
Planetary Astrophysics – Problem Set 11

Due Thursday Dec 3

1 Hot vs. Cold Meals

(a) [3 points] Show that the Hill sphere radius RH of a planet of mass M , radius R, and
bulk density ρp orbiting a star of mass M?, R?, and bulk density ρ? at orbital distance
a can be written to order-of-magnitude as:

RH ∼ R/α (1)

where

α ≡
(
ρ?
ρp

)1/3 R?
a

(2)

This is a convenient way to estimate RH because typically (ρ?/ρp)1/3 ∼ 1. The Hill
radius RH is larger than the body radius R by a factor of order 1/α ∼ a/R? � 1.

(b) [3 points] Show that the orbital period of a test particle orbiting the planet at a
separation of RH equals, to order-of-magnitude, the orbital period of the planet orbiting
the star at separation a. This is another way to remember RH, and lends some intuition
as to why a test particle’s trajectory near RH is chaotic—it is trying to serve two masters,
the planet and the star, simultaneously.

(c) [3 points] The Hill velocity vH ≡ ΩRH is of order the orbital velocity of a test
particle orbiting the planet at a separation of RH, where Ω is the angular velocity of the
planet around the star (∼ the angular velocity of a test particle around the planet at
RH, as part (b) shows). The Hill velocity is also the relative velocity of a small body in
a shear-dominated disk encountering the planet at an impact parameter equal to RH.

Show that vH can be written to order-of-magnitude as ∼α1/2vesc, where vesc is the surface
escape velocity from the planet.

(d) [3 points] Calculate how much faster shear-dominated accretion is relative to UN-
gravitationally focussed dispersion-dominated accretion. Recall from lecture that a planet
embedded in a disk of surface density Σsolid can, under shear-dominated conditions, ac-
crete at rate Ṁshear ∼ ΣsolidΩR2

HPacc, where the accretion probability Pacc ∼ Rvesc/(vHRH).
Recall also that under dispersion-dominated conditions, Ṁdisp ∼ ΣsolidΩR2[1+(vesc/v)2].

Derive an order-of-magnitude expression for Ṁshear/Ṁdisp, assuming v > vesc, in terms
of α.
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(e) [3 points] Forming the Earth: Consider a proto-Earth of radius R ∼ 4000 km and
bulk density ρp ∼ 5 g/cm3, embedded in a disk of solids of surface density Σsolid ∼ 5
g/cm2 at an orbital radius a ∼ 1 AU around the Sun.

Estimate to order-of-magnitude the protoplanet’s mass doubling time M/Ṁdisp assuming
dispersion-dominated conditions with v > vesc. Express in yr. This is the longest possible
time to form the Earth.

(f) [1 point] Estimate to order-of-magnitude the shortest possible mass doubling time
M/Ṁshear for the proto-Earth assuming shear-dominated conditions. The easiest way
to do this problem is to combine (d) and (e). Express in yr.

(g) [3 points] Repeat (e) but for a proto-Neptune of radius R ∼ 15000 km and bulk
density ρp ∼ 1 g/cm3, embedded in a disk of solids of surface density Σsolid ∼ 0.1 g/cm2

at a ∼ 30 AU. Assume as in (e) dispersion-dominated conditions with v > vesc. Express
in yr. Is your answer encouraging or discouraging?

(h) [1 point] Repeat (g) for the proto-Neptune but under shear-dominated conditions. Is
this encouraging or discouraging?

