
Astro 201 – Radiative Processes – Problem Set 6

Due in class.

Readings: Hand-outs from Osterbrock; Rybicki & Lightman 9.5; however much you like
of Mihalas 108–114, 119–127, 128–137 (even skimming Mihalas can prove enlightening);
however much you like of the on-line supplemental article by Purcell & Field (1956).

Problem 1. Maxwellian is not quite LTE

A certain atom suffers collisions with another species (perhaps merely its own). These
collisions populate and de-populate a certain level in the atom that lies above another
level in that atom by energy E. Prove that if the relative velocity distribution, f(v),
between the atom and surrounding colliders obeys a Maxwellian at temperature T
(
∫
∞

0
f(v)dv = 1), then the excitation rate coefficient,

q12 ≡

∫
∞

0

σ12vf(v)dv , (1)

is related to the de-excitation rate coefficient,

q21 ≡

∫
∞

0

σ21vf(v)dv , (2)

by

q12 = q21
g2
g1

exp(−E/kT ) . (3)

where gi is the statistical weight of level i, σij is the velocity-dependent collisional cross-
section for making a transition from level i to level j, and v is the relative velocity between
the atom and the colliding species. You should find this problem straightforward given
the Einstein analogue presented in lecture.

NOTE: Nowhere in this discussion have we assumed that the level populations are
distributed in a Boltzmann fashion at temperature T . That is, none of the relations above
assume LTE (local thermodynamic equilibrium); LTE is a more restrictive condition than
merely assuming that the relative velocity distribution is Maxwellian.

Problem 2. 21 (Flavors of) Temperatures for 21 cm Radiation
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This problem revisits the famous hyperfine transition in neutral hydrogen. Here we try
to understand what sets the excitation (spin) temperature, Tex. (In a previous problem
set, we merely contented ourselves with the statement that Tex ≫ T∗.) While we’re at
it, we learn more astronomer’s jargon.

In general, the excitation temperature of a transition is influenced by two factors: (1)
the radiation field, and (2) collisions with surrounding species.

The radiation field can either excite the atom through photon absorption, or de-excite
through stimulated emission. Measure the strength of the ambient radiation field at 21
cm by J̄ν , the mean (i.e., angle-averaged) intensity integrated over the hyperfine line
profile (recall Rybicki & Lightman chapter 1).

As for collisions, consider here exciting and de-exciting collisions with fellow neutral
hydrogen atoms; Purcell and Field (1957, hereafter PF) conclude that collisions between
a given electronic-ground-state H atom and other electronic-ground-state H atoms are
most important in the predominantly neutral HI clouds of the ISM. (Electrons are ∼42
times faster and tend to dominate the excitation dynamics in other situations, but
assume here that there are too few of them in these cold clouds.) Denote the collisional
excitation rate coefficient by q12, and the collision de-excitation rate coefficient by q21
(see problem 1). Assume for this problem that both hyperfine-excited and hyperfine-
ground atoms can excite or de-excite the hyperfine level in an atom.1

(a) Write down the equation of global (not detailed!) balance for this transition. That
is, write down the statement that the rate of excitations (from all possible channels)
per volume per time equals the rate of de-excitations (from all possible channels) per
volume per time.

Use only the following variables: n1 and n2 are the number densities of atoms in the
ground and excited states, respectively, n = n1 + n2, TK is the kinetic temperature of
the atoms that move according to a Maxwellian, q12, any Einstein coefficients you want,
J̄ν , and the statistical weights g1 and g2 of the ground and excited states, respectively.

What you have written down is an equation for the excitation temperature (Tex ↔
n1/n2) in terms of the radiation field and the rate of collisions. Regard the latter two
as given throughout this problem.

(b) DEFINE a ”radiation temperature,” TR, from J̄ν as

J̄ν ≡ Bν(TR) (4)

1In truth, excitations and de-excitations proceed, as PF describe, by “spin-exchange” collisions, in

which an electron with a certain spin in one H atom swaps places with an electron having a different spin

coming from the colliding H atom. A given atom can swap its way up to the hyperfine excited state, or

swap its way down to the hyperfine ground state. Here we follow PF and place the relative probabilities

of undergoing a swap-up versus a swap-down into q12 and q21.
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Note that we are NOT saying the ambient radiation field is Planckian. We are merely
DEFINING a number TR by using Planck’s function, Bν , where ν = 1420 MHz, the
frequency of the 21 cm line.

Re-write your equation in (a) to solve for Tex in terms of the following variables: TK ,
TR, T∗ ≡ hν/k (recall last problem set), and the dimensionless variable

z ≡
g1nq12T∗

g2A21TK

(5)

where A21 = 2.85 × 10−15 s−1 is the Einstein decay coefficient. Use the very likely
condition that TK , TR ≫ T∗ to rid your equation of all exponentials.

Verify that if z ≫ 1, Tex ≈ TK (collisions beat radiation; the transition is in LTE at
TK), but that if z ≪ 1, Tex ≈ TR (radiation beats collisions; the transition is not in LTE
at TK).

(c) To order of magnitude (actually much better than that), what fraction of HI is in the
excited hyperfine state? Recall that g1 = 1 and g2 = 3 and use the very likely condition
that TK , TR ≫ T∗.

(d) Estimate the value for z for an HI cloud at TK = 100K, n = 1cm−3. Use Table 1
and equation (9) of PF; note that PF’s collision frequency ν = n〈σv〉 is not the same as
our line frequency ν; call PF’s ν = νPF ; then nq12 = 3νPF /8. (For those interested, the
3/8 can be understood easily; skim the first 3 pages of PF and use your answer for part
(c).)

