
Planetary Astrophysics – Problem Set 10

Due Thursday Nov 19

1 Hydrostatic Blackbody Disk

Consider a protoplanetary disk in vertical hydrostatic equilibrium
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with (ideal) gas pressure P , disk radius a, stellar mass M?, gravitational constant G, and
height above the disk midplane z. In writing the right-hand side, we took the thin-disk
limit z � a. We wrote this equation in class, solved it assuming the gas is vertically
isothermal (temperature T is only a function of a and not of z), and found the disk
density to have a vertical Gaussian profile with scale height
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where k is Boltzmann’s constant, µ is the mean molecular weight, mH is the mass of
hydrogen, and Ω(a) is the Keplerian angular frequency of the disk.

Now if the disk behaves like a blackbody, then in thermal balance

L?
4πa2

sin θ = σT 4 (3)

where the incident radiation flux from a star of luminosity L? (left-hand side) is balanced
by cooling from the disk (right-hand side) with Stefan-Boltzmann constant σ. Here θ is
the angle at which starlight strikes the disk surface, defined such that θ = 90◦ corresponds
to starlight illuminating the disk surface at normal incidence.

Suppose the height H(a) at which starlight is absorbed—the disk photosphere—is a fixed
number of scale heights, so that H = Fh with constant F . Suppose further that H � R?
(the star can be modeled as a point source), H � a and θ � 1 (thin-disk approximation).

[10 points] Solve (2) and (3) simultaneously to find how T and H scale with a (you may
assume that both T and H are power laws of a but with unknown exponents that you
will solve for). Only proportionalities are required; do not worry about coefficients.

The answers were presented in class but without a complete derivation; this problem
asks you to supply a derivation.
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2 Dispersion vs. Shear-Dominated Relative Velocities

It is essential in planetary dynamics to evaluate how fast bodies (planets, asteroids,
spacecraft, ...) are moving relative to each other. In general, we can distinguish two
contributions to the relative velocity. The first contribution comes from orbital eccen-
tricities and/or inclinations. When this first contribution dominates, we call the system
“dispersion-dominated”. Under dispersion-dominated conditions, the relative velocities
arise principally because of NON-circular and/or NON-co-planar motions.

But even if all orbits are circular and co-planar, there is a minimum non-zero relative
velocity. This minimum relative velocity arises because bodies on concentric co-planar
orbits still move at different speeds because they have different semimajor axes. When
the contribution to the relative velocity due to different semimajor axes dominates, we
call the system “shear-dominated”, because the relative velocities are controlled by the
background Keplerian shear, given by Kepler’s Third Law (the orbital frequency Ω =
2π/P , where P is the orbital period, scales with semimajor axis a as a−3/2).

Parts (a) and (b) describe the dispersion-dominated regime, while part (c) describes the
shear-dominated regime.

(a) [3 points] Consider two bodies on co-planar orbits, each of semimajor axis a. One
orbit is circular, while the other has eccentricity e. Both bodies are of negligible mass
compared to the central stellar mass M?.

The two orbits cross. At the crossing points, what is the relative velocity u between the
bodies? We are interested here only in the magnitude of this velocity, so give only the
absolute value of u.

You may use the following relations describing a Keplerian orbit: the orbital radius

r =
a(1− e2)
1 + e cos f

(4)

the radial velocity

ṙ =
Ωa√
1− e2

e sin f (5)

and the azimuthal velocity

rḟ =
Ωa√
1− e2

(1 + e cos f) (6)

where Ω ≡
√
GM?/a3 is the Keplerian angular frequency (also called the “mean mo-

tion”) and f is the “true anomaly” (angle between periapse and the body’s instantaneous
azimuth; e.g., when f = 0, the body is at periapse; and when f = π, the body is at
apoapse). Note that Ω is constant for constant a, while ḟ varies with f . Note also that
Ωa =

√
GM?/a is the familiar circular orbital velocity.