2 To Cool is to Accrete

A solid core embedded in a gaseous circumstellar disk can accrete disk gas. The accreted
gas forms a proto-atmosphere around the planet. The proto-atmosphere can continue
to gain mass from the surrounding disk by cooling (radiating its energy into space).
Cooling contracts the atmosphere (its scale height shrinks) and allows fresh gas from
the disk at large to re-fill the planet’s atmospheric volume. To cool is to accrete:

E

L
∼ Mgas

Ṁgas

. (3)

The left-hand side is the cooling time of the atmosphere (a.k.a. the Kelvin-Helmholtz
time), where E is the thermal energy of the atmosphere and L is the luminosity (power
radiated into space by the atmosphere). The right-hand side is the mass-doubling time
of the proto-atmosphere of mass Mgas accreting at rate Ṁgas. Cooling-limited accretion
is thought to be relevant for super-Earth atmospheres and for the initial growth of giant
planet (Jupiter-class) atmospheres (e.g., Pollack et al. 1996; Lee & Chiang 2015).

Equation (3) should look familiar: we encountered it before when we derived planet
cooling curves. The difference between the cooling problem we treated earlier and the
cooling problem we are examining here is that the former problem considered a planet
cooling into the vacuum of space at fixed mass, whereas the current problem considers
a planet cooling into its natal nebula and accreting more mass from the nebula as a
consequence of that cooling.

We have seen in this course that many planetary atmospheres are predominantly con-
vective. Proto-atmospheres are no exception. Consider a convecting proto-atmosphere
of mass Mgas atop a solid core of radius Rcore and mass Mcore �Mgas. Take the atmo-
sphere to behave as an ideal gas and to have an adiabatic index (usual ratio of specific
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heats) equal to γ. The atmosphere extends from Rcore to an outer radius Rrcb (radius
of the radiative-convective boundary). At the rcb, the temperature equals Trcb and the
mass density equals ρrcb.

(a) [5 points] Starting from hydrostatic equilibrium (with g = GMcore/r
2—remember

that Mcore � Mgas and therefore the self-gravity of the atmosphere can be neglected),
and assuming an adiabatic temperature gradient, derive the atmospheric mass density
profile:

ρ = ρrcb

[
1 +∇ad

GMcore

c2rcb

(
1

r
− 1

Rrcb

)]1/(γ−1)
(4)

where c2rcb ≡ kTrcb/(µmH) and ∇ad ≡ d lnT/d lnP = (γ − 1)/γ (i.e., T ∝ P (γ−1)/γ for
an ideal gas that behaves adiabatically, where P is gas pressure). The other variables
G, k, µ, and mH have their usual meanings.

(b) [5 points for all questions in this part] Now since 1/r > 1/Rrcb and GMcore/(c
2
rcbr) >

GMcore/(c
2
rcbRrcb) ∼ 1 (this last equality follows from hydrostatic equilbrium at Rrcb—

try justifying it to yourself if you want), we can simplify (4) as:

ρ ∼ ρrcb
(
∇ad

GMcore

c2rcbr

)1/(γ−1)
(5)

Now by definition

Mgas = 4π

∫ Rrcb

Rcore

r2ρ(r) dr (6)

For γ < γcrit, the integral above cares more about the lower limit than the upper limit.
What is γcrit? For γ < γcrit we say the atmosphere is centrally concentrated—most of
its mass is concentrated toward the core.

Detailed models of the thermodynamics of super-Earth atmospheres reveal that γ < γcrit
for much of the atmosphere—dissociation of H2 renders the gas nearly isothermal with
increasing depth (for a similar reason the temperature of a water-ice mixture stays nearly
constant as the ice melts—energy is going into breaking bonds but not raising the kinetic
energy). The more isothermal an atmosphere is, the closer γ is to its minimum value
of 1.

Assuming the lower limit in (5) dominates the integral (i.e., assuming γ < γcrit), write
down how Mgas scales with Rcore, Mcore, Trcb, and ρrcb. All that is required is a propor-
tionality; ignore coefficients. Your answer should contain γ in some of the exponents.

