
Astrophysical Fluid Dynamics – Problem Set 12

Readings: However much you like of Shu Chapter 8 on fluid instabilities and Chapter 10 on mixing
length theory of convection

Problem 1. Just How Tiny is the Tiny Superadiabatic Temperature Gradient?

Convection is often so efficient at transporting heat that the actual temperature gradient in a con-
vective atmosphere is only slightly steeper than the adiabatic temperature gradient. Here we estimate
quantitatively what “slightly steeper” means.

Recall that the Brunt-Vaisala (B-V) frequency is the frequency of buoyant vertical motions in an
atmosphere, and is given by
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where g > 0 is the vertical gravitational acceleration, T is temperature, and z measures vertical
height. Define
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to be the difference between the actual temperature gradient and the adiabatic temperature gradient.
We will estimate ∆∇T , and compare it to ∇T |actual. Remember that if ∆∇T < 0, then ω2

B−V < 0—
in other words, the B-V frequency is imaginary, any vertical motions are unstable, and convection
ensues. Since ∇T < 0, ∆∇T < 0 means the absolute value of the actual temperature gradient,
|∇T |actual, exceeds the absolute value of the adiabatic temperature gradient, |∇T |adiabatic; we say
the actual temperature gradient is superadiabatic (but not by much) in convective atmospheres.

(a) [5 points] Consider a parcel of gas moving adiabatically upwards through a convective (supera-
diabatic) atmosphere. The parcel has mass density ρ and specific heat [erg/(gram K)] at constant
pressure cp. It maintains pressure equilibrium with its surroundings: as it rises, the parcel’s pressure
matches exactly the surrounding atmospheric pressure (which is decreasing with increasing height).

The parcel’s temperature decreases adiabatically, while the background atmosphere’s temperature
drops superadiabatically. In other words, the adiabatic drop in the parcel’s temperature is not as
much as the drop in the surrounding environment’s temperature, because the actual temperature
gradient of the environment is superadiabatic.

After the parcel has risen length l, where l is small compared to the pressure scale height, how much
excess energy density [erg/cm3] does the parcel carry relative to its surroundings? Use the variables
given above. Call this extra energy density ε.

1



(b) [5 points] Give an approximate symbolic expression for the upward velocity, v, of the buoyant
parcel after it has travelled distance l. Remember that the parcel is unstably buoyant; it experi-
ences an upward acceleration, (δρ/ρ)g, where g is the local (downward) planetary gravitational
acceleration. You should first understand why δρ, the density difference between the parcel and its
surroundings, is negative. Reduce your expression to one that does not contain ρ or δρ, but does
contain T . Remember that pressure differences relative to the background are assumed zero, δP = 0.

(c) [5 points] Assume that convection dominates heat transport through the atmosphere. The atmo-
sphere transports an energy flux F [erg cm−2 s−1] upward (against gravity).1 From the fisherman’s
mantra (density times speed equals flux), F = εv.

Use F = εv and (a) and (b) to solve for an approximate symbolic expression for ∆∇T . Your
answer should depend on F , l, T , g, cp, and ρ.

(d) [3 points] Calculate |(∆∇T )/(∇T )actual| for conditions appropriate to Jupiter’s atmosphere at
a pressure P = 1 bar. At this pressure, the temperature T ≈ 170 K, (∇T )actual = −40 K/20 km,
µmH ≈ 4× 10−24 g, g ≈ 3× 103 cm s−2, cP ∼ 108 erg/g/K, F ∼ 6× 104 erg/cm2/s (comparable to
the flux of sunlight absorbed by the planet).2

For this numerical evaluation, the only quantity which is not given by data is l, the distance a parcel
travels before it dissolves away into its surroundings. No one knows what l—the infamous “mixing
length” of convection—is. It is reasonable that l < h, the pressure scale height of the atmosphere.
We charge forth boldly and use l ∼ h.

Is your computed dimensionless quantity tiny?

(e) [5 points] Show that F = εv ∼ ρv3, which requires that ε ∼ ρv2; in other words, a good fraction
(not all) of the convective flux is in kinetic energy. You may find parts (a) and (b) helpful; also
continue to use l ∼ h.

The formula F ∼ ρv3 is useful. It gives an estimate of the convective fluid velocities v ∼ (F/ρ)1/3

given F and ρ.

