Astro 201 — Radiative Processes — Solution Set 9

Joe Converse and Eugene Chiang

NOTE FOR ALL PROBLEMS: In this class, we are not going to stress over the sin «
term in any expression involving synchrotron emission, nor are we going to worry about
other factors of order unity, like gamma (I') functions. If you see a sina or gamma
function in your travels, just set it equal to 1.

Problem 1. Synchrotron Losses

(a) Obtain an analytic expression for the energy of a single relativistic electron as a
function of time, E(t), taking into account its energy loss by synchrotron radiation. Your
expression should contain only the variables E(0) (the initial energy of the electron), B
(the magnetic field, here held fized with time, following the rest of the world, though one
should worry in general about the field changing with time just as the electron energy
spectrum changes with time), time t, and fundamental constants. Assume sina =1 (the
electron pitch angle is 90 degrees) for simplicity.

For (synchrotron) problems of interest to us, the electron always remains relativistic. It
merely evolves from a large v > 1 to a smaller v > 1.

We know what the power emitted is:

dE 4
= — = ——orcey*fPup (1)

p=—
dt 3

where the minus is because the energy is being lost. Since v > 1 always, 0 =~ 1 always.
So we have
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where v = Solving this differential equation by separation of variables we get
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where Ej is the initial energy. Integrating this and multiplying the result by Ej gives
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which is the synchrotron lifetime (all subscript 0’s refer to the value at ¢ = 0). Solving
for E we find

E(t) = (6)

(b) How can you reconcile the loss of energy of the electron with the bald statement of
Rybicki € Lightman on page 168 that “y is constant”?

Rybicki & Lightman say on page 167 that %(777@662) = quU - E = 0, and from there
conclude that y=constant because E = 0. They are referring to the fact that the
external E-field is 0. The electron, however, also feels its own E-field, and so the total
E = (0, and hence + is not actually constant. It is, however, very nearly constant over 1
gyro-period (except near ultrastrong magnetic fields, ~10'® G), and the dynamics over
1 gyro-period is all that concerns RL on page 167.

The electron feeling its own E-field is referred to as “radiation reaction.” All syn-
chrotron radiation is a consequence of radiation reaction.

(c) We have made arguments in class that power-law distributions of electrons in astro-
physical sources are maintained against synchrotron losses by continuous energization by
central engines (a.k.a. injection). The injection (input) spectrum of electrons is modified
by synchrotron losses to produce a steady-state (output) distribution.

Calln(E,t) = dN/dE the differential energy spectrum of electrons as discussed repeatedly
in class. Continuity of electrons in energy space reads
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where I is the rate of injection of electrons with some input distribution and E is the
rate of energy loss of a single electron by synchrotron radiation. This equation should
not mystify you; it merely describes how the number of electrons in a given energy bin
changes with time, taking into account a flux divergence (the second term on the left-
hand-side) and a source term (the right-hand-side).

We have assumed in class a steady-state distribution of electron energies for which n
EP. Giwen p, how must I scale with E? Give only the scaling and forget about the
numerical coefficients.



As with most scaling problems, you don’t have to solve anything in detail. Ruthlessly
work to order of magnitude.

From the definition of I we have
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and we know 1 o< EP, so %% o EP~1. For E we have
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and from part (a) we know that 1+ % = % Then
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and % x E. Therefore
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(d) Electrons having a given energy must wait a characteristic time before synchrotron
losses become important. Before this time elapses for all such electrons, how does 1 scale
with E?

Before losses become important, ¢ < 7, and so F ~ E; and E~ —% x E. Then we
have
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which gives that 7 oc EPT!. In other words, it looks just like the injected spectrum.

An easier way to find the same result is to set the second term on the LHS of equation
(7) equal to zero, appropriate to the case of zero energy loss. Then n = It + 1, and if
no = 0, then 1 oc I oc EPT. The spectrum looks just like the injected spectrum in slope,
but its amplitude rises linearly with time.

(e) The spectral index (o = dln F, /dInv) of radiation in a fized frequency range from
a radio jet flattens with increasing distance from the central galaxy. That is, o« = —0.5
at the remote edge of the jet (the “hot spot”), and o = —1 closer in. Given your



understanding in (c) and (d), where are the “freshest” electrons located, i.e., those newly
injected into the energy spectrum? Are they at the end of the jet, or are they closer in?
In other words, where is the principal site of particle acceleration?

Since a@ = 1#, for the hot spot (o = —0.5), p = —2, and farther in on the jet
(o« = —1), p = —3. Hence the hot-spot (where the spectrum is flatter) looks more like
the injected spectrum, and so it is where the ”young” elections are. It is when the jet is
stopped at the lobe that most of the acceleration occurs.

(f) Sketch several profiles of n vs. E at various times, assuming I is constant in time.

Since the synchrotron lifetime goes as Ej, ! the higher-energy electrons lose their energy
first. Initially the spectrum is oc EP*! (upper-left panel), but as time goes on, the high-
energy end steepens to be o< EP (upper-right panel). The point of steepening moves to
lower energies as time goes on (lower-left panel), until eventually the entire spectrum
reaches the steady state of being < EP (lower-right panel).
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Problem 2. Great Balls of Relativistic Fire

Rybicki & Lightman Problem 4.1 (Don’t worry if you can’t reproduce the answer to within
a factor of 2; the answer is meant to be a rule of thumb.)



Since it is optically thick, we will only see light from the nearest side. Even then, because
of beaming, only those parts of the object within an angle of about % will send a signal
to us. This gives the geometry shown in the figure below.
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The observed time delay is cAt > x. The geometry gives us y = Rsin

see that z = ytan% R~ %% = %. So therefore
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Problem 3. Superluminal Motion, or Photons Chasing Photons
Rybicki & Lightman Problem 4.7

The geometry for this problem is very similar to that of problem 2. In this case, in a
time dt, the light coming straight down at us travels a distance of cdt, while the material
going along the jet at an angle 6 (instead of % above) travels vdt. The change in apparent
position on the sky is Az = vdtsin 6, and the distance it traveled parallel to our line of
sight is vdt cos . The apparent difference in distance between the original light pulse
and one emitted after dt is edt — vdt cos 8 = cAt. Finally,
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For v = 0.99c and 6 = 0.1, v4y,, = 6.6¢, and hence it can appear to move superluminally.
The maximum apparent speed occurs when
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which is true when cos @ = 7. At this angle, sinf = /1 — Z—; = %, and
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(¢) Plot vapp/c vs. O for v = 10%. Does the viewing angle 0 need to be especially small
for superluminal motion to be perceived?

For culture: see the beautiful illustration of superluminal motion in the optical M87 jet
by Biretta in the accompanying .jpg on the class website.

For v = 102, v = 0.99995¢. As the plot below shows, almost all viewing angles below
0 = Z exhibit superluminal motion if the jet is moving fast enough (dotted line is
Yarp — 7)),

(&

s
2



V., C

100 e
80 |
60
40

20

07‘7 el e Y el e ol B et e ol e e e el

0002040608101214
0



