
Astro 201 – Radiative Processes – Solution Set 3

by Katie Peek and Eugene Chiang

Problem 1. The Eddington Limit (Rybicki & Lightman 1.4)

(a) Show that the condition that an optically thin cloud of material can be ejected by
radiation pressure from a nearby luminous object is that the mass to luminosity ratio
(M/L) for the object be less than κ/(4πGc), where G = gravitational constant, c =
speed of light, κ = mass absorption coefficient of the cloud material (assumed indepen-
dent of frequency).

Force of radiation must exceed the force of gravity:

frad > fG, (1)

where

frad =
κ

c

L

4πR2
(2)

and

fG =
GM

R2
. (3)

Note that L/c is a “momentum luminosity” (units of momentum per time). The factor
of κ is a cross-section for absorbing this momentum (energy), per unit mass. Thus, the
condition for the cloud’s ejection is given by

κ

c

L

4πR2
>

GM

R2

κ

4πGc
>

M

L
. (4)

(b) Calculate the terminal velocity v attained by such a cloud under radiation and grav-
itational forces alone, if it starts from rest a distance R from the object. Show that

v2 =
2GM

R

(

κL

4πGMc
− 1

)

.
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Initially at rest at position R, the cloud is simultaneously pulled inward under grav-
itation and pushed outward by radiation. If the cloud begins moving outward, the force
due to radiation exceeds the force due to graviation. Hence, the gravitation serves to
“soften” the radiation force outward.

fnet = frad − fG =
κL

4πcR2
−

GM

R2
.

Let r = the non-initial position (R at some time t). Then the total, potential, and
kinetic energies are given by the expressions

Etot =
κL

4πcR
−

GM

R
(5)

U =
κL

4πcr
−

GM

r
(6)

T =
1

2
v2. (7)

At terminal velocity, fnet = 0, so

κL

4πcr2
−

GM

r2
= 0 ⇒ GM =

κL

4πc
,

therefore (softened) U = 0 for terminal velocity vT .

Since Etot = T − U ,

T = Etot − U (8)

1

2
v 2
T =

(

κL

4πcR
−

GM

R

)

− 0

1

2
v 2
T =

κL

4πcR
−

GM

R

v 2
T =

2GM

R

(

κL

4πcGM
− 1

)

. (9)

(c) The mimimum value for κ may be estimated for pure hydrogen as that due to Thom-
son scattering off free electrons, when the hydrogen is completely ionized. The Thomson
cross section is σT = 6.65 × 10−25cm2. The mass scattering coefficient is therefore
> σT /mH , where mH = mass of hydrogen atom. Show that the maximum luminosity
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that a central mass M can have and still not spontaneously eject hydrogen by radiation
pressure is

LEDD = 4πGMcmH/σT

= 1.25 × 1038ergs−1(M/M�),

where
M� ≡ mass of sun = 2 × 1033g.

This is called the Eddington limit.

Regardless of whether the radiation is being scattered or absorbed, the limiting case
for ejection of material occurs when

M

L
=

σT /mH

4πcG
, (10)

as can be seen by setting the term in parentheses in (b) equal to zero. In this limit,
L → LEDD. Thus,

LEDD =
4πcGMmH

σT
. (11)

Plugging in numbers for everything,

LEDD =
4π(3 × 1010cms−1)(6.673 × 10−8cm3g−1s−2)(1.674 × 10−24g)M

6.65 × 10−25cm2

LEDD = 6.33 × 104Ms−3cm2,

or, in terms of solar masses,

LEDD = 1.27 × 1038ergs−1
· M/M�.

Most objects in the universe, even the high-energy ones like accreting X-ray binaries and
AGN, are radiating at sub-Eddington rates. I believe there are a few cases where compact
objects are puzzlingly radiating above the Eddington limit; it has been conjectured that
such objects are accreting through a thin disk, and radiating above and below the disk.
That is, the inflow of matter and the outflow of radiation occur at different locations,
so there is less danger of the radiation preventing the inflow.

