eigenvec-
tor, I12 and I22, are also related to one another, since they are components of the other
eigenmode of zero eigenfrequency. From the definition of the matrix B in equations
(7.11) and (7.12), it is easy to see that the two eigenvectors of B are [1 -1] and [1 1].
Thus, I11 = −I21 and I12 = I22. Inspection reveals the solution γ2 = 0, γ1 = π/2,
I11 = i1(t = 0), I21 = −i1(t = 0), and arbitrary I12 = I22. Then

p1 = i1(t = 0) cos(ft) (14)
q1 = −i1(t = 0) sin(ft) (15)
p2 = −i1(t = 0) cos(ft) (16)

q2 = i1(t = 0) sin(ft) (17)

Therefore i1 =
√

p2
1 + q2

1 = i1(t = 0) = i/2 and i2 =
√

p2
2 + q2

2 = i1(t = 0) = i/2 . Thus,

both orbit planes remain at the same inclination with respect to the invariable plane for
all time, and their nodes regress at the same rate f = Ω̇1 < 0. The mutual inclination
i remains fixed .

In fact, in the Laplace-Lagrange solution, the mutual inclination in any 2-planet system
remains fixed for all time (in the limit of small mutual inclination). This is easily seen
since i2(t = 0) > 0 could have been anything and we would have derived the same
solution except that I21 = −i2(t = 0).

d) Place a test particle in the invariable plane on a circular orbit at a semi-major axis
of at = 2 × a2. Does the inclination of the particle with respect to the invariable plane
remain zero? If you laid a disk of test particles in the invariable plane, would it remain
there?

No , the particle does not remain in the invariable plane. The particle’s inclination
vector is the vector sum of the free inclination vector and the forced inclination vector;
see Figure 7.3. Since the particle’s initial inclination is zero, this means that the length
of the free inclination vector equals the length of the forced inclination vector, but that
the two vectors are initially anti-parallel. They cannot remain anti-parallel since the
free inclination vector sweeps at a frequency, B, defined by equation (7.57), which is, in
general, different from the forced (eigen)frequency, f . [But there do exist certain semi-
major axes for which B will happen to equal to f ; those are the locations of linear secular
resonances (resonances that obtain under linear secular theory). At these locations, the
length of the forced inclination vector explodes.]

The same is true for a disk of test particles that lie initially in the invariable plane.
The disk would begin immediately to warp. Thus, in this sense, there is nothing in-
variable about the invariable plane.
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Problem 2. The Warp Radius of the Laplacian Plane

By now we are used to the idea that an oblate planet induces apsidal (and nodal) preces-
sion in a satellite’s orbit. This problem explores the effect of the parent star on satellite
precession rates.

Consider a star-planet-satellite system. Recognize that from the satellite’s point-of-view,
the parent star appears to revolve around the planet; the star can be considered merely
another (very massive) satellite on an exterior orbit about the planet. (Who says that
the Sun doesn’t revolve around the Earth?)

a) Use secular theory to derive the rate of nodal precession of the satellite induced by
the star, Ω̇c. Take the mass of the star to be mc, the planet mass to be mp, the satellite
mass to be zero, the satellite’s distance to the planet to be a, and the planet’s distance
to the star to be r. Assume that the satellite’s orbit plane about the planet is at low, but
non-zero, inclination with respect to the planet’s orbit plane about the star.

Consider the star and satellite to orbit the spherical planet. This is just like the two-
planet Laplace-Lagrange problem, where the inner (satellite) mass m1 is vanishingly
small, and the outer (stellar) mass m2 = mc.

As with the usual 2-planet case, there is only 1 non-zero eigenfrequency; using (7.11)
and (7.31), we have

Ω̇c = −n1

4
mc

mp

(
a

r

)2

b
(1)
3/2(a/r) (18)

= −3
4

mc
mp

(
a
r

)3
√

Gmp

a3 (19)

where for the last line we have used the fact that the Laplace coefficient goes to 3a/r
for a/r � 1.

b) Take the leading term of equation (6.250) of Murray & Dermott for the nodal pre-
cession rate of the satellite induced by the planet’s J2 (oblateness). Those of you who
solved problem 1 of problem set #1 should find the leading term of this expression not
surprising. Compare this rate, Ω̇p, to Ω̇c and solve for the critical planetocentric radius,
aw, at which these rates are equal. This is approximately the radius where the Laplacian
plane warps. The Laplacian plane is that plane about which test particles nodally precess.
At a < aw, the Laplacian plane aligns itself with the planet’s equator plane. At a > aw,
the Laplacian plane aligns itself with the planet’s orbital plane.

The leading term of (6.250) is −
√

Gmp/a3(3J2(Rp/a)2/2) ≈ Ω̇p, where Rp is the

planet’s radius. Set this equal to Ω̇c to solve for a = aw:

4



aw = (2R2
pr

3J2
mp

mc
)1/5 (20)

c) Is the Earth’s Moon inside or outside aw? Repeat for the Saturnian satellites, Mimas
and Titan.