(c) [5 points for all questions in this part] Equation (5) is a power law for ρ in r. In
general, a power law y ∝ xα is “scale-free” in the sense that the scale over which y
changes by an order-unity factor (say 2) is just given by the local x,1 whatever that is.
Thus, for example, at r ∼ Rcore, ρ changes by a factor of 2 over a length scale of order
r ∼ Rcore; and at a much larger radius, say r ∼ Rrcb, the density changes by a factor of
2 over a length scale of order r ∼ Rrcb. We say the behavior on small scales is similar
to the behavior on large scales (“self-similar”).

1Assuming α is also of order unity and not something crazy like 20.

3



Given our finding in (b) that the atmosphere is centrally concentrated toward the core,
we have E ∼ [Mgas/(µmH)]kTc, where Tc is the (central) temperature of the gas at
r ∼ Rcore.

From hydrostatic equilibrium near r ∼ Rcore, and the power-law, scale-free nature of ρ
(and by extension P and T since all these variables are just powers of one another),
show to order-of-magnitude that kTc ∼ GMcoreµmH/Rcore.

Thereby show that E ∼ GMcoreMgas/Rcore, which just says the thermal energy equals
the absolute magnitude of the gravitational potential energy—a statement of virial equi-
librium.

(d) [5 points] The luminosity L is controlled by the radiative-convective boundary (rcb).
The rcb acts as a “lid” that controls how much heat gets out because it’s there that the
temperature gradient dT/dr is steepest and the radiative flux greatest (since radiative
flux is proportional to dT/dr). The temperature gradient in the radiative layer cannot
be any steeper than at the rcb; if it were steeper, then convection would be triggered and
the rcb wouldn’t be where it is. Thus the flux of energy transported through the radiative
layer is throttled at its base, at the rcb.

At the rcb, energy transport is equal parts radiative diffusion and convection (convection
below is ceding its dominance to radiation above). We can approximate the temperature
gradient dT/dr at the rcb using either radiative diffusion, here expressed using Fick’s
Law:

F =
L

4πr2
∼ −D∇u (7)

where u = aT 4 is the energy density of blackbody radiation, a is the radiation constant,
and D is the diffusivity. Or we can take the temperature gradient from the adiabat; recall
that in a convecting atmosphere, the temperature gradient dT/dr can be approximated
as adiabatic. We do not give the formula for (dT/dr)ad here; you were asked to derive
it in an earlier problem set, and we also gave it in class.

Set the radiative temperature gradient as given by (7) equal to the adiabatic temperature
gradient to find how L at r = Rrcb scales with Mcore, Trcb, κrcb, and ρrcb, where κrcb is
the opacity at the rcb. All that is required is a proportionality; ignore coefficients. Use
relations we learned about earlier in the course.

(e) [5 points] Suppose
κ ∝ ραT β . (8)

Use this relation, your answers for (b), (c), and (d), plus Rcore ∝ M
1/3
core (at fixed core

density—an OK approximation) to solve for how the atmospheric mass-doubling time
Mgas/Ṁgas scales with Mcore, Mgas, and Trcb for γ = 1.2, α = 0.5, and β = 1.

(f) [5 points for all questions in this part] As long as there isn’t too much dust in these
proto-atmospheres, Trcb more-or-less tracks the background disk temperature, i.e., the
outer radiative layer of the atmosphere down to the rcb is approximately isothermal. All
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other factors being equal, is it easier to accrete an atmosphere far from the star or close
to the star?2

Imagine two cores having the same Mcore and Trcb, but one begins with a gas mass M ′gas
larger than the other Mgas. What is the ratio of their gas accretion rates Ṁ ′gas/Ṁgas in
terms of M ′gas/Mgas? As both cores accrete gas, do their gas masses converge or diverge?
Qualitatively, is this calculation promising for explaining why so many super-Earths have
gas mass fractions that are, to order-of-magnitude, the same (roughly ∼1%)?

Finally calculate, for a given Mcore and Trcb, how Mgas scales with time t, assuming
Mgas = 0 at t = 0. Just a proportionality is sufficient.