Based on your answer, would you expect collisions or radiation to be more important in
determining the degree of excitation?

(e) ”Critical densities,” ncrit, for exciting the line by collisions are defined by setting
the rate of spontaneous decays equal to the rate of collisional de-excitations. Show that
such a procedure gives

ncrit =
A21

q21
(6)

and solve for its value for this line at TK = 100K.

One can define ncrit for any line transition at any temperature; it is a crude gauge of the
density of colliders required for collisions to be important in setting the level populations.

(f) Suppose radio observations are made that spatially resolve emission from a uniform
HI cloud that is optically thick to its own 21 cm line radiation. Prove that the observed
specific intensity, Iν , equals
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Iν =
2kTex

λ2
. (7)

(The following comments are not important to solving this problem. Radio astronomers
like to use ”brightness temperature,” TB, as a measure of specific intensity. DEFINE
TB ≡ Iνλ

2/2k; as with TR, we are NOT saying that Iν looks like a Rayleigh-Jeans tail
of a blackbody; we are only USING the Rayleigh-Jeans tail of a blackbody to DEFINE
TB . This is just one of these astronomer’s habits that one must adopt to stay in the
conversation; as if life weren’t already complicated with all the other temperatures! Part
(f) therefore asks you to show that the ”brightness temperature in the line equals the
excitation temperature of the line for an optically thick cloud.”)

Problem 3. Photoionized Quasar Winds

Quasars are luminous X-ray sources sitting in the cores of ancient galaxies. They are
supermassive black holes that accrete surrounding gas; the gravitational potential energy
of gas spiralling down the potential well of the black hole is converted into radiation.
The luminosity of a typical quasar is L ∼ 1046 erg s−1, mostly in the Lyman continuum,
with a substantial fraction in a power-law X-ray tail. The flux density in the X-ray tail
obeys Fν ∝ ν−β, with 1 < β < 2. (Fν has units of energy per time per frequency per
area).

This radiation streams out from regions closest to the black hole and may illuminate
more distant but still circumnuclear gas. In so doing, it photo-ionizes the more distant
gas and threatens to turn it into a complete and utter plasma, with all electrons stripped
from parent nuclei. This problem estimates the varying degrees to which this threat is
made good.

(a) Define the ”ionization parameter,” ξ, as the number density of Lyman continuum
photons, η, divided by the total number density of hydrogen, nH = nH+ + nH0 , where
nH+ is the number density of ionized hydrogen, and nH0 is the number density of
neutral hydrogen. Show that in photo-ionization equilibrium (rate of photo-ionizations
per volume per time equals the rate of radiative recombinations per volume per time):

nH0

nH+

≈
10−6

ξ
(8)

valid for nH0/nH+ ≪ 1. This is a rule of thumb worth remembering. Just consider
photons near the ionization edge! Assume a 1-dimensional geometry for the problem;
consider only a semi-infinite slab, upon which is incident a radiation flux. Further assume
a kinetic temperature of ∼104 K. In your derivation, you will see that the dimensionless
factor of 10−6 can be expressed in terms of fundamental constants.
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(b) Prove for hydrogenic ions of species X and nuclear charge Z (atoms that are holding
on desperately to their last electron) that

nX0

nX+

≈
10−6

ξ
Z2β+4 (9)

where nX0 is the number density of hydrogenic ions of species X that each still retain
their last electron, and nX+ is the number density of fully stripped ions of species X.
Assume that all of the hydrogenic metal ions are recombining with electrons provided by
hydrogen, and that nearly all of the hydrogen is ionized. We check this last statement
in part (d).

Steps you can take:

Use the Bohr model to understand how ionization energy scales with Z.

Use our quick-and-dirty derivation of the photo-ionization cross-section,

σ ∼
λ2

8π

A21

ν
, (10)

to argue that σ scales as the radius of the hydrogenic ion squared. Then use the Bohr
model to see how this radius scales with Z.

Finally, once you have determined how σ scales with Z, use the Milne relation to see
how the radiative recombination coefficient scales with Z.

(c) Notice that no matter how large ξ is, there are always a few electrons bound to nuclei
at any given moment (if there were none, there would be nothing for photons to ionize,
and photo-ionization equilibrium would be violated). This tiny neutral/hydrogenic pop-
ulation attenuates the UV-to-X-ray radiation as it tries to propagate through gas. The
gas will have an ionization gradient: at its unshielded face, naked before the radiation,
nearly all the ions will be stripped, but as we move further away from the face, the
ionizing radiation weakens due to increasing absorption by the tiny neutral/hydrogenic
population, and the neutral/hydrogenic fraction grows.

Show that an element of fractional number abundance fX = nX/nH relative to hydrogen
(nX = nX0 + nX+) goes from being fully stripped to predominantly hydrogenic over a
column density of hydrogen of order

NH(Z) ∼ 1023ξZ−2β−2f−1

X cm−2 . (11)

Assume that such columns are achieved over regions sufficiently geometrically thin that
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we can neglect the dilution of the radiation flux by the inverse square law. Again,
consider only ionizations near the ionization edges of various species.

(d) If β > 1.5, show that the layers of fully stripped carbon, nitrogen, oxygen, and
neon are each thinner than the layer of fully stripped hydrogen. In other words, soft
X-rays are stopped by the metals before the Lyman continuum photons are stopped
by hydrogen. This is a fact of relevance in understanding how gas can be radiatively
accelerated to form quasar winds.
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