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Problem 1. Energy Density of Starlight and Grain Temperature

Interstellar space is filled with radiation. The bulk of the radiation arises from light
emitted by the most massive (O-type) stars, each of mass 102M�. The number of such
stars in our Galaxy is about 5 × 104, distributed over a cylindrical disc of radius 50 kpc
and height 200 pc.

(a) Estimate the energy density of starlight in the Galaxy. Express your answer in
eV/cm3. To estimate the luminosity of the most massive stars, use the fact that they
are radiating at the Eddington limit; i.e., recall problem set 3.

Energy density (u) is related to flux (F ) by the following equation:

u =
F

c
, (1)

and the flux from an object with luminosity L is

F =
L

4πr2
, (2)

where r is the distance to the object. Our strategy in this problem is thus to find the
total flux at an “average” point in the Galaxy by adding up the flux received at that
point from each O-star in the Galaxy.

To do this, we need a model to describe the locations of all the O-stars in the Galaxy.
Let’s approximate the Galaxy as a cylinder, with all the O-stars uniformly distributed
within the Galaxy’s volume. To have an idea of how dense the Galaxy is in O-stars,
let’s find the average distance (rnear) between an observer in the Galaxy and the nearest
O-star. Let N ≡ the number of Galactic O-stars, rGal ≡ the radius of the Galaxy, H ≡
the height of the Galaxy, and VGal ≡ the volume of the Galaxy.

rnear ∼
(

VGal

N

)1/3

=

(

πr2
GalH

N

)1/3

= 320pc > H. (3)

Since the distance to the nearest O-star is greater than the height of the Galaxy, we
can make the approximation that all O-stars lie in a plane. (The radial component
of the distance to any star is greater (and usually much greater) than the component
of the distance normal to the disk.) Let’s consider an observer at the center of the
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Galaxy. Beyond a distance of about rnear, the fact that the stars are point sources is
unimportant. Let’s therefore model the Galaxy as a 2-dimensional annulus with inner
radius of rnear and outer radius of rGal, which has a continuous uniform distribution of
luminosity sources (the individual stars are smeared out over the whole area). Then we
can define a luminosity surface density σ :

σ ≡
LO−starN

πr2
Gal

(4)

We can calculate LO−star using the relationship between mass and luminosity we found
in problem set 3, question 1 (p47 in Rybicki & Lightman) :

LEDD = 1.25 × 1038 erg s−1
(

M

M�

)

(5)

with MO−star = 102M�, so

LO−star ∼ 1040 erg s−1. (6)

Now we can calculate the total flux received at the center of the Galaxy:

dF =
σdA

4πr2
(7)

F =

∫ rGal

rnear

σ

4πr2
2πr dr =

σ

2
ln

(

rGal

rnear

)

(8)

So we can finally obtain the energy density at the Galactic center:

u =
F

c
=

1

2

LO−starN

cπr2
Gal

ln

(

rGal

rnear

)

(9)

u =
(1040 erg s−1)(5 × 104)ln

(

50
.32

)

2(3 × 1010 cm s−1)(1.5 × 1023 cm)2(1.6 × 10−12 ergeV−1)
= 0.4eV cm−3 (10)

In truth, the logarithmic correction factor over-estimates the true correction factor be-
cause stars from the other side of the Galaxy are obscured from view by dust; recall
the slide show of the first class, during which I said that most of the visible starlight
originates from within ∼1 kpc of Earth. Also see the next problem where we show that
at visible wavelengths, we suffer about 1 mag extinction for every kpc travelled. But all
logarithms are of order unity anyway, so the error accrued in including every O-star is
negligible; compare the flux from the single nearest O-star and the flux from all O-stars
and you will see that they differ by a factor of 5.
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(b) The interstellar radiation field (ISRF) heats dust grains in the interstellar medium
(ISM). Estimate the temperature, T , of the largest grains in the ISM. These grains have
radii of a ∼ 0.1 µm. Take their emissivity (Qemis) = absorptivity (Qabs) to be unity
for wavelengths shorter than 2πa and to fall off as 2πa/λ for longer wavelengths. Is
the grain hotter, cooler, or equal to the temperature of an ideal blackbody placed in the
ISRF?

