
Astrophysical Fluid Dynamics – Problem Set 11

Readings: Course Reader selections from Binney & Tremaine on Toomre Q, and from Frank, King,
& Raine on accretion disks

Problem 1. Toomre Q Mnemonics

A gas disk orbits an object of mass M . The disk is in vertical hydrostatic equilibrium with thickness
h. You may wish to refer back to PS 1, Problem 3d where you solved for vertical hydrostatic
equilibrium in a disk. You may use the results of that problem here, even though that earlier
problem neglected disk self-gravity when calculating h; the error in using that h is on the order of
unity for Q ∼ 1 (and less serious for Q� 1).

(a) [4 points] Show that, to order-of-magnitude, Q ≡ csΩ/(πGσ) ∼ 1 at radius r corresponds to
the condition ρ ∼ ρcrit ∼ M/r3, where ρ is the gas density (mass per unit volume) at the disk
midplane. Here cs is the gas sound speed, G is the gravitational constant, σ is the mass per unit
area of the disk, and Ω is the angular frequency, where all variables are evaluated locally at r.1

The condition you have derived is an easy way to remember the Toomre instability condition. The
critical density ρcrit is sometimes called the Roche density (and is just the mass of the central object
divided into the sphere just enclosing your position).

(b) [3 points] Show that for Q ∼ 1, the marginally unstable mode has a radial wavelength that
scales as the gas vertical scale height h.

(c) [3 points] It is sometimes stated that Q < 1 corresponds to Mdisk/M > h/r. Explain why this
statement makes rough sense.

Problem 2. Steady Alpha Disks

An accretion disk having surface density σ(r) at radius r orbits a point mass M . The potential is
Keplerian so the disk angular frequency Ω ∝ r−3/2.

(a) [3 points] In class we had used the φ̂ component of the momentum equation to see that the
radial accretion velocity ur is given by:

σur =
∂
∂r

(
r2
∫
τrφdz

)
r2
(
∂(rΩ)
∂r + Ω

) . (1)

1Technically the Toomre Q contains not the angular frequency Ω, but the radial epicyclic frequency κ. But the
two frequencies are the same to within an order-unity factor; see the textbook by Binney & Tremaine, or the problem
set question on radial epicycles and Rayleigh stability.
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Model the stress in terms of a shear viscosity ν:

τrφ = ρνr
∂Ω

∂r
(2)

and derive the mass accretion rate (the mass crossing a circle of radius r per unit time):

Ṁ ≡ −2πσurr = +6π

[
r
∂(σν)

∂r
+
σν

2

]
(3)

where σ =
∫
ρ dz. We have inserted a minus sign in the definition of Ṁ since astronomers like to

say Ṁ > 0 when mass flows radially in. If Ṁ < 0, we have a “decretion” disk where mass flows
radially outward. In general, Ṁ can vary with radius, causing mass to pile up or drain out locally
in a non-steady evolution.

(b) [3 points] For the remaining parts of this problem, assume steady accretion: Ṁ is constant with
radius (so mass does not pile up anywhere and ∂σ/∂t = 0; you can see this last statement from the
continuity equation we wrote down in class). From (1) derive:

Ṁ = 3πσν . (4)

Hint: Solve for y ≡ σν in (3) and assume that σν = finite at r = 0.

(c) [3 points] Show that the result in (b) can be intuited to order-of-magnitude by taking the disk
mass Mdisk ∼ σr2 and the diffusion time t ∼ r2/ν. Show also that the radial accretion speed
ur ∼ ν/r.

(d) [3 points] Accretion disks get hot. This is true whether we model them as viscous (“honey”) or
turbulent. For a gas parcel of mass ∆m to go from a circular orbit at r1 to a circular orbit at r2 < r1,
it has to lose orbital energy (in our Kepler potential, the total orbital energy is −GM∆m/(2r), so
smaller r implies lower energy). That energy goes into heating the disk.

The heating rate per unit area is given very nearly by

D =
3

4π

GMṀ

r3
(5)

a result that can be derived in either the viscous picture (as is done in the Frank, King, & Raine
book chapters reprinted in the Course Reader) or the turbulent picture (Balbus, Gammie, & Hawley
1994, MNRAS, 271). To order-of-magnitude, this result also makes sense: the energy lost by ∆m
in spiralling from r to r/2 is ∼GM∆m/r (dropping all 2’s); sending in ∆m per time ∆t means we
are dissipating a power ∼(GM∆m/r)/∆t ∼ GMṀ/r; and spreading this power over an annulus
of area ∼r2 gives ∼GMṀ/r3, as in (5) above.
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If the disk is able to radiate away this heat as a blackbody,2 then we have

D = 2σSBT
4 (6)

or

σSBT
4 =

3

8π

GMṀ

r3
(7)

where σSB is the Stefan-Boltzmann constant. The factor of 2 in (6) accounts for the top and bottom
faces of the disk, both of which radiate into space.3

From (7), the assumption of a steady disk, and the assumption that the disk is vertically isothermal,4

decide how the vertical disk scale height h scales with r. Sketch how the disk looks.

(e) [2 points] Now assume the kinematic viscosity ν = αcsh, where cs is the sound speed, and α is
a dimensionless factor, assumed to be a strict constant. How does σ scale with r?

(f) [2 points] Suppose there is a pressure disturbance that perturbs the disk out of vertical hydro-
static equilibrium. Sound waves (pressure waves) try to even out the disturbance; the timescale to
relax back to equilibrium is roughly the time it takes a sound wave to cross a scale height h. Call
this the dynamical time tz, and express in terms of Ω.

