
Planetary Astrophysics – Problem Set 4

Due Thursday Oct 1

1 Sub-Neptunes Everywhere

Sub-Neptune exoplanets, found ubiquitously at stellocentric distances of ∼0.1–1 AU by
the Kepler transit survey, have masses of M ∼ 5–10M⊕ and radii 2R⊕ . R . 4R⊕.
The going interpretation is that these planets have solid cores that dominate their mass
(so core mass Mcore = M) and that these cores are overlaid by gaseous, hydrogen-
rich envelopes having a fractional mass f ∼ 0.001–0.1. These gas envelopes, though
modest in mass, are substantial in volume—detailed models reveal that such envelopes
can increase the radius of the planet by a factor of a few, from the solid core radius
of Rcore ≈ 1.6R⊕ to the observed transit radius 2R⊕ . R . 4R⊕. This problem tries
to reproduce this radius enhancement, and along the way provides some intuition about
atmospheres, and some practice with optical depth.

(a) [10 points] The gas envelope divides into a convective interior and a radiative ex-
terior. First consider the convective interior. Take the convective interior’s pressure P
and mass density ρ to obey a simple power-law adiabat (we will talk about what adiabats
mean later in the course):

P = Prcb (ρ/ρrcb)γ (1)

where “rcb” denotes the “radiative-convective boundary”, located at radius Rrcb, between
the convective zone and the radiative zone. This expression is only good for ρ > ρrcb at
r < Rrcb (since ρ increases as one descends from the rcb into the convective zone).

Insert the adiabat into the equation of hydrostatic equilibrium to derive ρ(r).
Since f � 1, we may safely assume the envelope’s gravity is negligible compared to that
of the core (but do not assume the gravitational acceleration g is constant). Further
assume that the gas behaves ideally (this is a sub-Neptune, not a giant).

Express your answer in the form ρ(r) = ρrcbF (r) where F (r) is a (dimension-
less) function that depends on Rrcb and

Rvir ≡
γ − 1

γ

GMµmH

kTrcb
(2)

where µ is the mean molecular weight, mH is the mass of the hydrogen atom, Trcb is the
temperature at the rcb, G is the gravitational constant, and k is Boltzmann’s constant.
You may check that your answer satisfies F (Rrcb) = 1 and F > 1 as r < Rrcb. Note that
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Rvir is just a radius defined for mathematical convenience; it doesn’t actually correspond
to any physical radius in this problem.1

(b) [10 points] The gas envelope has mass Menv = fMcore = f(4π/3)ρcoreR
3
core. Assume

all of this envelope mass is in the convective zone. There is also some mass in the
radiative zone, but assume the radiative mass is much smaller than the convective mass.

Given f = 0.01, Rcore = 1.6R⊕, Mcore = M = 8M⊕ (so ρcore = 10.7 g/cm3), Prcb = 100
bars, Trcb = 2000 K, µ = 2, and γ = 3/2, solve for Rrcb in terms of Rcore.

2

This is a matter of integrating your answer in (a) (multiplied by the appropriate vari-
ables) from r = Rcore to r = Rrcb to satisfy Menv. We leave the writing of the integral
to you.

You may solve this problem any way you like. Some may prefer a direct numerical
integration. Others may prefer a more analytic approach. If you try for an analytic
solution, you may find the following integral helpful:∫

x2 [b (1/x− 1/a) + 1]2 dx =
(bx− a(b+ x))3

3a2(b− a)
(3)

(courtesy Wolfram Alpha). One can simplify the algebra a bit by recognizing that
Rvir � Rcore—if you use this inequality (you don’t have to), show it first by numer-
ically evaluating Rvir and comparing it to Rcore.

When we did the problem using the above integral (you don’t have to—again, you can
solve this any way you like), we found a polynomial equation for Rrcb. One should
check that every term in the polynomial has the same units. We solved this polynomial
numerically by playing around with a calculator. It was cumbersome to evaluate the
polynomial in cgs units (although computers can handle pretty big numbers); we found it
a bit more convenient to convert the polynomial into “natural units” by setting Rcore = 1.
In these units, Rvir is equal to some other pure number (which you should evaluate),
and Rrcb is still another pure number that, once you find it, will automatically be in
units of Rcore, as desired (how nice!).

Full credit awarded for finding Rrcb in terms of Rcore to 2 significant figures,
with work and reasoning shown.

