
Planetary Astrophysics – Problem Set 7

Due Thursday October 22

1 Just How Tiny is the Tiny Superadiabatic Temperature
Gradient?

Convection is so efficient at transporting heat that the actual temperature gradient in a
convective atmosphere is only slightly greater than the adiabatic temperature gradient.
Here we estimate quantitatively what “slightly greater” means.

Recall that the Brunt-Vaisala (B-V) frequency is the frequency of buoyant vertical mo-
tions in an atmosphere, and is given by
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where g > 0 is the gravitational acceleration, T is temperature, and z measures height
(increasing as one travels away from the center of the planet). Define
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to be the difference between the actual temperature gradient and the adiabatic temper-
ature gradient. We will estimate ∆∇T , and compare it to ∇T |actual. Remember that
if ∆∇T < 0, then ω2

B−V < 0—in other words, the B-V frequency has an imaginary
component, any vertical motions are unstable, and convection ensues. Since ∇T < 0,
∆∇T < 0 means the absolute value of the actual temperature gradient, |∇T |actual, ex-
ceeds the absolute value of the adiabatic temperature gradient, |∇T |adiabatic; we say the
actual temperature gradient is superadiabatic (but not by much) in convective atmo-
spheres.

(a) [5 points] Consider a parcel of gas moving adiabatically upwards through a convec-
tive (superadiabatic) atmosphere. The parcel has mass density ρ and specific heat c
[erg/(gram K)].1 The parcel maintains pressure equilibrium with its surroundings: as it
rises, the parcel’s pressure matches exactly the surrounding atmospheric pressure (which
is decreasing with increasing height). The parcel’s temperature decreases adiabatically,

1For this problem, we are deliberately not specifying whether the specific heat c is to be evaluated at constant
volume or constant pressure, as the problem is intended to be done to order of magnitude, and the difference between
cv and cp is less than a factor of 2. If we were interested in exact answers, we would need to worry about other
order-unity factors, not just the difference between cv and cp.
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while the atmosphere’s temperature drops superadiabatically. In other words, the adi-
abatic drop in the parcel’s temperature is not as much as the drop in the surrounding
environment’s temperature, because the actual temperature gradient of the environment
is superadiabatic.

After the parcel has risen length `, where ` is small compared to the length scale over
which background quantities change,2 roughly how much excess thermal energy density
[erg/cm3] does the parcel carry relative to its surroundings? Use the variables given
above. Call this extra thermal energy density ε and derive an order-of-magnitude ex-
pression for it using the variables given above.

(b) [5 points] Give an approximate symbolic expression for the upward velocity, v, of
the buoyant parcel after it has travelled distance `. Remember that the parcel is unstably
buoyant; it experiences an upward acceleration, −(δρ/ρ)g, where g > 0 is the local
(downward) planetary gravitational acceleration. You should first understand why δρ,
the density difference between the parcel and its surroundings, is negative. Reduce your
expression to one that DOES NOT contain ρ or δρ, but DOES contain T .

(c) [5 points] Assume that convection dominates heat transport through the atmosphere.
The atmosphere has a job to do: it must transport an energy flux F [erg cm−2 s−1].
We have F ∼ εv: in general, according to the fisherman’s mantra, the density of any
quantity (in this case energy density ε) times the speed with which that quantity moves
(v) gives a flux (F ).

Use F ∼ εv and (a) and (b) to solve for an approximate symbolic expression for ∆∇T .
Your answer should depend on F , `, T , g, c, and ρ.

(d) [10 points] Estimate |(∆∇T )/(∇T )actual| for conditions appropriate to Jupiter’s
atmosphere at a pressure of 1 bar. You may draw real numbers from the plot on page 87
of the Course Reader (taken from Chamberlain & Hunten’s excellent textbook, “Theory
of Planetary Atmospheres”).

For this numerical evaluation, the only quantity which is not given by data is `, the
distance a parcel travels before it dissolves away and releases its excess energy to its
surroundings. The process by which the parcel (think hot blob)3 decays into the sur-
roundings is not understood in detail; convection is a form of turbulence, and we do not
have a theory for turbulence. We make do with so-called “mixing length theory”: we
assume that ` ∼ H, the local scale height of the atmosphere. For H, see PS 4—in par-
ticular the heuristic derivation,4 which expresses H in terms of g, T , and µmH (µ ∼ 2
is the mean molecular weight and mH is the mass of the hydrogen atom).

To estimate F , use the flux incident on Jupiter from the Sun.5

2Later in part d we will violate this assumption—but only marginally—by taking ` to be of order the local scale
height, the distance over which background quantities like pressure, density, and temperature change by a factor of
order e = 2.718 ...

3It could also be a cold sinking blob; all the signs of this problem just reverse.
4In that problem set we derived H in two ways: heuristically but also physically correctly, using hydrostatic

equilibrium for a collisional gas (a.k.a. fluid).
5On the one hand about 1/2 of the incident Solar flux is reflected away by clouds, but on the other Jupiter

produces 2× as much energy as it absorbs from the Sun, so these factors tend to cancel out.
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Approximate the specific heat c ∼ 2k/(µmH), where k is Boltzmann’s constant.

Is your computed dimensionless quantity |(∆∇T )/(∇T )actual| tiny?

(e) [10 points for all questions in this part] Using the above results, express ε in terms
of ρ and v only. You can actually derive this result just using dimensional analysis, but
full credit will be given only for a complete (order-of-magnitude) derivation.