Problem 2. Pulsar Dispersion Measure

Don Backer notes that pulses from a certain pulsar observed at a radio frequency of
ν = 2 GHz arrive slightly ahead of the pulse train observed at ν = 1 GHz. The lead time
is 1 s.

(a) Use the dispersion relation derived in class for a cold, ionized plasma, and the in-
formation above, to derive the column density of electrons along the line of sight to this
pulsar. Express in standard pulsar-community units of cm−3 pc.
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The dispersion relation (as derived in class) is given by

(

ck

ω

)2

= 1 +
4πne2

me(ω2
o − ω2)

.

For a plasma, ω2
o = 0, so the dispersion relation becomes

(

ck

ω

)2

= 1 −
ω2

p

ω2
(12)

where

ω2
p =

4πne2

me
.

Thus, the dispersion equation can be rewritten as

ω =
√

ω2
p + k2c2. (13)

Since the group velocity vgroup = dω
dk ,

vgroup =
d

dk

√

ω2
p + k2c2

vgroup =
c2k

ω
. (14)

Since the wave number k = c−1
√

ω2 − ω2
p, vgroup can be rewritten as

vgroup = c

√

1 −
ω2

p

ω2
(15)

Enter the pulsar. The group velocity of the 2 GHz signal is such that it arrives 1 second
before the 1 GHz signal. Henceforth, I shall use ω

1
for the 2-GHz wave and ω

2
for the

1-GHz wave.

If it can be assumed that ωp � ω, then the expression
(

1 −
(ωp

ω

)2
)−1/2

can be approxi-

mated as 1+ 1
2

(ωp

ω

)2
. If s is the distance between Don and the pulsar, the time between

signals can be expressed as
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∆t = t
2
− t1 =

s

vgroup,2
−

s

vgroup,1
,

which becomes

∆t =
s

c

[

1 +
1

2

(

ωp

ω
2

)2
]

−
s

c

[

1 +
1

2

(

ωp

ω
1

)2
]

(

2c

s

)

∆t =

(

ωp

ω
2

)2

−

(

ωp

ω
1

)2

. (16)

Since ω
2

= 1
2
ω

1
,

(

2c

3s

)

∆t =

(

ωp

ω
1

)2

. (17)

Replacing the expression for ω2
p,

(

4πne2

me

)

s =
8π2

3
cν2

1
∆t. (18)

Cancelling convenient things like factors of π and plugging in ∆t = 1 s (with standard
values for me, etc.), one ends up with a column density of

n · s = 3 × 102 cm−3 pc. (19)

(b) For an assumed density of electrons in the interstellar medium of 0.03 cm−3, calculate
the distance to this pulsar. Does this seem reasonable?

The distance to the pulsar if n = 0.03 cm−3, is

(

0.03 cm−3
)

s = 3 × 102cm−3pc

s = 1 × 104 pc = 10 kpc

which is reasonable because it resides inside our Galaxy. I don’t believe our Earth-bound
detectors are sufficiently sensitive to detect extragalactic pulsars.

(c) For such an assumed electron density, is Don safely observing above the plasma
cut-off frequency?
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The plasma cutoff frequency is given by

ω2
p =

4πne2

me
=

4π(0.03cm−3)(4.8 × 10−10esu)2

9.11 × 10−28g

ωp = 104s−1.

And ω
1

is

ω
1

= 2πν
1

= 4π GHz = 1010s−1.

Thus

ωp

ω
= 10−6,

plenty small enough for Don to have observed the pulsar in the first place.

(d) Calculate the optical depth to Thomson scattering along the line-of-sight to this
pulsar.

The optical depth due to Thomson scattering is given by

τ = σ
T
(n · s) (20)

τ
T

= (6 × 10−25cm2)(3 × 102cm−3pc).

Taking 1 pc = 3 × 1018 cm,

τ
T

= 0.0005.

Thomson scattering attenuates the signal very little!

Problem 3. Hyperfine 3He+

Observations of the hyperfine transition in 3He+ are used to probe the 3He/H abundance
in the galaxy. This abundance reflects the primordial yield from big bang nucleosynthesis
and galactic chemical evolution.
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(a) Estimate, using the scaling relations presented in class and whatever facts you re-
member, the wavelength of the ground-state hyperfine transition in 3He+. Compare to
the true answer of 3.46 cm.