Assume e� 1 and express your answer for u to first order in e. That is, when Taylor
expanding in e, keep only terms that depend on e1 and drop higher-order terms (those
depending on e2 or higher powers of e, which are all smaller than e1). Express your
answer for u in terms of Ω, a, e and whatever other variables or constants you need.
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(b) [3 points] Repeat part (a), but now for two CIRCULAR orbits having the same
semimajor axis a and which are mutually inclined by angle i. The two orbits cross each
other at what are called “nodes”. Find the relative velocity u at either node (again only
magnitude is important; do not worry about the sign). Express in terms of i, Ω, and
a, working in the limit i� 1 rad and therefore keeping only terms linear in i — please
simplify trigonometric functions accordingly.

ALSO: Combine the situation in part (b) with the situation in part (a): consider one
orbit which is circular, and another orbit which is eccentric AND inclined. Write down
an approximate expression for the relative velocity u in this combined case and explain
your reasoning.

(c) [4 points] Shear-dominated regime: consider now two orbits that are both circular
and co-planar, but having slightly different semimajor axes, a and a+ x, where x� a.
These two orbits don’t technically intersect, but every so often the two bodies do get
close to each other, within a radial distance x. We call the moment when the bodies get
close to each other a “close encounter”.

Derive an expression for the relative encounter velocity u in terms of Ω(a), a, and x.
Work to first-order in x; i.e., when Taylor expanding in x, keep only terms that depend
on x1 and drop higher-order (smaller) terms. Take the absolute value of this velocity —
we are not interested in direction, only magnitude.

Full credit only if you obtain the precise numerical coefficient. This is NOT an order-
of-magnitude problem.

This problem is trickier than it may seem. Naively subtracting the orbital velocity v(a) =
Ω(a)×a from the other orbital velocity v(a+x) = Ω(a+x)×(a+x), with both velocities
evaluated in the lab frame, gives the WRONG answer. This naive procedure falls into
“Calvin’s trap”: think about what this procedure would give you if you applied it to two
bodies glued to two different radii of a rigidly rotating disk.

To avoid falling into Calvin’s trap, first go into the frame rotating with the first body at
semimajor axis a. In this frame, the first body is stationary. Now ask, in this rotating
frame, how fast the second body is moving.

3 Leftovers: Eat Them or Throw Them Away?

Well, it depends.

(a) [3 points for all questions] A particle orbits a star of mass M? with semimajor axis
a and negligible eccentricity. What is its orbital velocity v? ALSO, by what minimum
amount would the orbital velocity need to increase to eject the particle from the system?
Call this extra velocity ∆vescape,system. An order-of-magnitude answer suffices.

(b) [4 points for all questions] Consider now this same particle, plus a nearby planet of
mass M , radius R, and orbital semimajor axis a. The particle and planet do not orbit
each other; both orbit the star with semimajor axes that are similar.

Every so often, the particle and planet encounter each other (come within a minimum
distance of each other). After multiple encounters, the particle is on an eccentric and
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inclined orbit; it achieves a maximum non-circular/non-coplanar velocity maxu that is
comparable to the escape velocity from the surface of the planet, vescape,planet.

1 So we
have u ∼ maxu ∼ vescape,planet.
If max(u) > ∆vescape,system, then the particle can, in principle, be ejected from the
system. If max(u) < ∆vescape,system, then the particle is unlikely to be ejected but remains
on an orbit bound to the star, to be continued to be kicked and ultimately accreted by
the planet.

Give an order-of-magnitude expression for max(u) in terms of M , R, and fundamental
constants. Then find an order-of-magnitude expression for the orbital semimajor axis
acrit outside of which ejection is more likely than accretion, in terms of M , R, and M?.
Evaluate acrit for an Earth-like planet and for a Jupiter-like planet around a Sun-like
star, in units of AUs.

(c) [3 points] Suppose a planet orbits inside its acrit. In this regime nearby particles
are not ejected, but remain on bound star-centered orbits to be repeatedly kicked by the
planet. Ultimately, if one waits long enough, these particles will be consumed by the
planet.2 Suppose the planet orbits within a disk of small particles, all of which have
been kicked by the planet up to max(u) (in random directions). Assuming the system
is dispersion-dominated, with eccentricities comparable to inclinations, give an order-
of-magnitude expression for the mass accretion rate Ṁ of particles onto the planet, in
terms of R, M?, a, and Σ, the mass surface density of the particles. Simplify your
expression so that it does not contain u or M .

