
Planetary Astrophysics – Problem Set 3

Due Thursday Sep 24

1 M dwarfs vs. G dwarfs

Low-mass M dwarf stars are desirable targets for exoplanet hunting in part because their
“habitable zones” (orbital distances where water might be liquid) are smaller than for
Sun-like G dwarfs. Smaller habitable zones make for easier hunting grounds for both the
Doppler radial velocity technique and the transit technique, as this problem will show.

Define the characteristic orbital radius of the habitable zone (HZ) to be where the ef-
fective blackbody temperature of a planet equals a fixed value (say 300 K, but the exact
value will not matter for this problem).

Consider a Sun-like star of mass M = 1M� and a low-mass star of mass M ′ = 0.5M�.
Assume a stellar luminosity-mass relation L ∝ M4, and a stellar radius-mass relation
R ∝ M (these relations apply only over a limited range in stellar masses; take a stars
course to understand why).

Calculate [12 points for all questions]:

(a) How much smaller the orbital radius of the M dwarf HZ is compared to the G
dwarf HZ. Call this a′/a. Give a symbolic expression for a′/a in terms of M ′/M and a
numerical value for M ′/M = 0.5.

(b) How much shorter the orbital period is for a planet in the M dwarf HZ vs. the G
dwarf HZ. Call this P ′/P ; express symbolically in terms of M ′/M and numerically for
M ′/M = 0.5. Assume planet masses are much smaller than stellar masses.

(c) How much larger the Doppler velocity semi-amplitude is for a planet in the M dwarf
HZ vs. the G dwarf HZ. Call this K ′/K; express symbolically in terms of M ′/M and
numerically for M ′/M = 0.5. Assume identical observing conditions between the M
dwarf and G dwarf (i.e., identical planet masses, eccentricities, viewing inclinations).

(d) How much larger the fractional transit depth is for a planet in the M dwarf HZ vs. the
G dwarf HZ. Call this (∆F/F )′/(∆F/F ); express symbolically in terms of M ′/M and
numerically for M ′/M = 0.5. Our notation follows that in lecture; F is the stellar flux
observed at Earth, and ∆F is the amount by which the observed flux decreases because
the planet is transiting in front of the star.
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2 Isotropic Orbits

Define the orbital inclination i to be the angle between the orbital plane of an object
around a star, and some reference plane (to be specified in instances below).

Consider an isotropic distribution of orbits. By “isotropic” we mean the orbit pole vector
(a.k.a. the orbit normal, the vector pointing perpendicular to the orbit plane) can point
anywhere with equal probability on the celestial sphere centered on the star.

As one example, long-period comets, with periods longer than about 200 yr, are known
to have isotropically distributed orbits (here the reference plane could be any plane, and
is often taken to be the “ecliptic”, the Earth’s orbit plane around the Sun). Long-
period comets plunge into the inner solar system from the outer solar system from all
directions. Long-period comets originate from the Oort Cloud, a vast reservoir of icy
rocks gravitationally perturbed by passing stars and molecular clouds into a spherical
shape.

Another example: relative to an observer on Earth, the orbits of extrasolar planets about
their host stars should also be distributed isotropically. That is, their orbit normals
should be pointing in random directions relative to the observer’s line of sight (so in
this case the sky plane—the plane perpendicular to the observer’s line of sight—is the
reference plane). Isotropy is the only reasonable condition because it would be a bizarre
cosmic conspiracy to find, say, all exoplanet orbits in the Galaxy to be oriented edge-on
relative to an observer on Earth.

(a) [6 points] Derive the differential inclination distribution, dP/di, for isotropic orbits,
where dP is the probability of finding an orbit with an inclination between i and i + di.
Normalize dP/di so that

∫ 90◦

0 (dP/di) di = 1 (the probability is 100% that the orbit has
an inclination between 0 and 90◦).

(b) [3 points] Given your answer in (a), are nearly face-on (i ≈ 0) orbits more com-
mon, less common, or just as common to find as nearly edge-on (i ≈ 90◦) orbits?
Justify quantitatively your answer by calculating the relative population of orbits having
inclinations between 0–10◦ and 80–90◦.

(c) [3 points] As discussed in class, one way to discover and characterize exoplanets is
by measuring the Doppler radial velocity (RV) curve of the host star. The RV curve
yields (if the mass of the star is also known) m sin i, where m is the companion mass
and i is the a priori unknown inclination of the companion’s orbital plane relative to
the sky plane. Face-on orbits correspond to i = 0, and edge-on orbits to i = 90◦.

The “planet” HD 217107b is measured to have m sin i = 1.3MJ. Calculate the probability
that this planet is not a planet but a brown dwarf whose mass ≥ 13MJ.

3 Transit Probability

[12 points] A planet orbits a star of radius R∗ on a circular orbit of radius a. The
planet’s radius is very small compared to the star’s radius, so we will neglect it; treat
the planet as a point particle. Assuming the orbit is oriented randomly (isotropically—
see previous problem) relative to an observer on Earth, derive the probability that the
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planet is on an orbit that can1 transit the star as seen from Earth, using the variables
given.

1Can transit, not is transiting at the time of observation. So do not worry about the duration of the transit.
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