
Planetary Astrophysics – Problem Set 2

Due Thursday Sep 17

1 The Incredible Invariant Radius

[10 points for all parts]

(a) Combine the equation for hydrostatic equilibrium,

∇P = ρ~g , (1)

Poisson’s equation for gravity,

∇2φ = 4πGρ , (2)

and an approximate equation of state for liquid hydrogen,

P = Kρ2 , (3)

to derive a single second-order differential equation for density as a function of radius,
ρ(r). Here φ is the gravitational potential, ~g = −∇φ is the gravitational acceleration,
P is pressure, and K is a constant.

Notice in the equation for hydrostatic equilibrium as we have written it, there is no
minus sign, unlike what we wrote in class. This is because we are writing here the
vector form of hydrostatic equilibrium, whereas in class we were using the scalar form
(where g the scalar was assumed to be positive; in other words, ~g = −gr̂, where r̂ points
in the radial direction).

Assume spherical symmetry—so work in spherical coordinates. For spherically symmet-
ric objects,

∇F =
dF

dr
r̂ (4)

and

∇2F =
1

r2
d

dr

(
r2
dF

dr

)
(5)

for some function F (r), and r̂ is the unit vector pointing in the radial direction.

This problem is yet another exercise in hydrostatic equilibrium, except that we now
include self-gravity and do not assume that the gravitational acceleration is constant
(unlike in the liquid giant problem). The governing ordinary differential equation for

1



ρ(r) that you will derive is called the Lane-Emden equation, and its solution is a so-
called polytrope: a self-gravitating, hydrostatic fluid in which P is assumed to be a
power law of ρ. The solutions for ρ(r) typically pass through zero (i.e., they go from
positive to negative) at some finite radius; we cut off the solution there and declare this
zero-crossing to be the radius of the object.

Polytropes are useful models for stars and planets. In only a few cases is the solution
analytic, and this problem examines one of them.

(b) The solution to the equation you have derived (assuming you have the right one; at
least check your units) is

ρ

ρ0
=

sin(πr/R)

(πr/R)
(6)

where R is the outer radius of the body, since ρ vanishes at r = R. Derive, using (a)
and the equation above, a symbolic expression for R in terms of the variables given and
fundamental constants.

(c) Numerically evaluate R for Saturn, Jupiter, and a brown dwarf having 50 Jupiter
masses, using K = 2.7× 1012 [cgs].1

2 A License to Fuse

(a) [4 points] Derive an order-of-magnitude analytic expression for the radius Rdeg of
an electron-degenerate brown dwarf in terms of its mass M and fundamental constants.
Use the order-of-magnitude relations we discussed in class and omit all numerical coef-
ficients.2 Assume the brown dwarf is composed purely of hydrogen.

(b) [4 points] Derive an order-of-magnitude analytic expression for the radius Rideal of
a star supported by ideal gas pressure, in terms of its mass M , its central temperature
Tc, and fundamental constants. Assume the star is composed purely of hydrogen. Again
discard all numerical coefficients.

Hydrogen burning on the main sequence requires Tc ∼ 107 K (see your stars course to
understand why).

(c) [2 points] Consider an object of mass M that cools and contracts under gravity during
its early evolution. Initially it is diffuse and acts as an ideal gas. In contracting it is
trying to establish hydrostatic equilibrium — to attain a radius R such that its internal
pressure balances gravity. If Rdeg > Rideal, where Rideal is evaluated for Tc ∼ 107

K, then the gas becomes degenerate first and stabilizes before burning hydrogen—it is
a brown dwarf (a “failed star”). If instead Rideal > Rdeg, then the gas first starts
burning hydrogen and stabilizes that way—it is a star (whose interior can still be pretty
degenerate, as M dwarf cores tend to be).

1K is a measure of the entropy per unit mass of the object, as we will discuss in class.
2Because who are we kidding?
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From this reasoning derive an analytic order-of-magnitude expression for Mcrit, the
mass dividing stars that stably fuse hydrogen, from sub-stellar objects (brown dwarfs
and planets) that don’t. Express your answer in terms of fundamental constants and
Tc, and also evaluate numerically in units of MJ.

(You may compare your estimate to the canonical Mcrit ≈ 80MJ.)

3 Brown Dwarfs and White Dwarfs

What’s the difference between a brown dwarf and a white dwarf?3

[5 points] Structurally, brown dwarfs and white dwarfs are similar insofar as both are
supported by free electron degeneracy pressure against gravity. In class, we derived
how radius R scales with mass M for such objects. Extend the derivation to decide
how radius scales with M , the atomic mass number A, and the number of electrons
per nucleus ηe. Use this scaling relation to estimate the ratio of brown dwarf to white
dwarf radii, RBD/RWD (at zero temperature). Consider a brown dwarf of mass 50MJ

composed purely of ionized hydrogen, and a white dwarf of mass 0.5M� composed of
fully ionized carbon and oxygen.

(You can compare your estimate to the actual ratio of RBD/RWD ≈ 1RJ/1R⊕ ≈ 10.)

4 Helium Rain

Saturn’s total luminosity is about 1.7 times greater than the power that it absorbs from
sunlight. It is thought that the gravitational settling of helium, out of the fluid envelope
of Saturn onto the core of Saturn, is responsible for this extra power. The pressure
in the interior of Saturn is high enough that helium is a liquid. It is a liquid that is
immiscible (doesn’t mix) with hydrogen, which is also liquid. The liquid helium literally
rains to greater depths within the planet, converting its gravitational potential energy to
heat.

(a) [10 points] If all of the helium from Saturn’s envelope rains onto the surface of
the rocky core of Saturn, how much energy would be released? Answer in [ergs]. An
order-of-magnitude answer is sufficient; you don’t need to use any complicated model
for Saturn’s interior structure. Take Saturn, which has a total mass of 100M⊕, to have
a rocky core having a mass of mcore ∼ 10M⊕ and a mean density of ρcore = 7 g/cc,
and its outer liquid envelope to be of solar composition, so composed of 75% hydrogen
and 25% helium by mass. The helium is initially well-mixed with the hydrogen; after
rain-out, the helium has precipitated out and been absorbed onto the surface of the rocky
core.

Use whatever assumptions and approximations you need to, but please be neat and clear
about them. One simplification that I took is to assume the envelope to be of uniform
density.

3Aside from the color. To the human eye, brown dwarfs would be appear magenta as a consequence of pressure-
broadened absorption bands from the alkali metals Na and K, while young white dwarfs, whose luminosities peak in
the ultraviolet at effective temperatures T ∼ 105 K, appear blue-white. I think the “brown” in “brown dwarf” is
supposed to connote an electrical “brown-out”; the inability to fuse hydrogen means the lights are out.
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(b) [3 points] Using the fact that Saturn radiates 1.7 times as much as it absorbs from
sunlight, calculate how much EXCESS energy is released by Saturn over the age of the
solar system (t = 4.6×109 yr), assuming its luminosity has been constant for this time.
Take Saturn’s so-called Bond albedo (the fraction of sunlight that is not absorbed but
scattered back into space–from ammonia clouds) to be A = 0.34.

(c) [2 points] Compare (a) to (b) and comment on whether helium precipitation is a
good candidate for Saturn’s excess luminosity.
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