This is a magnetic dipole transition. Energies of magnetic dipole transitions scale as
E ∼ µeB, where µe is the magnetic moment of the electron and B is the magnetic field
strength experienced by the electron.

Let’s scale from the more well-known 21-cm transition in hydrogen. Now µe, the
moment intrinsic to the electron, does not change in going from H to He. But B does
change. For a dipole nuclear field, B ∼ µnucleus/r

3, where µnucleus is the magnetic
moment of the nucleus, and r is the distance between the nucleus and the electron.
Both these quantities change in going from H to He.

Now the magnetic moment of a single proton is eh̄/(2mpc). We infer that the mag-
netic moment of a nucleus of charge Ze and mass Amp is µnucleus = Zeh̄/(2Ampc). The
Bohr model tells us that r ∼ 1/Z. Therefore B ∝ (Z/A) × Z3. For our 3He nucleus,
Z = 2 and A = 3. Therefore the wavelength of our transition is 21 cm×A/Z4

∼ 3.9 cm,
which is pretty close to the laboratory-measured answer of 3.46 cm.

(b) Estimate the Einstein A coefficient (transition probability) of this line. Compare to
the true answer of 1.95 × 10−12 s−1.

Scale again from the 21-cm transition in H, for which we know A21 ≈ 2.9×10−15 s−1.
We know that Einstein A’s scale as some moment squared and frequency cubed. Now
the moment appropriate to this problem is the magnetic moment of the electron which
does not change in going from H to He. The frequency certainly does change by a factor
of (21/3.9). Then the Einstein A for this transition is about 2.9×10−15

×(21/3.9)3 s−1
∼

5× 10−13 s−1, which is a factor of 4 too low compared to the true answer. Had we used
the true wavelength of 3.46 rather than our above estimate of 3.9 cm, we would be off
by a factor of 3.

Here’s an alternative scaling from the Ly α electric dipole transition in H that just
happens to get the answer almost exactly correct:

A21

∣

∣

∣

∆Ehf ,3He+
= A21

∣

∣

∣

Lyα
α2

·

(

1216Å

3.46 cm

)3

A21

∣

∣

∣

∆Ehf ,3He+
= 1.3 × 10−12s−1.

Problem 4. Shades of the Sun

(a) When the sun sits 5 degrees above the horizon and is about to set, it looks red. Give
a quantitative explanation why. Neglect dust.
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Consider the Sun overhead, where the distance it passes through the atmosphere is
given by H. The distance it passes through the atmosphere at the horizon (assuming
that the horizon is an flat infinite slab) is H/ sin θ, where θ is the angle above the horizon.

Sunlight experiences Rayleigh scattering as it tries to propagate through the atmo-
sphere. The cross-section for Rayleigh scattering is

σscattering = σThomson
ω4

ω4
o

.

Compare the two extremes of the visible spectrum (taking λred = 7000Å and λblue =
4000Å):

σscat(red)

σscat(blue)
=

σ
T
· λ4

o/λ
4
r

σ
T
· λ4

o/λ
4
b

=

(

λb

λr

)4

= 0.11.

What is the absolute optical depth, say at blue wavelengths? At zenith, the column
of (mostly nitrogen) molecules is N ∼ 5 × 1019 cm−3

× 10 km ∼ 5 × 1025 cm−2. The
cross-section for Rayleigh scattering at blue wavelengths is σThomsonω4/ω4

0 , where ω0 ≈

10 eV/h̄. The 10 eV is the typical energy for an electronic transition in molecular
nitrogen. Putting it all together, we get τb ∼ 0.2. Correct this by 1/ sin 5◦ to get
τb ∼ 2.3 towards the sun at sunset. Thus, e−2.3

∼ 10% of the blue light reaches us.