3 Getting Your Kicks on Route 162

Consider a particle of mass m encountering a mass M � m at relative velocity v and
impact parameter b (Figure 1).

v

M

b
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m
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Figure 1: Encounter between m and M � m. The impact parameter of the encounter is b, and
the relative velocity before the encounter is v. The angle of deflection θ � 1; the particle velocity
v after the encounter is almost (but not exactly) the same as the velocity before the encounter.

(a) [5 points for all questions] The particle receives a kick velocity ∆v⊥ perpendicular
to its original direction of motion. Estimate ∆v⊥ in terms of M , b, v, and fundamental
constants. You may use the impulse approximation.

2Although some would say we need more data, exoplanet observations so far indicate that, in a gross average
sense, characteristic planet gas masses increase with increasing disk radius, from ∼0.01 AU out to about 5–10 AU.
That is, gas giants tend to be at large distances from their host star, and rocky bodies tend to be at small distances.
Certainly the Solar System fits this trend. This problem is offering one reason why this might be the case (there may
be other reasons).
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Estimate, to order-of-magnitude, the deflection angle θ, in terms of M , b, v, and fun-
damental constants.

Assume throughout that θ � 1.

For this part (a), you may neglect the motion of M � m.

(b) [5 points] The particle also receives a kick velocity ∆v‖ parallel to its original direc-
tion of motion. It is much smaller than ∆v⊥, because the interaction of m and M at
x < 0 (which speeds up the particle) nearly cancels the interaction of m to M at x > 0
(which slows down the particle).

The cancellation is not perfect, however, because the downward deflection ∆v⊥ makes
the interaction at x > 0 slightly stronger than the interaction at x < 0. That is, m is
slightly closer to M at x > 0 than at x < 0. See Figure 2.
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Figure 2: The interaction at x > 0 is a little stronger than the interaction at x < 0. That is, m
is a little closer to M at x > 0 because of the downward deflection ∆v⊥. The red line roughly
approximates how much closer m is to M during the latter half of the encounter at x > 0. The
slight vertical offset between the red line of length ∼b at x > 0 and the black line of equal length
∼b at x < 0 gives rise to an imperfect cancellation and thus a non-zero kick ∆v‖.

Estimate ∆v‖ in terms of ∆v⊥ and θ, assuming θ � 1. Simplify your expression as
much as possible (hint: you can Taylor expand). You may use Figure 2 and its caption
for inspiration. Be sure to give the sign of ∆v‖ (positive in the positive x-direction,
negative in the negative x-direction).

For this part (b) you may continue to neglect the motion of M � m.

(c) [7 points] Now imagine M and m are initially both on circular orbits around a
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star before the encounter, with m on an orbit slightly larger than M . This is a shear-
dominated situation, with b much larger than the Hill sphere of M .3

Does m gain or lose orbital angular momentum after the encounter? Explain all steps
in your reasoning — draw pictures! (Hint: Does the relative velocity between m and M
decrease or increase after the encounter?)

Thus decide whether m’s new semimajor axis after the encounter is larger or smaller.4

This is the basis of gap formation in planetary rings and protoplanetary disks.

(d) [3 points] Now we relax the assumption that M does not move. Momentum is
conserved in this two-body encounter, so whatever momentum is gained by m is lost by
M . Thus in the same orbital set-up of part (c), decide whether M ’s new semimajor
axis after the encounter is larger or smaller.

This is the basis of planetary migration.

3As a result, the encounter does not result in orbit crossing. See a previous problem set.
4Recall a previous problem set where we examined the eccentricity of the test particle after the encounter. That

previous problem also assumed the change in orbital period after the encounter was negligible. The present problem
is asking you to examine, qualitatively, the change in semimajor axis, which in turn changes the orbital period. These
changes in semimajor axis and period tend to be smaller than the change in eccentricity (∆a/a� ∆e) but they are
not zero, and over time they can lead to dramatic changes in orbital evolution.
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