Comment (not necessary for the solution): This problem assumes that we know Prcb,
Trcb, and γ. These are not obvious, but arise from detailed modeling (e.g., Lopez &
Fortney 2014; Lee, Chiang & Ormel 2014). Still, we can make some general remarks.
The temperature Trcb ∼ 2000 K marks the dissociation front for molecular hydrogen; the
dissociation of H2 into H also leads, as a byproduct, to H− (the extra electron coming
from ionized trace metals), and H− has a large broadband opacity which forces con-
vection (H− is also what makes the Sun’s surface opaque at visible wavelengths). A
dissociation temperature of ∼2000 K follows from the Saha equation (applied to hydro-
gen dissociation, not hydrogen ionization). By extension, although in detailed interior

1Although theoretical physicists who like abstractions will recognize that Rvir is a kind of “virial” radius.
2For fun and personal edification you may calculate how Rrcb varies as f varies from 0.001 to 0.1. But this is

completely optional and no extra credit will be awarded.
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models γ is not a constant, an effective, gross-average value of γ = 3/2 is not crazy,
as it sits between 7/5 (appropriate for H2) and 5/3 (appropriate for H). As for Prcb,
we can look to Solar System giants for guidance, where Prcb ∼ 1–10 bars; for close-in
sub-Neptunes that are more strongly irradiated by their host stars, Prcb is higher, since
stronger stellar radiative heating creates a deeper, nearly isothermal, radiative exterior.

(c) [10 points] Now we examine the radiative exterior. Assume it is isothermal at a
mean temperature of Trad (the subscript rad denotes the radiative zone). Derive an
analytic expression for ρ(r > Rrcb) in terms of Rrcb, ρrcb, M , the molecular
thermal velocity3

cs ≡
√
kTrad
µmH

(4)

and fundamental constants. You may check that ρ(r = Rrcb) = ρrcb and that ρ
decreases as r > Rrcb.

Comment: If you have the correct expression, you will see that as r →∞, ρ→ constant
6= 0 — which seems wrong, as it says that the planet fills the entire universe and has
infinite mass. Your expression is OK, though — it’s just that in reality, the hydrostatic
solution you have written down applies over only a limited interval in radius, and you’re
not allowed to use it when r goes to ∞. Above a certain height (r & GM/c2s , where the
thermal velocity exceeds the local escape velocity from the planet), the atmosphere stops
being hydrostatic; it becomes hydrodynamic, transitioning into an outflowing wind that
causes the planet to lose mass (often, but not always, at a negligibly slow rate). The
equations needed to describe the wind are the equations of hydrodynamics (take Astro
C202).

(d) [5 points total for several questions] It is useful to calculate a “local scale height,”
the distance over which the density (or pressure; density and pressure vary the same
way for our assumed isothermal ideal gas) changes by a set amount, say a factor of
e (= 2.718...):

H ≡
(
−d ln ρ

dr

)−1
. (5)

Write down an expression for H(r) in terms of M , c2s , and fundamental constants.
As r increases, does the scale height H increase or decrease?

Show further that H(r) may be heuristically4 derived by asking what height a
particle of mass µmH attains if it is launched upward from r, at approximately
constant gravitational acceleration g,5 with a kinetic energy equal to kTrad.

3More frequently called the “speed of sound” in hydrodynamics, which explains the subscript s in equation 4.
4A heuristic argument is one that is not rigorous but that provides some intuition for what is going on. Purists

hate heuristics. Personally I can’t live without them. The thought experiment of throwing a particle up and seeing
how far it travels is heuristic because if we actually did this, the particle would not travel the full distance H, but
would collide with a neighboring particle first; the fluid equations that we are using assume that the collisional mean
free path λmfp is much less than any macroscopic lengthscale of interest (in this case H).

5Here, for this specific sub-problem, the assumption of constant g is valid so long as the height H that you calculate
� r, as r is the scale over which g = GM/r2 changes.
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Provide also a numerical evaluation for H/r at r ∼ 3R⊕, M = 8M⊕, Trad = 500
K, and µ = 2. If H/r � 1, the atmospheric profile is sharp (the gas density decays
exponentially over a distance much less than the overall radius); if H/r & 1, then the
atmosphere is more diffuse.

(e) [5 points total for several questions] The photosphere of an object (planet, star,
whatever) is the depth to which you can see from the outside—the depth at which the
atmosphere transitions from optically thin to optically thick. The transition is fuzzy
(like seeing into the ocean) but is customarily marked by the location where the optical
depth

τ ≡ −
∫ r

∞
ρ κ dr (6)

reaches a value of unity (i.e., 1; we say that τ � 1 is optically thin while τ � 1 is
optically thick). Here κ is the opacity = the cross-section for light extinction (absorption
and scattering of photons) per unit mass (so κ has units of cm2/g). Note that our
definition measures optical depth from the outside (other definitions don’t necessarily;
the convention depends on the problem).

