
Astrophysical Fluid Dynamics – Problem Set 9

Readings: Sturrock 14.1 (Course Reader) on MHD waves; Shu Chapter 22 on MHD waves; Weber
& Davis (1967) on the angular momentum of the magnetized solar wind, and Blandford & Payne
(1982) on magneto-centrifugal disk winds (Course Reader)

Problem 1. MHD Modes

The answers to this problem are all contained in Sturrock 14.1 (reprinted in the Course Reader) and
Shu Chapter 22. You may use as much of Sturrock (or Shu) as you wish; I like deriving Sturrock’s
results before using them, but however much you want to derive is up to you.

Consider a uniform, adiabatic, perfectly conducting medium of density ρ0, pressure P0, and adi-
abatic index γ, threaded with a magnetic field ~B0 = B0ẑ = B03̂. Perturb this medium with a
small-amplitude (linear) wave of wavevector ~k and frequency ω.

(a) [7 points] Write down the eigenmodes for Alfven waves, restricting your attention to the case
where the wavevector ~k is parallel to ~B0. That is, write down the Cartesian components for the
perturbation velocity δ~u = [δu1, δu2, δu3] and the perturbation magnetic field δ ~B = [δB1, δB2, δB3]
when ~k ‖ ~B0. Also write down the perturbation density δρ (a scalar) in terms of the magnitude of
the perturbation velocity δu ≡ |δ~u|.

Your solution should be complete up to an overall normalization constant, i.e., the wave amplitude.
Express your answers for the eigenmode components in terms of the magnitude of the perturbation
velocity δu. That is, all seven numbers δu1, δu2, δu3, δB1, δB2, δB3, δρ should be proportional to the
free constant δu. Be careful of signs—these are important because they indicate phase relationships
between the perturbations.

Express your answers in terms of the Alfven velocity uA =
√
B2

0/4πρ0, the phase velocity uph =

ω/|~k|, the sound speed cs ≡
√
γP0/ρ0, and the background density ρ0.

Specify whether the mode is compressive or not, and whether it is transverse or longitudinal.

To gain physical intuition, you may find it helpful draw a picture of the mode, but this is not
required.

Hint: I like Sturrock (14.1.27). Equation (14.1.30) is OK except the units are incorrect.

(b) [7 points] Repeat (a) but for Alfven waves with ~k perpendicular to ~B0. Do such waves propagate?
Why or why not?

Note: Sturrock claims δ ~B = 0 for this case. But this is not necessarily what one would conclude
from his equation 14.1.25, since cos θ (θ being the angle between ~k and ~B0) and the phase velocity
(which he calls vφ and we call uph) both go to zero as θ → 90◦. Full credit will be given whether

1



you believe in Sturrock’s statement or whether, like me, you believe that δ ~B should vary smoothly
with θ. The choice does not make any physical difference as you will see when you consider the
mode’s propagation behavior.

(c) [7 points] Repeat (a) but for fast and slow magneto-sonic waves having ~k parallel to ~B0. Does
any wave not propagate?

Hint: I like Sturrock (14.1.28) but I don’t like (14.1.33) which has bad units and only captures 1
of the 2 magneto-sonic modes.

(d) [7 points] Repeat (a) but for fast and slow magneto-sonic waves having ~k perpendicular to ~B0.
Does any wave not propagate?

Problem 2. The Parker Spiral

This problem concerns the steady, axisymmetric, rotating stellar wind from a split magnetic
monopole (Weber & Davis 1967). We introduced this system in class; the notation below is the
same as that in class (we work in spherical coordinates where r is radius and φ is the azimuthal
angle).

(a) [2 points] Define the radial Alfvén Mach number to be MA(r) ≡ ur/uA, where ur(r) is the
radial velocity and uA(r) =

√
B2
r/(4πρ) is the radial Alfvén speed for radial field Br and density

ρ. Call the special radius where MA = 1 the Alfvén radius r = r?A (all starred quantities below are
evaluated at the Alfvén point).

Using mass conservation ρurr
2 = constant, and Brr

2 = constant for a split magnetic monopole,
show that

M2
A

1
=
ρ?A
ρ

(1)

where ρ?A equals the density at r?A.