(f) [2 points] Convection in combination with rotation can amplify seed magnetic fields (this is
called a dynamo). Christensen et al. (2009, Nature) posited that the magnetic field grows until its
energy density becomes comparable to the energy density of convective motions. This equipartition

1In a star, the source of energy is fusion. In a planet, the source of energy can be radioactivity, the gravitational
heat of accretion (a.k.a. heat of formation), radiation from the host star deposited at depth, or external tidal
gravitational forces.

2Jupiter outputs about twice the energy it absorbs from the Sun. The extra energy derives from Jupiter’s primor-
dial heat of formation.
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argument leads to a scaling relation that seems to work approximately well over a wide range of
scales, from Earth to Jupiter to sufficiently rapidly rotating Sun-like stars.

Using the energy density argument, derive a rough scaling relation for the magnitude of the magnetic
field B in terms of the convective flux F and density ρ (you may compare your answer to Christensen
et al. 2009).

Problem 2. Gravity Waves and the Kelvin-Helmholtz Instability

Consider a fluid of density ρ+ moving horizontally in the x-direction with constant speed U0 above
a second fluid of density ρ− which is at rest. The boundary between the two fluids is located at z = 0
and is idealized as having zero thickness (yes, a formal discontinuity!). Gravity points downward
with constant acceleration ~g = −gẑ. We ignore viscosity and surface tension.

The density, pressure, and velocity fields read:

ρ(x, z) = ρ0(z) + δρ(x, z, t) (3)

P (x, z) = P0(z) + δP (x, z, t) (4)

~u = U0H(z)x̂+ δu(x, z, t)x̂+ δw(x, z, t)ẑ (5)

where H(z) is the Heaviside function (+1 for z > 0 and 0 for z < 0). All quantities subscripted 0
denote background quantities, while δ-quantities are perturbations. Note that the background ρ0 is
not a constant (ρ0 = ρ+ for z > 0 and ρ0 = ρ− for z < 0), while U0 is constant.

The mass and momentum equations read, as usual:

∂ρ

∂t
+∇ · (ρ~u) = 0 (6)

ρ
∂~u

∂t
+ ρ(~u · ∇)~u = −~∇P + ρ~g (7)

The background is assumed to be in hydrostatic equilibrium. This problem determines under what
conditions the perturbations are stable vs. unstable.

Much of the solution to this problem is contained in the Course Reader pages 293–297, reprinted
from Chandrasekhar’s book on hydrodynamics. You are free to use as much of the solution as you
like (our notation differs somewhat from his; also our problem set-up is simpler). Section 14.6 of
Thorne & Blandford may also be helpful.

(a) [2 points] Assume the flow is incompressible: Dρ/Dt = 0, where D/Dt is the Lagrangian
derivative. Prove that as a consequence ∇ · ~u = 0 (the flow is divergence-free).

(b) [15 points] Linearize the continuity equation and the two components of the momentum equation,
considering perturbations of traveling wave form:

δρ, δP, δu, δw ∝ exp i(kx− ωt) (8)
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Note we are NOT YET specifying the z-dependence of the perturbations. As usual, k is the (hori-
zontal, not vertical) wavenumber and ω is the wave frequency.

Combine the linearized equations to derive:

ρ0[ω − kU0H(z)]k2δw =
∂

∂z

{
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∂(δw)

∂z
+ ρ0kδw

∂(U0H(z))

∂z

}
− gk2δw

ω − kU0H(z)

∂ρ0
∂z

(9)

You may compare with Chandrasekhar’s equation (16) (we neglect surface tension so Ts = 0).
Chandrasekhar’s procedure, which you may follow, is to (i) combine the x-component of the mo-
mentum equation and ∇ · ~u = 0 to derive an equation for δP in terms of various z-derivatives (cf.
his equation 14), (ii) combine the z-component of the momentum equation and continuity to derive
an equation for δw in terms of various z-derivatives (cf. his equation 15), and (iii) combine (i)
and (ii) to eliminate δP .