Given κ, one can try to perform the integral in (6) to find the r at which τ = 1 (the
photosphere). There are a couple of difficulties with this. The first is that if we use
the answer for (c) for ρ, then the integral explodes because ρ is non-zero at r =∞ (see
comment under c). The second is that even if we don’t start at ∞ but replace the lower
limit of the integral in (6) with some finite rout, the integral does not yield elementary
functions. This is not a problem per se but it does limit intuition (Wolfram Alpha gives
me exponential integrals Ei for which I don’t have an intuitive feel).

Faced with these technical challenges, and recognizing that despite our mathematical
difficulties planets really do have photospheres (!), we proceed with order-of-magnitude
reasoning in a bid to acquire some physical intuition.

First get a sense of how much optical depth is contributed by a single scale height H(r):

τH(r) ∼ ρ(r)κH(r) . (7)

This estimate is good so long as H � r—see part d. As r decreases, does τH(r) as
given by (7) increase or decrease? Justify your answer—one way to do this
is to plot τH(r) vs. r. The point is to get a sense of whether the bottom scale heights
or the top scale heights matter more for optical depth.

Argue from the above that most of the optical depth above the photosphere is provided
by the FIRST scale height RIGHT ABOVE the photosphere, i.e.,

τH(rphoto) ∼ ρκH|rphoto ∼ 1 (8)

where all quantities are evaluated at the photospheric radius rphoto. This is an equation
for rphoto.

Rather than solve for rphoto directly (we’ll do that later in part f), show that (8) can
be re-written as

Pphoto ∼ g/κ (9)
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where Pphoto is the photospheric pressure and g is the local gravitational acceleration.
This is a handy and often-used relation (but caveat emptor part g).

(f) [5 points for all questions] Although we don’t yet know exactly where rphoto is, we may
make an order-of-magnitude approximation for g = GM/r2 using r ∼ 3R⊕. Assume
further that κ ∼ 1 cm2/g (a very rough estimate assuming species that absorb strongly
at optical wavelengths like atomic Fe, TiO, VO, and alkali metals Na and K). Then
estimate Pphoto in units of bars.

At what radius R does the pressure equal Pphoto? This is planet’s “total” radius.
You will need parts b and c to calculate this.

Finally, comment on how sensitive your answer is to the photospheric opacity
κ. What if we over-estimated κ by two orders of magnitude (so consider
instead κ = 0.01 cm2/g)? By how much would your answer for R change (if
you want, you can express as a percentage)?

(g) [5 points] Parts e and f are actually not quite appropriate for transit observations. In
a transit observation, we aren’t sensitive to the traditionally defined photospheric τ = 1
surface measured radially to the center of the planet. We are sensitive instead to where
the optical depth ALONG THE LINE OF SIGHT — call this τlos — reaches unity. See
Figure 1. The transit radius of the planet Rtransit is the radius where τlos ∼ 1. This is
the radius that is actually reported in the literature on transit observations.

From Figure 1, we see that the relevant path length for τlos is not H (as we assumed
in part e), but rather a longer chord of length Lchord. Calculate how much longer
Lchord is compared to H. Express your answer for Lchord/H in terms of H and
Rtransit. Use H � Rtransit to simplify your answer.

Make also a numerical estimate for Lchord/H, approximating Rtransit ∼ R using
your answer in part f, and evaluating H at r ∼ R.

From these considerations decide whether your estimate for Pphoto in part f un-
derestimates or overestimates the true pressure at the transit radius. Finally
estimate by how much your answer for R in part f is in error—state whether
the true Rtransit is larger or smaller than your answer in part f, and express
your estimate of the error as a percentage [e.g., 1%, 10%, 100% (i.e., a factor of
2 error), 1000% (a factor of 10 error), etc.].
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Figure 1: Transit radius. The observer is imagined to be at the bottom of the page, looking
upward. The planet is a diffuse (fuzzy) object whose density drops sharply with increasing radius.
At a certain Rtransit, the line-of-sight optical depth τlos presented by a single shell of radial thickness
H equals 1. This marks approximately the effective transit radius of the planet. We can imagine
drawing the same diagram for a shell at r > Rtransit; then the chord length is longer, but the density
ρ falls more dramatically, so τlos < 1. Same reasoning applies but with opposite signs for shells
drawn at r < Rtransit.
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