Some of you wished to use the scattering law proved in the last problem set, but
the geometry of this problem is different; for this problem, light that is scattered out
of the incident beam remains out of the beam (3-D geometry), whereas in the previous
problem set on clouds, light has no choice but to be scattered parallel or anti-parallel
to the incident beam (1-D geometry). Our assumption here that light that is scattered
out of the direction of a particular beam remains out of the beam is a good one because
otherwise the disc of the sun would appear larger than just the geometric value, and we
know this is not the case.1 In other words, multiple scattering is not important for this
problem; the extinction in this problem is still exponential; energy losses suffered by a
given beam due to scattering are not regained by scattering from other directions.

By the ratio of cross-sections, τr ∼ 0.02 towards the sun at sunset. Thus, about 98%
of the red light reaches us.

And that’s why sunsets are red: red and blue light are in the rough ratio of 10:1.
Actually they’d be more orange, if weren’t for all the particulates spewed by humanity
that reddens the light even further.

1That the sun and moon appear larger near the horizon than at zenith is, I believe, an optical illusion

caused by the proximity of these celestial objects to terrestrial ones near the horizon.
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(b) During a total solar eclipse, the sun’s corona appears white to the naked eye. The
corona is composed of plasma. State why the corona looks white (one sentence will
suffice).

In a plasma, ωo = 0. So σscattering = σThomson. Since σscat no longer has any
wavelength dependence, all the light from the sun’s photosphere is scattered evenly by
the corona into our line-of-sight. Hence it appears “white.”2

Problem 5. Back-of-the-envelope CO 1-0

Most astronomers know that the Einstein A coefficient for the Lyman alpha (n = 2 to
n = 1) transition in atomic hydrogen is of order 109 s−1 (actually, 5×108 s−1, but what’s
a factor of 2 between friends?). We derived this result in class to order-of-magnitude
by considering an (accelerating) electron on a spring that displaces a Bohr radius, a0,
and has natural angular frequency ω. We took the inverse lifetime of the excited state
as A ∼ P/h̄ω, where P is the power radiated by an accelerating charge.

The ubiquitous carbon monoxide molecule, 12CO, is used by astronomers to trace the
presence and temperature of molecular gas in everything from galaxies to circumstellar
disks. We would rather try to detect H2, but sadly H2 has no permanent dipole moment
because of its symmetry. Carbon monoxide does have a permanent dipole moment.

(a) Estimate the wavelength of the lowest energy, rotational transition in CO (J =
1 to J = 0, where J is the rotational quantum number). Do this by considering a
barbell spinning about its axis of greatest moment of inertia and recognizing that angular
momentum comes quantized in units of h̄.

Compare your estimate to the true answer of 2.6 mm.

We know from quantum mechanics that angular momentum is quantized as L2 =
h̄2J(J + 1), and from classical mechanics we know the rotational kinetic energy of a
barbell to be E = L2/2I. Here, the moment of inertia I can be approximated as
I =

∑

i mir
2
i ∼ 30mp a2

0, where mp is the mass of a proton and we assume that the
width of the barbell is roughly two times the Bohr radius. For transition J = 1 to J = 0
we find:

∆E1→0 ∼
h̄2

30mp a2
0

∼
hc

λCO

which upon plugging in the appropriate values of the constants gives:

λCO ∼ 2.6mm

which just happens to be exactly the same as the real value. Hooray for us!

(b) Use the scalings of our semi-classical spring model to estimate the Einstein A coef-
ficient of this transition, i.e., the inverse lifetime of the excited J = 1 state.

2Actually, by this reasoning, it should appear slightly yellow, since yellow is the color of the sun’s

photosphere. Whether the corona is yellow or white I have yet to see with my own eyes.
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Bring to bear one fact that is difficult to guess from first principles: the dipole moment of
the CO molecule is 0.1 Debyes (1 Debye = 10−18 cgs. Note that ea0 = 2.5 Debyes, where
e is the electron charge), not ∼1 Debye, as one might have guessed naively. The smaller-
than-usual dipole moment of CO is a consequence of the strong double bond connecting C
to O. Most other molecules—e.g., H2O, CS, SiS, SiO, HCN, OCS, HC3N—have dipole
moments that are all of order 1 Debye.

Compare your estimate to the true answer of 6 × 10−8 s−1.

We can estimate the Einstein A coefficient using the approximate equation derived
in class:

A21 ∼
2d2ω3

0

3h̄c3
.

