
Planetary Astrophysics – Problem Set 5

Due Thursday Oct 8

1 Clouds, Part I (Purely Absorbing, One-Dimensional)

Consider a plane-parallel atmosphere (of radial thickness � the planet radius) near the
surface of a planet. Light from the host star strikes the atmosphere at normal incidence
(perpendicular to the atmospheric layers).

The atmosphere has a thick cloud layer. Clouds are composed of droplets, typically
microns or fractions of a micron in size, of a condensed trace species. On Earth,
the principal trace condensible species is water; on Venus, it is sulfuric acid; on hot
exoplanets, it might be silicates or even irons (people talk about “forsterite clouds”).

Take the cloud layer to have a constant droplet density [droplets per volume] η, the
individual droplet radius to be R, and the vertical thickness of the cloud layer to be
zmax. Measure vertical distance through the cloud by z, where the top of the cloud is
located at z = 0 and the base of the cloud is located at z = zmax (so z increases as you
go deeper into the atmosphere).

(a) [3 points] Write down the total vertical optical depth of the cloud, τ .

(b) [4 points] Consider a thin vertical slice of the cloud ∆z, over which the optical depth
∆τ � 1. Show that ∆τ can be interpreted as a “covering fraction”, i.e., if one were to
lay this thin slice flat, the fraction of the area covered by cloud particles would be ∆τ .

(c) [3 points] Suppose the cloud particles are purely absorbing. Every stellar photon that
hits a cloud particle is absorbed and vanishes forever.

When stellar photons of flux F (number per area per time) traverse the thin slice of
cloud of optical depth ∆τ � 1, a fraction of them are absorbed away:

∆F = −F∆τ . (1)

This should make sense given the geometric interpretation of ∆τ � 1 as a covering
fraction (part b). For example, if the cloud particles cover 1% of the area of the slab,
then 1% of the photons passing through the slab are absorbed.

Take the differential limit of (1):

dF = −F dτ . (2)

Integrate this equation to find the (unabsorbed) stellar flux Ft that is transmitted through
the cloud after traversing the full optical depth τ . Express your answer for Ft in terms
of τ and the incident flux Fi at the top of the cloud.
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2 Clouds, Part II (Purely Scattering, One-Dimensional)

We return to the same cloud of Problem 1, except that now we assume the cloud parti-
cles are purely SCATTERING. When a stellar photon collides with a scattering cloud
particle, it is not absorbed, but just re-directed into a random direction. Photons get
bounced like pinballs from cloud droplet to cloud droplet, preserving their wavelength
and never getting absorbed. For this plane-parallel atmosphere where we consider only
photons at normal incidence, there is equal probability that the photon will be re-directed
up as down. Some photons/pinballs will be lucky enough to make it through the cloud,
while some will get pinballed back into space. This problem, just like the previous prob-
lem, is interested in calculating the fraction that make it through (Ft/Fi, the ratio of
transmitted to incident fluxes).

As before, take the cloud to have a constant droplet density [droplets per volume] η, the
individual droplet radius to be R, and the vertical thickness of the cloud to be zmax.
Measure vertical distance through the cloud by z, where the top of the cloud is located at
z = 0 and the base of the cloud is located at z = zmax (so z increases as you go deeper
into the atmosphere).

(a) [0 points] Write down the vertical optical depth of the cloud, τ . This is identical to
Problem 1a above. No extra points will be awarded, but you need this answer to solve
later parts of this problem.

(b) [3 points] Incident photons from the host star strike the top of the cloud. The
incident photons have a number flux Fi [number per time per area]. What is the number
density of incident photons at the top of the cloud? Call this photon number density ni
and express in terms of Fi and fundamental constants.

These incident photons have NOT been scattered yet by any droplet. Remember the
fisherman’s mantra that a “flux is a number density multiplied by a speed.”

(c) [3 points] These photons pinball/random walk through the scattering droplets. Ran-
dom walks are described by the diffusion equation,

∂n

∂t
= D

∂2n

∂z2
(3)

where D is the diffusion coefficient and n is the photon number density.

Express D in terms of any of the symbols defined above and fundamental constants.
Just an order-of-magnitude expression suffices.

(d) [3 points] In steady-state, ∂n/∂t = 0 (the number density of photons everywhere in
the cloud does not change with time). Write down the solution to the diffusion equation
for n(z). You should have two, as yet unknown, constants of integration. Call them A
and B.

(e) [9 points] The NET number flux, F , of photons at z = 0 (top of the cloud) equals
the incident flux Fi (directed down into the cloud) MINUS the outgoing reflected flux
Fr (directed up, away from the cloud into space). We have:

F (z = 0) = Fi − Fr = −D∂n/∂z (4)
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where for the last equality we have used Fick’s law, which is just another way of writing
the diffusion equation.

The entire system is in steady state (does not vary in time), which imposes a condition
on F (z)—one we discussed in class, and which you should verify is satisfied by your
answer in (d).