What this result shows is that the excess thermal energy of the convective parcel is
of order its bulk kinetic energy; thermal energy and bulk kinetic energy are in rough
equipartition in convective turbulence.

Insert your new expression for ε in F ∼ εv to estimate the convective velocities v at
1 bar in Jupiter’s atmosphere. Express in cm/s, and also as a fraction of the thermal
speed (a.k.a. sound speed) cs =

√
kT/(µmH). As long as fluid velocities are much less

than the thermal speed, the errors introduced by assuming hydrostatic equilibrium (which
for a convective atmosphere is not strictly correct) are small (take a fluid dynamics class
like Astro/Physics C202 to understand why).

2 Cooling Curves

Burrows & Liebert (1993) describe how a brown dwarf or giant planet’s cooling lumi-
nosity L scales with time t, mass M , and photospheric opacity κe:

L ∝ t−1.297M2.641κ0.35e (3)

(page 78 of the Course Reader). Here time t is the time that has elapsed since all the
heat of the planet was first trapped inside it, i.e., the time since the planet formed. This
problem tries to derive analoguous power-law scalings using a simple model. We won’t
be able to reproduce the exact scalings above because our model will be too crude, but we
will get qualitatively similar results.6

The thermal energy E of a planet that cools passively into space by radiation is given
by:

dE

dt
= −L = −4πR2σT 4

e (4)

where R is the planet’s photospheric radius and Te is its photospheric surface tempera-
ture (subscript “e” to denote the “effective” blackbody temperature of the photospheric
surface). We consider the case where R is fixed in time, while E and Te change in time
(they decrease as the planet cools, like a dying ember in a fireplace).

Re-write (4) to order-of-magnitude using dE ∼ ∆E ∼ −E and dt ∼ ∆t ∼ t:

E

t
∼ 4πR2σT 4

e (5)

Comment (not necessary to solve this problem): writing (5) actually restricts the mean-
ing of t. The meaning of t in (5) is that it is time over which E drops by an order-unity

6In the grad version of this class (Astro/EPS C249), we present a more realistic and complicated model that gets
closer to the Burrows & Liebert result.
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factor (say a factor of 2). We call this the cooling time. Ordinarily, the cooling time t
is not a constant but grows as wall-clock-time elapses; it takes progressively longer for E
to drop by successive factors of 2 as time elapses, since the colder an object is, the less
efficiently it tends to lose its energy. The cooling time t may or may not be similar to the
time telapsed since formation. At early times, telapsed � t—we are observing the planet
before its first cooling time, at such a young age that it has not had time to cool. Later,
after the first cooling time, t ∼ telapsed. Ordinarily it is not possible for telapsed � t; the
cooling time t generally increases with time telapsed in such a way that t ∼ telapsed for all
times after the first cooling time. The order-of-magnitude equality t ∼ telapsed is used of-
ten in other astronomical contexts involving passively cooling objects (e.g., cooling white
dwarfs are used to age-date galaxies).

(a) [2 points] Idealize the planet interior ( 6= the photosphere) as being at a uniform
“core” or “central” temperature Tc. Write down an order-of-magnitude expression for
the total thermal energy of the planet in terms of Tc, M , the mean mass per particle
µmH, and fundamental constants. Assume that the interior contains nearly all of the
mass M .

(b) [2 points] In the interior, hydrogen is ionized. It is important to appreciate that
the electrons and protons behave differently in a giant planet. The ELECTRONS are
degenerate while the protons are not.7 The electrons and their degeneracy pressure
support the planet against gravity. Write down how R scales with M for an object
supported by free electron degeneracy pressure. Combine what you have written with (a)
and insert into equation (5) to find that

Tc ∝ tM−5/3T 4
e . (6)

(c) [5 points] Now derive another relation between Tc and Te by using the fact that the
planet is completely convective. We know that a convective object behaves nearly adiabat-
ically (technically super-adiabatically, but we know that the degree of super-adiabaticity
is small; see the previous problem). Assume the interior (from the core all the way to
the photosphere) obeys a simple adiabatic relation P ∝ ργ, where P is pressure and ρ is
mass density.8 Then

Pc

ργc
=
Pe

ργe
(7)

It is here that we recognize that it is the PROTONS which behave adiabatically, i.e., the
protons still behave like an ideal gas, and so Pc represents the proton thermal ideal gas
pressure.

Write down:

• how the ideal gas pressure Pc scales with Tc and ρc

• how ρc depends on M and R (to order of magnitude)

7You can show that this is true for Jupiter. Who knows, it might be on an exam. See PS 1.
8This is the most severe approximation made in this problem. In C249, we relax this approximation and consider

how hydrogen transitions from molecular to ionized from the surface to the core. Then we don’t restrict ourselves to
a simple power-law relation between P and ρ.
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• how the photospheric pressure Pe depends on surface gravity g and photospheric
opacity κe (see PS 4)

• how g scales M and R

and insert everything, including how R scales with M (part b), into (7) to write down
how Tc scales with M , κe, and Te.

(d) [6 points] Combine your answer in (c) with (6) to derive how Te scales with t, M ,
and κe. Substitute into (4) to find how L scales with M , t, and κe. Give symbolic
expressions in terms of γ. Additionally, for the L scaling, evaluate the numerical expo-
nents assuming γ = 5/3. You may compare your numerical exponents with the Burrows
& Liebert (1993) exponents given by (3).
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