4 A Protoplanet’s Reach Should Exceed Its Grasp
(Or Else What’s a Hill Sphere For?)3

We saw in lecture that “accretion is a dish best served cold”: the smaller the relative
velocities between solid bodies in the disk (the more dynamically “cold” the disk is),
the larger are the gravitationally-focussed accretion cross-sections, and the faster bodies
merge and grow.

There is, however, a limit to how small the relative velocities, and thus how large accre-
tion cross-sections, can be. That limit is given by the shear-dominated regime (problem
2c). The goal of this problem is to calculate how far away a particle can be from a planet
under shear-dominated conditions and still accrete. We will call this maximum impact
parameter xcrit.

4

1Further amplification of u is not feasible because at this point the probability that another encounter increases u
is similar to the probability that the particle collides with the planet. This is shown in the review article by Goldreich
et al. (2004) reprinted in the Course Reader.

2Assuming they are not consumed by the star, a possibility ignored by this problem but which does arise in real
life.

3Brownie points for those who get the reference.
4While a particle that encounters the planet within xcrit CAN accrete, it DOES NOT HAVE TO accrete. This is

because under shear-dominated conditions, particle trajectories near a planet can be strongly chaotic and frequently
DO NOT lead to collisions/accretion. We discuss this in lecture; it is also treated quantitatively in the review article
by Goldreich et al. (2004) reprinted in the Course Reader.
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(a) [3 points for all questions] Consider a protoplanet of mass M on a circular orbit
of semimajor axis a and Keplerian angular frequency Ω around a star of mass M?.
Consider also a small body (particle) on a concentric circular orbit of semimajor axis
a+ x, where x� a. The set-up is identical to Problem 2c above, and you will need the
answer to that problem for the relative encounter velocity u.

A zoom-in of the situation is shown in Figure 1.

u

a (to star)

M

x
planet’s orbit

particle’s unperturbed orbit

Figure 1: Encounter between a protoplanet and a particle. The impact parameter of the encounter
is x, and the relative velocity before the encounter is u.

A “close encounter” between the protoplanet and the particle lasts for as long as the
distance between them is roughly the minimum value of ∼x. Estimate how long ∆t a
close encounter lasts. Simplify your answer as much as possible, and express ∆t in
terms of Ω. ALSO: does ∆t depend on x?

(b) [2 points] During the encounter, the test particle’s trajectory gets deflected toward
the planet. The test particle receives a specific impulse (a “kick” velocity) ∆v, directed
toward the planet.

Make an order-of-magnitude estimate for ∆v in terms of the given variables and fun-
damental constants. Hint: a velocity is an acceleration multiplied by a time. You may
keep order-unity coefficients if you wish, but full credit will be given even if you drop
them.

(c) [10 points for all questions] The kick velocity ∆v is directed radially inward. Before
the kick, the particle was on a circular orbit having zero radial velocity. Just after the
kick, the particle finds itself moving inward on a newly eccentric orbit, at an orbital
phase of f ∼ 3π/2. The particle has to be near this phase at this moment; it can’t be at
f = 0 or π because the radial velocities are zero at periapse and apoapse, and it can’t
be at f ∼ π/2 because the radial velocity there is directed radially outward, not inward
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(see also Problem 2 above). Thus, just after the kick, the particle is at f ∼ 3π/2, and
it is heading towards its new periapse.

How far inward is the new periapse away from its original orbit? Call this radial distance
∆r and give an order-of-magnitude expression for it by evaluating the distance traveled
at radial speed ∆v over a quarter of an orbital period, assuming the particle’s orbital
period has changed negligibly. We take a quarter of an orbital period because it takes
roughly that time to move from f ∼ 3π/2 to f = 2π (periapse).

ALSO: How large must ∆r be in order for the new test particle’s orbit to cross the
planet’s orbit? Solve for the critical value of xcrit such that orbit crossing—and thus
accretion—is just possible. Express xcrit in terms of M , M?, and a. FINALLY: compare
xcrit to the Hill radius. Are they the same to order-of-magnitude?
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