The transmitted flux Ft is the flux at the base of the cloud, at z = zmax, directed
downward. By energy conservation, we must have that the incident flux Fi equals the
reflected flux Fr PLUS the transmitted flux Ft. In other words,

Fi = Fr + Ft (5)

Use all of the above, including parts (a)–(c), to calculate the transmission factor Ft/Fi,
the ratio of the transmitted flux to the incident flux, in terms of τ .

Hint: begin by solving for the undetermined constants A and B in terms of Ft and Fi.

(f) [2 points] Evaluate Ft/Fi for the clouds of sulfuric acid on Venus. Use parameters
appropriate for the “middle cloud” region, for which η ∼ 102 cm−3, R ∼ 3µm, and
zmax ∼ 5 km (see pages 108–109 of the Course Reader).

3 Greenhouse Warming (a.k.a. Radiative Atmospheres)

We return again to the plane-parallel atmosphere of previous problems, this time con-
sidering the planet’s own thermal radiation. We consider a planet with a hard surface,
like Venus or Earth.

The transmitted stellar flux Ft makes it all the way to the surface. Assume that all of it is
absorbed by the ground. To maintain equilibrium, this absorbed flux must be re-radiated
back into space. The re-emitted radiation is no longer at stellar optical wavelengths, but
is instead reprocessed to infrared wavelengths by the ground. This ground radiation tries
to escape to space. It will have a hard time getting out if the atmosphere is optically
thick to infrared radiation, which it is for Venus and Earth because of “greenhouse
gases” that absorb (and re-emit) strongly in the infrared. Nevertheless the re-radiation
does eventually make it out — it has to, if it is to maintain radiative equilibrium. This
problem calculates the temperature profile of such a “radiative atmosphere”.

The atmosphere’s “job” is to carry away to space a flux F (= Ft). Define the “effective
temperature” Teff such that

σT 4
eff ≡ F (6)

where σ is the Stefan-Boltzmann constant. It is crucial to remember that Teff does not
refer to any temperature in the atmosphere per se. It is just a convenient proxy for the
flux F that must be carried away.

From class, the equation of radiative diffusion in a plane-parallel atmosphere reads:

F (τ) =
16σT 3

3

dT

dτ
(7)

3



where F is the outgoing flux, and the optical depth τ increases from 0 at the top of
the atmosphere (in space) to τmax at the bottom of the atmosphere. Here T (τ) really is
the actual temperature of the atmosphere at optical depth τ , assuming the atmospheric
gas is in local thermodynamic equilibrium with the radiation field. We emphasize that
the relevant optical depth τ in this context is of the infrared-absorbing species in the
atmosphere: generally this is NOT CLOUDS, but rather some gas that absorbs and
re-emits strongly at infrared wavelengths. For Venus it is principally gaseous CO2; for
Earth, it is CO2, H2O, and CH4.

(a) [2 points] Explain why F must be constant with τ in steady state.

(b) [3 points] Use the constancy of F (τ) = F = σT 4
eff to solve (7) for T as a function

Teff , τ , and T0 = the temperature of the atmosphere at τ = 0.

(c) [2 points] To solve for T0, consider a vertically thin slice (slab) of atmosphere near
its top. This slab has optical depth ∆τ � 1. The outgoing flux F = σT 4

eff enters the
slab from the bottom. Consider just the (few) absorbers within the slab. Idealize these
absorbers as perfectly flat blackbodies of temperature T0.1 Calculate T0 in terms of Teff ,
using the fact that the assumed flat absorbers absorb from only their bottom faces but
re-emit from both their top and bottom faces.

Use your answer for T0 to re-write T from part (b) in terms of τ and Teff only.

(d) [3 points] The effective temperature of a planet is sometimes calculated using

L?

4πa2
πR2(1−A) = σT 4

eff4πR2 (8)

which says the power absorbed by the planet (which presents an absorbing cross section
πR2(1 − A) to incident light from a star of luminosity L? located a distance a away,
where A accounts for cloud cover) equals the power it radiates away (over its entire
surface area 4πR2 — this presumes that the absorbed power is efficiently re-distributed
from the dayside to the nightside. In real life this re-distribution is made possible by
winds.)

Calculate Teff using (8) and values appropriate for the Earth. Use A = 0.5 to account
for the average cloud cover. Does Teff fit with your everyday experience of Earth’s actual
air temperature? Full credit for 2 significant figures.

Using this same value of Teff , calculate T (τmax), using τmax ' 2 for the Earth due to
CO2, H2O, and CH4. Does T (τmax) seem more or less realistic than Teff?

Repeat the calculation of Teff and T (τmax) for Venus, for which a = 0.7 au and τmax '
200 (100× larger than for the Earth). Also include the fact that clouds on Venus imply
A ' 0.9 (hint: compare with Problem 2f).

1I picture flat poker chips, oriented parallel to the slab. Because ∆τ � 1, the chips can be safely assumed to be
non-overlapping.
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