(b) [5 points] In class we showed that

uφ = Ω�r
M2
A`/(Ω�r

2)− 1

M2
A − 1

(2)

for constant total (mechanical + magnetic) specific angular momentum ` = Ω�(r?A)2.

Insert (a) into the above relations to show that

uφ = Ω�r
1− ur/u?r
1−M2

A

(3)

where u?r is evaluated at the Alfvén radius.
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Thus show that at r � r?A, uφ ∼ Ω�r. That is, inside the Alfvén radius, the wind rotates
rigidly with the star. This result follows from Ferraro’s law of isorotation for magnetospheres. The
magnetosphere centrifugally “flings” fluid parcels with a moment arm whose length is of order r?A.
This statement applies to uφ only, not to ur; recall that for low-mass main-sequence stars, the wind
is driven radially by gas pressure, not by magnetic fields.

At r � r?A, ur continues to grow, but not too much — recall an earlier problem set where we saw
that for the isothermal Parker wind, the radial velocity grows only logarithmically with distance
beyond the sonic point (technically the slow magneto-sonic point). Assume that at r � r?A, ur > u?r
by an order-unity factor. Then show that uφ ∝ 1/r at large distances from the star, as expected
for a fluid parcel conserving its mechanical angular momentum.

To summarize, a fluid parcel is centrifugally accelerated by the star’s magnetic field inside the
Alfvén radius (i.e., inside the star’s magnetosphere) where the field lines can be thought of as rigid
wires. The field lines lose their rigidity (they get “floppy”) outside the Alfvén radius. After the fluid
parcel “flies off the handle” at r?A, it is no longer magneto-centrifugally accelerated; its rotational
velocity uφ then decreases according to the conservation of mechanical angular momentum ruφ.

(c) [10 points] In class we showed

r(urBφ − uφBr) = −Ω�Brr
2 (4)

from which it follows that
Bφ
Br

=
uφ − Ω�r

ur
. (5)

Show from (5) and parts (a) and (b) that

Bφ
Br

= −Ω�r

u?r

1− r2/(r?A)2

1−M2
A

. (6)

Using arguments similar to those in (b), show that Bφ/Br ∝ −r in both the r � r?A and r � r?A
limits.

In general, given a vector magnetic field ~B = Brr̂+Bφφ̂, the equation for a field line is dr/(rdφ) =
Br/Bφ (this just says that a field line is everywhere tangent to the field). Show that if Bφ/Br =
−r/a for some positive constant a, a field line traces a trailing Archimedean spiral which by
definition obeys r = −aφ. Sketch qualitatively a field line (no need to be quantitatively accurate).
At small r � a, is the field mostly radial or toroidal? At large r � a, is the field mostly radial or
toroidal?

Problem 3. OPTIONAL Magneto-Centrifugal Flinging

[10 points] This problem is based on the classic paper on disk-driven outflows by Blandford & Payne
(1982, reprinted in the Course Reader).
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Consider a magnetized disk orbiting a central massive object. The central mass dominates the
gravitational potential.

Take the magnetic field to be axisymmetric and purely poloidal. Examine a magnetic field line
rooted to the disk midplane at distance a from the central object. Above the disk, the field line is
straight but tilted away from the star at an angle θ measured from the vertical (disk normal). The
field line is mirror-symmetric about the disk plane (pointing toward the disk below the midplane
and pointing away from the disk above the midplane). Assume a given field line acts as a rigid
wire, co-rotating with the disk where it is rooted (recall Ferraro’s law of iso-rotation).

For what angles θ will disk plasma, starting at the disk midplane, slide unstably along a field
line, away from the star, thereby producing a magneto-centrifugal outflow? Assume a fluid parcel
can travel only parallel to the field (again recall Ferraro’s law which states that the poloidal fluid
velocity is parallel to the poloidal magnetic field). Assume that the pressure gradient ∇P parallel
to the field is negligible (this is a plasma β � 1 problem).

This looks like an MHD fluids problem, but with the given simplifications, it reduces to a bead-on-
a-wire mechanics problem. Remember that there are two kinds of equilibrium: stable and unstable.
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