(c) [3 points] Write down (9) AWAY from the boundary z = 0. Do this for z > 0, and repeat for
z < 0, using the fact that ρ0 = ρ+ = constant for z > 0, and ρ0 = ρ− = constant for z < 0. Show
that in either regime,

k2δw =
∂2

∂z2
δw (10)

Physically sensible solutions that decay to zero far away from the boundary are:

δw = δw+ exp−|k|z for z > 0 (11)

δw = δw− exp +|k|z for z < 0 (12)

(NB: the coefficients δw+ and δ− are functions of x and t following (8). As the next part will show,
δw+ 6= δw−.)

(d) [5 points] Now we examine the boundary between the two fluids. Though we may have implied
the boundary is located at z = 0, we recognize that the boundary does not literally and strictly equal
z = 0 at all times; if it did, there would be no perturbation and this would be a very boring problem.
Rather, the boundary, defined as the interface between the two fluids ρ+ and ρ−, can change with
position x and time t as the perturbed upper fluid reaches downward and the perturbed lower fluid
reaches upward (without ever mixing). Chandrasekhar refers to the boundary as being located at
some z = zs(x, t), where zs ' 0 since the fluid displacements are infinitesimal (but not strictly
zero).

The boundary moves with a vertical perturbation velocity δw(zs) ≡ D(δzs)/Dt, where δzs is the
vertical displacement of a fluid parcel exactly at the interface. We can, if we wish, picture such an
interfacial fluid parcel as being filled with ρ+ fluid in its upper half, and filled with ρ− fluid in its
lower half. Like all other perturbed quantities in this problem, δzs ∝ exp i(kx − ωt) (the interface
is crinkled in the form of a traveling wave).
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Now consider another fluid parcel just below this interface parcel. Say it is vertically displaced by
δz−. Similarly, just above the interface parcel, another fluid parcel is vertically displaced by δz+.

The key boundary condition is that fluid displacements are continuous across the interface: δz− =
δzs = δz+ in an infinitesimal interval around zs.

Use δw = D(δz)/Dt and δz− = δz+ across the boundary to show that δw/[ω− kU0H(z)] is contin-
uous across the boundary. That is, show that

δw+

ω − kU0
=
δw−
ω

(13)

(e) [15 points] Integrate (9) across the boundary from z = zs − ε to z = zs + ε, and take the limit
ε→ 0. Thereby derive:

0 = (ρ− + ρ+)ω2 − 2ρ+kU0ω +
[
ρ+(kU0)

2 − gk(ρ− − ρ+)
]

(14)

You will need to use (11)–(12) to evaluate the z-derivatives, and (13).

Define α− ≡ ρ−/(ρ− + ρ+) and α+ ≡ ρ+/(ρ− + ρ+), and solve for the dispersion relation

ω = α+kU0 ±
√
gk(α− − α+)− α−α+k2U2

0 (15)

(f) [3 points] When the bottom fluid is water, the top fluid is air (whose density is � than water),
and U0 = 0 (no shear), this dispersion relation reduces to ω '

√
gk. This is the well-known

dispersion relation for “deep water waves”. The restoring force is gravity; hence these are also
called “gravity waves”.3 Here “deep” refers to the fact that the horizontal wavelengths are short
compared to the depth of the water. Gravity waves are commonplace in nature—in stably stratified
(non-convecting) atmospheres, and stellar and planetary interiors. In stars, “g-modes” are standing
gravity waves in the radiative (non-convecting) portions of stars (as distinct from “p-modes” which
are standing pressure waves, a.k.a. sound waves).

Solve for the group velocity dω/dk for deep water waves in terms of g and k. Do long-wavelength
waves or short-wavelength waves travel faster? Waves created in an ocean storm disperse according
to their wavelength; do the long-wavelength waves or the short-wavelength waves arrive at the shore
first?

(g) [2 points] From the dispersion relation derive the well-known result that perturbations are Kelvin-
Helmholtz unstable if

k >
g(α− − α+)

α+α−U2
0

(16)

3Not to be confused with “gravitational waves” which are fluctuations in the fabric of space itself.
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i.e. for sufficiently short-wavelength disturbances. Notice U2
0 is in the denominator while g is in

the numerator; gravity stabilizes disturbances as long as α− > α+ (denser fluid is on the bottom),
while larger U0 supplies more free energy to destabilize the flow. Notice also if α− < α+ (denser
fluid overlaying lighter fluid), modes of all wavelengths are unstable — this is the Rayleigh-Taylor
instability at work (why the heavy cream in Thai ice tea never stays on top).
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