Note we can just plug in our value of λCO = 2πc/ω0 and standard constants for every-
thing except for the dipole moment, which has a difficult to guess value of 0.1 Debye
∼ 10−19[cgs]. Plugging in these values gives:

A21 ∼ 8.7 × 10−8s−1

which is pretty close to the actual value of 6 × 10−8s−1.

(c) Estimate σ, the cross-section of the transition at line center, in cm2. Assume the
line to be thermally broadened at a typical molecular cloud temperature of 20K.

To estimate the cross-section at line center of this transition, we apply the equation
(again from lectures):

σlc ∼
λ2

8π

A21

∆ν
.

Here ∆ν is the broadening of the line. For our particular case, the broadening mechanism
is thermal broadening, which gives ∆ν ∼ ν vthermal

c . The thermal velocity is given by

vthermal =
√

3kT
m . Using T = 20K and m ∼ 30mp we find that the frequency broadening

is ∆ν ∼ 5 × 104s−1. Plugging this into the cross-section equation gives

σlc ∼ 5 × 10−15cm2

(d) If the number abundance of CO molecules to H2 molecules is nCO/nH2
∼ 10−4 (i.e.,

close to the solar abundance ratio of nC/nH ∼ 10−4), estimate the column of hydrogen
molecules required to produce optical depth unity at the center of the CO line. Is this
column likely to be exceeded in a molecular cloud? Take a typical molecular cloud H2

density of 104 cm−3 and a cloud dimension of 100 pc.3

Assuming nH2
∼ 104cm−3 in molecular clouds (where we expect to see CO), and

zero everywhere else, we use nCO/nH2
∼ 10−4 to find a rough number density of CO

3In Spitzer’s book on the interstellar medium, molecular cloud densities of molecular hydrogen are

said to range from 103 to 106 cm−3. The density can be orders of magnitude higher than even 106 cm−3

as you approach star forming regions. Moreover, cloud dimensions can range from 1 pc to 100 pc.

Molecular clouds are clumpy structures.

10



in molecular clouds of 1 CO molecule per cubic centimeter. Using this number density
and the cross-section from part (c), we expect to see an optical depth of unity when the
column of CO molecules has a height s given by:

τ = 1 = nCOσlcs which gives s ∼ 2 × 1014cm ∼ 7 × 10−5pc.

Compared with the rough size of a molecular cloud of 100 pc, we expect this column to
be exceeded in our galaxy whenever the line of sight points at a molecular cloud.

Moral: Molecular clouds in the lowest-order (J = 1 to J = 0) rotational transition
of the most common isotopomer of carbon monoxide, 12CO, are likely to be extremely
optically thick. How do astronomers get around this problem to measure the mass of
a molecular cloud? Some try using less common isotopomers of CO, such as 13CO
(the terrestrial abundance of 13C to 12C is about 1/89) or C18O (the terrestrial isotopic
ratio is 18O/16O ∼ 1/500). This helps, but not for the most massive of clouds that are
considered here.

Others try looking at higher-order (higher J) transitions in CO for which level pop-
ulations will be smaller because molecular clouds are cold. And others give up on CO
altogether and try to detect emission from optically thin dust (and then multiply by
a factor of 100 to account for the gas-to-dust ratio) or other other, even less abun-
dant molecules (whose abundance relative to hydrogen must be inferred from chemical
modelling).

(e) Based on your answer to (d), would you conclude that this transition is a good way
to measure the mass of molecular gas in a galaxy? How about the temperature?

If the line were merely thermally broadened, we could simply measure the width of
the line and thereby infer the temperature. Real-world difficulties crop up, however, from
non-thermal, bulk streaming motions (turbulence) in molecular clouds that complicate
interpretation of a measured line width.

Because the clouds tend to be so optically thick in this transition, we are only
sensitive to their outer skins, so an emission line measurement does not provide a good
way to measure the mass of the most massive of clouds. In other words, we can’t tell
how much material lies beneath the surface of optical depth unity. See part (d) for
alternative ways of measuring the masses of molecular clouds.
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