Most of the interstellar radiation field (ISRF) is produced by O-stars, which have
temperature T ∼ 40000K. From the Wien Peak Law, we find the peak wavelength of
the ISRF:

λpeak =
0.29 cm K

T
= 0.07µm (11)

In class we learned that about 95% of the intensity from a blackbody comes from
the range of 1

3λpeak to 3λpeak, so most Bλ(ISRF ) comes from .02µm < λ < 2µm. Thus
almost all of the energy absorbed by our grain from the ISRF is in the wavelength
range λ < 2πa where Qabs = 1, so the grain absorbs energy from the ISRF pretty much
perfectly:

Fabs = Ffrom O−stars = cu = 1.2 × 1010eV s−1 cm−2 = 0.02 erg s−1 cm−2. (12)

The grain is likely to be emitting most of its power at infrared wavelengths that are
much greater than 2πa. Then we can approximate the emitted flux as

Femis ≈ π

∫

∞

0
Bλ(Tgrain)

2πa

λ
dλ (13)

Here we have assumed that most of the area (power) underneath the Planck function
is at λ � 2πa, so the error accrued at λ ≤ 2πa—where our expression for Qemis is
incorrect, because it should be equal to 1—is negligible. Guessing different temperatures
in Mathematica gives T ≈ 19K.

We can arrive at this result without having to resort to numerics. Write Femis =
σT 4Qemis. Now Qemis = 2πa/λ for λ > 2πa. The wavelengths at which most of
the power from our grain will be emitted are near λ ≈ hc/5kT from the Wien peak
law. Now use of the Wien peak law is not rigorously justified because the Wien peak
law is for blackbodies and our grain is not a blackbody. Still, the grain will be at
some temperature T and it will be emitting most of its power at wavelengths which are
inversely proportional to T ; the numerical value of “5” in the Wien peak law should shift
to a slightly lower number because our grain’s power at long wavelengths is diluted, and
therefore most of the power will get shifted to shorter wavelengths. Let’s stick with “5”
and see how our answer depends on this guess. Then Femis = σT 42πa/(hc/5kT ), which
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we set equal to Fabs above. This yields T ≈ 17K, and it scales as “5”−1/5—not that
sensitively.

The temperature of an ideal blackbody placed in the ISRF is

FfromO−stars = σT 4
ideal ⇒ Tideal = 4K (14)

Our grain is thus hotter than a blackbody at thermal equilibrium in the ISRF, as it
must be since it absorbs with perfect efficiency but emits with imperfect efficiency; to
maintain global energy balance, the grain must boost its temperature above that of a
blackbody.

(c) At what wavelength, λpeak, does νFν (the SED; recall problem set 3) of such grains
peak? Give a number in microns, and also an expression in terms of T , fundamental
constants, and dimensionless numbers.

We can continue our approximation that all energy is radiated from the grain in the
Qemis = 2πa

λ ∝ ν regime. To find λpeak of νFν , we find νpeak by setting the derivative of
νFν to zero, and then converting from νpeak to λpeak. Since we’ll be setting the derivative
to zero, we can drop constant coefficients in the expression for the SED.

νFν ∝ νBνQemis(ν) ∝ ν2Bν ∝
ν5

e
hν

kTgrain − 1
(15)

Define x ≡ hν
kTgrain

, take the derivative of equation 15, and set it equal to 0:

d(νFν)

dν
∝

d

dν

ν5

e
hν

kTgrain − 1
∝

d

dx

x5

ex − 1
=

5x4(ex − 1) − x5ex

(ex − 1)2
= 0. (16)

Using Mathematica’s NSolve on the numerator, we find that xpeak = 4.97.