For the Earth’s Moon, r = 1.5 × 1013 cm, Rp = 6.4 × 108 cm, mp = 6 × 1027 g,

J2 = 1.1×10−3, and mc = 2×1033 g. Then aw = 6.2× 109 cm < aMoon = 3.8× 1010 cm.
The Moon’s orbit plane nodally precesses about the Earth’s orbit plane, mostly. Solar
perturbations matter more than the quadrupole field of the Earth insofar as the nodal
precession rate goes.

For Saturn, r = 1.4×1014 cm, Rp = 6.0×109 cm, mp = 5.7×1029 g, J2 = 1.5×10−2,

and mc = 2 × 1033 g. Then aw = 5.6× 1011 cm > aTitan, aMimas. Thus Mimas and
Titan are both securely in the quadrupole field of Saturn. Notice that the irregular
satellite Phoebe (aPhoebe = 1.3× 1012 cm) is not.

Problem 3. Ring locking

Narrow rings encircle Uranus and Saturn that are apsidally locked. That is, for a given
ring, the inner elliptical edge of the ring is observed to be nearly perfectly apsidally
aligned with the outer elliptical edge of the ring. Apsidal locking is puzzling because
planetary oblateness (J2) induces differential apsidal precession across the ring. The
inner edge wants to precess faster than the outer edge (because the former sits at a
smaller semi-major axis than the latter); the edges would precess into one another on
fast (∼102 yr) timescales; streamlines would cross, and the eccentricities of ring particles
would be collisionally damped to zero. But the eccentricities of rings are not zero. How
can a given ring maintain apsidal lock and precess about the planet as if it were a rigid
body? Those of you who witnessed the Hubble Space Telescope movie of the Uranian
epsilon ring in the first class know first-hand that indeed that ring is eccentric and that
it rigidly precesses, giving rise to the “pulsing” effect in the movie. This problem takes
a first qualitative step towards understanding apsidal locking. [Those of you who are
really interested can read Chiang & Goldreich (2000, ApJ) or chapter 7 of my thesis.
This problem was a real bear. But it is the happiest research problem I have worked on
so far, and despite much sweat and toil over 2 decades by great dynamicists it remains
incompletely solved.]

Idealize a given elliptical ring by two infinitesimally narrow, massive elliptical wires that
are in the same plane and that are perfectly apsidally aligned. Take the eccentricity and
semi-major axis of the inner wire to be e1 and a1, respectively, and those of the outer
wire to be e2 and a2. Take e1, e2 � 1 and ∆a ≡ a2 − a1 � a1, a2.

Put both massive wires around an oblate planet. The mutual gravitational attraction
of the wires induces differential precession. Planetary oblateness induces differential
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precession. In fact, the two effects can exactly balance. Use the form of Gauss’s equation
and your knowledge of secular theory to deduce the sign of ∆e ≡ e2−e1. In other words,
for the wire ringlets to remain apsidally aligned, must the distance between the two
ringlets be smallest at apoapse or smallest at periapse?

Two apse-aligned wires having positive ∆e are closer together at periapse than at
apoapse—drawing a circle inside an ellipse easily demonstrates this. Suppose ∆e > 0.
Then the wires tug on each other at periapse more than they do anywhere else in the
orbit. One might object that the interaction at apoapse dominates since the wires are
denser at apoapse, but we are taking the individual wire eccentricities to be vanishingly
small, so that we can neglect this density effect.

The outer wire is tugged radially inwards by the inner wire at periapse. Gauss’s
equation tells us that ˙̃ω2 ∝ −R cos f , where R is the radial perturbative acceleration.
For the outer wire, R < 0, so ˙̃ω2 > 0. Similarly, ˙̃ω1 < 0 because the inner wire is tugged
radially outwards by the outer wire. Then the differential precession rate ˙̃ω2− ˙̃ω1 > 0 due
to wire self-gravity. Is this of the opposite sign to the differential precession rate induced
by the planet’s quadrupole field? Yes; J2 induces ˙̃ω2 − ˙̃ω1 < 0. Thus, ring self-gravity
and the planet’s quadrupole field can exactly balance and produce an apse-aligned ring
if ∆e > 0 ; that is, the radial width of a narrow ring is smallest at periapse and
greatest at apoapse.

In fact, all known narrow rings that encircle Saturn and Uranus have positive eccen-
tricity gradients (de/da > 0), in accordance with our simple qualitative reasoning. The
showcase example is Epsilon ring of Uranus, which is 20 km wide at periapse and 120 km
wide at apoapse. Positive eccentricity gradients provided the main observations favoring
ring self-gravity as the sole mechanism underlying apsidal alignment. But this “standard
self-gravity” model yields ring masses (wire masses) that are 1-2 orders of magnitude
too small to account for Voyager spacecraft observations. Incorporating forces due to
interparticle collisions into our equilibrium equations can remedy this problem. But
folding in collisional stresses comes at the cost of permitting negative ∆e equilibrium
solutions. Thus, it is still not completely understood why narrow rings all have ∆e > 0.
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