(g) [4 points] Find an approximate expression for how long it takes a temperature disturbance to
equilibrate away. That is, consider perturbing the temperature so that T → T + δT . The heat
content of the disk has increased, but so has the blackbody flux to space. It takes some time for
the perturbation flux to carry away the perturbation heat. Call this the cooling time tcool, and
express in terms of Ω and α.

(h) [3 points] Find an approximate expression for how long it takes a mass disturbance—say a local
accumulation of material on a radial length scale r—to diffuse radially away. Call this the viscous
time tvisc, and express in terms of Ω, α, and h/r.

Arrange tz, tcool and tvisc in increasing order, assuming α < 1.

(i) [2 points] How does Toomre’s Q scale with radius r? Accretion disks tend to be gravitationally
unstable at large radii, leading some to surmise that the outer peripheries of quasar accretion disks

2It doesn’t have to; it can radiate as a non-blackbody, or it might not radiate at all. If the latter, the accretion flow
is called “advection-dominated”—the energy goes into heating the gas and just gets swept along radially. Advection-
dominated accretion flows tend to be vertically thick/puffy.

3Side A and Side B of the vinyl record. (Do people still play vinyl?)
4A disk that is optically thick will not be vertically isothermal. It will be hotter at the midplane where most of

the disk mass resides and where energy dissipation rates are highest. We are neglecting this effect.
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/ protostellar accretion disks are fertile breeding grounds for starbursts / binary companion stars
or brown dwarfs.5

Problem 3. Similarity Solutions for Accretion Disks

The governing equation for the surface density σ(r, t) of a viscous accretion disk is a kind of diffusion
equation:

∂σ

∂t
=

3

r

∂

∂r

[
r1/2 ∂

∂r

(
r1/2νσ

)]
. (8)

If the viscosity ν can be written as a power law in radius,

ν ∝ rβ , (9)

then Lynden-Bell & Pringle (1974) showed that equation (8) admits a self-similar solution:

σ(r, t) =
C

3πν1Rβ
T−(5/2−β)/(2−β) exp

[
−R

(2−β)

T

]
(10)

where

R = r/r1 (11)

ν1 = ν(r1) (12)

T = t/t1 + 1 (13)

t1 =
1

3(2− β)2

r2
1

ν1
(14)

where r1 is a fixed scaling radius (free parameter) and C is a normalization constant (also a free
parameter). The quantity t1 should ring a bell: it is the viscous diffusion time of the disc evaluated
at r1; see the previous Problem 2, and also Hartmann et al. (1998).

For the rest of this problem, assume β = 0 (spatially constant viscosity ν).

(a) [5 points] Sketch σ(r) at three times, t = (0, 10t1, 100t1), on one set of axes. Your plot need
not be exact, but it should have the right scalings and orders of magnitude. Annotate your plot to
answer the following questions:

1. There is a “break radius” rbreak inside of which σ behaves as a near-perfect power law, and
outside of which σ drops exponentially. Indicate the location of rbreak on your plot and its
relation to r1. How does σ scale with r for r � rbreak? Just a proportionality is required.

2. How does rbreak scale with time t for t� t1? Just a proportionality is required.

5While wide stellar binaries are thought to form by gravitational instability, the story must be more complicated
for compact stellar binaries (having separations less than 30 AU or so). Compact binaries are thought to start off
wide, and then have their orbits shrunken—hardened is the technical term—by interacting with disk gas. In other
words, the disk forces the binary companion to migrate inward.
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3. At r � rbreak, how does σ scale with t for t� t1? Just a proportionality is required.

(b) [2 points] How does the disc accretion rate Ṁ onto the central object (at r = 0) scale with time
t for t� t1? Just a proportionality is required.

Hint: At r � rbreak, the disc accretes quasi-steadily. That is, for times t � tbreak, where tbreak is
the viscous diffusion time at rbreak, the disc properties at r � rbreak hardly change with time; the
disc in this regime has viscously relaxed to a steady state. Under these circumstances you may use
the results from Problem 2b above for steadily accreting discs.

(c) [3 points] Without referring to the similarity solution, write down a “zero-dimensional” order-
of-magnitude model for a viscously diffusing accretion disc. The model is 0D because we are not
spatially resolving the flow (we are not bothering to keep track of how flow properties change with
cylindrical radius).

Say the disc at time t has a characteristic radius rdisc, surface density σ, and viscosity ν. Further
assume that the disc orbits a central mass M? which dominates the mass in the system.

Use order-of-magnitude arguments to decide:

1. how the disk mass Mdisc depends on σ and rdisc

2. how the disk’s total angular momentum L scales with σ, rdisc, and t

3. how rdisc scales with t and ν

4. how σ scales with rdisc

5. how σ scales with t

6. how the disc accretion rate Ṁ scales with t

7. how the disk mass Mdisc scales with t

As a check, you may compare your order-of-magnitude results for how σ and Ṁ scale with t to the
similarity solution (they should match). You may find the arguments in Problem 2c useful.

(d) OPTIONAL [5 points] Instead of a viscous disc, consider now a magneto-centrifugal wind-
driven accretion disc. In a wind-driven disc, material accretes because a wind carries its angular
momentum away to infinity (angular momentum goes out so mass goes in).

Continuity for a 2D axisymmetric cylindrical flow reads:

∂σ

∂t
= −1

r

∂

∂r
(σrur) (15)
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Assume ur = −u0(r0/r), where r0 and u0 > 0 are constants (so ur < 0, which means disc material
accretes inward). Derive an expression for σ(r, t) in terms of u0, r0, an exponential decay time
t0, and an initial value σ0 = σ(r = 0, t = 0) at the origin. Compare your solution to the viscous
similarity solution for β = 0 (which also gives ur ∝ 1/r) and comment.

Hint: given the assumptions, the equation is separable: σ(r, t) = f(r)g(t) for separate functions f
and g.
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