νpeak =
kTgrain

h
xpeak ⇒ λpeak =

ch

kTgrain4.97
= 140µm (17)

(d) These largest grains also carry the lion’s share of the mass in the interstellar grain
distribution. Given a dust-to-gas mass density ratio of ρdust/ρgas ∼ 10−2 (metallicity),
a rough average density of gas in the Galaxy of 0.1 H atom cm−3, and a radial extent of
the Galaxy of 50 kpc (kiloparsecs), calculate the specific intensity of the infrared Milky
Way at a wavelength of λpeak. Express in mJy arcsec−2, where mJy = milliJansky
= 10−3 × 10−23 erg s−1 cm−2 Hz−1 is a radio astronomer’s unit of “flux density” (the
“density” here refers to spectral density; i.e., it refers to the per Hertz) and arcsec = 1
arcsecond = 1/206265 (a phone number worth remembering) radians.
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Let’s again assume we’re in the center of the Galaxy, so our line-of-sight distance is
rGal. We can calculate the number density of grains in the Galaxy, using the information
given in the problem, and an estimate of the density of a single dust grain (ρgrain ∼
2 g cm−3):

ndust =
ρdust

ρgas
ngasmH(

4

3
πa3ρgrain)−1 = 2 × 10−13cm−3 (18)

Now we multiply ndust by rGal to get a column density, and then multiply by the
effective cross-sectional area of a grain, Qemisπa2, to obtain the optical depth along the
line of sight:

τlos = (ndust)(rGal)Qemis(πa2) = 0.04 (19)

These grains comprise a homogeneous, thermally emitting (and absorbing) slab of source
function Sν = Bν . The observed specific intensity for such a slab equals

Iνpeak
= Sνpeak

(1 − e−τlos) (20)

= Bνpeak
(Tgrain)(1 − e−0.04) (21)

≈ Bνpeak
(Tgrain) × 0.04 (22)

≈ 3 × 10−14 erg s−1 cm−2 Hz−1 sr−1 (23)

≈ 80mJy arcsec−2 (24)

using 1 sr = (206265 arcsec)2. We bravely compare this answer to the truth as measured
by the DIRBE sky map (http://lambda.gsfc.nasa.gov/product/cobe/cobe images/aaf.gif):
in the plane of the Galaxy, DIRBE measured ∼8000 MJy/sr at λ = 100 microns. Our
answer of 80 mJy/square arcsecond converts to ∼3000 MJy/sr at λ = 140 microns. Not
bad for an order-of-magnitude estimate!

Problem 2. Dust Opacity

A rough model for the dust in the ISM tells us dn/da ∝ a−3.5, where dn is the differential
number of dust grains having radii between a and a + da. The largest radius in the
distribution is amax = 0.1µm, and the smallest radius is amin = 0.001µm.

(a) Plot the opacity, κ(λ), contributed by all dust grains as a function of wavelength
from λ = 0.1µm to λ = 10µm. Express the opacity in units of cm2 g−1, where the g−1

equals “per gram of gas.” Use whatever parameters you need as given by problem 1 of
this set.

Indicate over every decade in wavelength which grain sizes dominate the opacity. (For
example, at wavelengths between λ = 0.1 and 1 µm, do the a ∼ 0.1µm grains dominate
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the opacity? If not, do the a ∼ 0.01µm grains dominate? And if not them, what about
the a ∼ 0.001µm grains?)

By definition,

ρdustκdust(λ) =

∫ amax

amin

dn

da
Qabs(a, λ)πa2da (25)

where dn/da is the differential number density of grains having radii between a and
a + da, and ρdust is the volumetric (bulk) density of grains in space (not the internal
grain density, ρgrain, which is like that of water). Note also that κdust is the cross-section
for absorption by dust per gram of DUST. At the very end of the problem, we only have
to multiply by the dust-to-gas mass ratio, 10−2, to get the desired cross-section per gram
of GAS.

Begin by finding an expression for dn/da. All we are told is that dn/da ∝ a−3.5, so we
need to find the constant of proportionality. We can find it by using the fact that the
mass of all grains, integrated over the entire size range, must yield a volumetric mass
density of ρdust. In other words, defining dn/da = Ca−3.5,

ρdust =

∫ amax

amin

dn

da

4

3
πa3ρgrainda (26)

≈
4π

3
Cρgraina1/2

max (27)

→ C =
ρdust

ρgrain

3

8π
a−1/2

max (28)

since the integral is dominated by the upper limit. Plug C into our beginning expression
for κdust:

κdust(λ) =
3

8ρgrain
√

amax

∫ amax

amin

a−1.5Qabs(λ, a)da (29)

Now we attack the integral. First we note that for wavelengths longer than 2πamax ≈
0.6µm, we are always on the falling power-law section of Qabs = 2πa/λ. To wit,

∫ amax

amin

a−1.5Qabs(λ > 0.6µm)da =
2π

λ

∫ amax

amin

a−0.5da (30)

≈
4π

λ

√
amax (31)

So for λ > 0.6µm, plugging our answer for the integral into (29),
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κdust(λ > 0.6µm) =
3π

2ρgrain
λ−1 (32)

Finally convert to the desired κ by multiplying by ρdust/ρgas ∼ 10−2:

κ(λ > 0.6µm) =
3π

200ρgrain
λ−1 (33)

At these wavelengths, the BIGGEST grains, near amax, dominate the opacity. When we
evaluated the integral in (31), amax dominated the integral.

Now we attack λ < 0.6µm. The integral in (29) breaks into two pieces,

∫ λ/2π

amin

2πa

λ
a−1.5da +

∫ amax

λ/2π
a−1.5da (34)

which evaluates to

4
√

2π
√

λ
−

4π

λ

√
amin −

2
√

amax
(35)

This cumbersome expression numerically evaluates to 2141 (cgs) at λ = 0.1µm, where
the major contribution is from the first (and only positive) term. Therefore at λ =
0.1µm, the grains that contribute most to the opacity are those whose radii a ≈ λ/2π ≈
0.01µm. At λ = 0.6µm, the cumbersome expression evaluates to 630 (cgs); the major
contribution is from a ≈ 0.1µm.

Putting it all together, the opacity (per gram of GAS) at λ = 0.1µm equals

κ(λ = 0.1µm) = 2500 cm2 g−1 (36)

(dominated by smallish grains, a ≈ 0.01µm), falling to

κ(λ = 0.6µm) = 700 cm2 g−1 (37)

(dominated by the biggest grains, a ≈ 0.1µm), and falling from thereon as λ−1, so that
at λ = 10µm,

κ(λ = 10µm) = 42 cm2 g−1 (38)
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(and dominated throughout this long wavelength regime by the biggest grains, a ≈
0.1µm).

(b) Convert your plot to read magnitudes of absorption per kiloparsec travelled in the
Galaxy (mag/kpc) as a function of λ. Again, use whatever parameters you need from
problem 1 above.

A magnitude is a logarithmic unit measured in base 2.5; each magnitude of absorption
reduces the flux from a star by a factor of 2.5; a rule of thumb is that 5 magnitudes is
a factor of 100. (Editorial note: Astronomer’s magnitudes were invented by Hipparcos
to measure star brightnesses; a magnitude 0 star is 2.5 times brighter than a magnitude
1 star, and so on. For some reason, optical and near-infrared astronomers refuse to
abandon this system, even though it runs backwards, crosses zero, and is normalized to
different values depending on the wavelength band. As far as I can see, its only redeeming
quality is that base 2.5 is close to the natural base e = 2.712...)

By definition,

τλ(s) = ρgasκλs (39)

As light passes through a distance s in the ISM, the flux is reduced by eτλ(s). We want
to plot this quantity on the magnitude scale, which is base 1001/5, and which increases
as flux is reduced. Therefore,

magλ(s) = −log1001/5e−τlambda(s) = τλ(s)log1001/5e = τλ(s)
1

2
5 ln10

(40)

so

(

mag

kpc

)

λ

= 1.086 × ρgasκλ ×
3 × 1021cm

kpc
(41)

where ρgas = ngasmH from 1d. Plugging in numbers from 2a and from 1d, we get

(

mag

kpc

)

λ=0.1 µm

= 1.4
mag

kpc
(42)

(

mag

kpc

)

λ=0.6 µm

= 0.4
mag

kpc
(43)

(

mag

kpc

)

λ=10 µm

= 0.02
mag

kpc
(44)
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The plot of mag/kpc (λ) has identical shape to the plot for κ(λ). Moral: the extinction
at infrared wavelengths is much reduced below that in the optical.
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