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ABSTRACT

In this paper, we generalize Wisdom’s 2/7 law to the case of finite eccentricity.

We consider the restricted, planar, circular three-body problem. If µ is the

secondary mass, e is the particle eccentricity, and x is the particle-to-secondary

separation, the 2/7 law states that chaos ensues if e = 0 and x < µ2/7. Our law

states that any nonresonant orbit with either x < µ1/7 or x < (eµ)1/5 is chaotic;

we call the latter condition the “1/5 law.” We present analytic arguments for

the 1/5 law, and we successfully test it with a variety of numerical experiments.

Subject headings: celestial mechanics — instabilities — methods: numerical —

minor planets, asteroids

1. INTRODUCTION

Chaos is ubiquitous in celestial mechanics. In the solar system, chaotic interactions

with the planets shape the structure of the minor bodies, including the asteroid belt and the

Kuiper belt (Lecar 2001). In particular, the outer edge of the asteroid belt is known to occur

at the semi-major axis where first-order mean-motion resonances with Jupiter overlap, giving

rise to chaos. The actual mechanisms by which Jupiter depletes some regions of asteroids

include three-body secular resonances with Saturn and the ejection of eccentric particles by

Mars. Nonetheless, we can understand the location of the belt’s outer edge by analyzing a

simplified problem in which the perturbing planet executes a circular orbit about the sun,

and there are no other planets. In this paper, we consider the restricted, planar, circular

three-body problem.

Let µ be the secondary-to-primary mass ratio and x the separation between the orbits

of the secondary and a test particle. Wisdom’s (1980) 2/7 law states that for zero particle
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eccentricity, the value of x which separates chaotic and regular behavior scales as µ2/7.

Duncan et al. (1989) remark that the condition x < µ2/7 is also sufficient to produce chaos

at finite eccentricity, although it is no longer necessary. We derive a necessary and sufficient

condition by removing the assumption of zero eccentricity and applying analytic arguments

similar to those in (Wisdom 1980) and (Duncan et al. 1989). Our new condition generalizes

the 2/7 law to finite eccentricity e. At sufficiently large e, the new condition predicts the

boundary between chaotic and regular behavior to scale as x ∼ (eµ)1/5. We call this result

the 1/5 law.

We find that the encounter mapping used successfully by Duncan et al. (1989) to test

the 2/7 law is insufficient to test the 1/5 law. Instead, we perform numerical experiments

using the encounter maps described by Namouni et al. (1999); these maps can be made

accurate to arbitrarily high order in e. Experiments using the order 2 map and the order 10

map confirm both the 2/7 law and the 1/5 law.

2. ANALYTIC CONSIDERATIONS

In this section we more precisely define the variables of our system. We determine

the scaling laws of the dominant interactions: in particular, the change in the particle’s

eccentricity due to a single encounter is ∼ µ/x2. From this relation, we obtain an analytic

criterion for the onset of chaos. We define an indicator variable Z containing a µ2/x7 term

and an eµ/x5 term; if Z � 1 then the motion is regular, and if Z � 1, the motion is either

stably resonant or chaotic. At moderate eccentricity the second term dominates Z, so the

boundary between regular and chaotic behavior is found at x ∼ (eµ)1/5. This is the 1/5 law.

We employ an impulse approximation to determine the changes to the particle’s ec-

centricity. From conservation of the Jacobi constant we then deduce the behavior of the

separation x and the longitudes of conjunction λ. The indicator Z is motivated by two

criteria for chaos: resonance overlap and the decay of correlations in the history of λ.

2.1. Impulse Approximation

The system comprises a primary mass m1, a secondary mass m2 in a circular orbit about

m1, and a massless test particle in the plane of m1 and m2. We require that m2 � m1 and

that the test particle reside between the orbits of m1 and m2.

The total mass m1+m2, the gravitational constant, and the distance between m1 and m2

are all normalized to unity. Let µ = m2/(m1+m2) � 1 and let a, e, and ω̃ be the barycentric
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semimajor axis, eccentricity, and longitude of periapse of the test particle, respectively.

Define the separation x = 1− a and the eccentricity vector e = (e cos ω̃)x̂ + (e sin ω̃)ŷ. We

focus on the case when the test particle is far from the Hill sphere, so that µ1/3 � x � 1.

Additionally, in the absence of mean-motion resonances, we must have e < x to prevent

orbit crossing. We treat µ and e/x as small parameters in our Taylor expansions.

We approximate the motion of the particle by a Keplerian orbit around m1 interrupted

by a series of instantaneous impulses during conjunctions with m2. Between conjunctions,

x, e, and the mean motion n = (1− x)−3/2 are taken to be constant. Since the mean motion

of m2 is unity, the time T between successive conjunctions (“synodic period”) is

T =
2π

(1− x)−3/2 − 1
(1)

=
4π

3x +O(x2)
(2)

=
4π

3x
+O(1). (3)

We define λ as the longitude at a conjunction and ∆λ as the difference in longitudes of

conjunction between successive conjunctions. During time T , m2 passes through T radians;

then

∆λ = T (mod 2π). (4)

To calculate the change in x and e during a conjunction we use an encounter map as

described in the next section. For now, we estimate the change in e to lowest order in µ and

e/x by using the identity

e = v × (r × v)− r̂, (5)

where r, v are the inertial-frame position and velocity vectors of the test particle. To first

order,

δe ≈ δv × (r × v) + v × (δr × v) + v × (r × δv)− δr̂. (6)

Let s be the distance between the test particle and m2, u be the relative velocity between

the test particle and m2, and F be the force on the test particle exerted by m2. We write

s0, u0, F 0 for the values of s, u, F at conjunction:

s0 = x +O(e), (7)

u0 = n− 1 +O(e) (8)

= 3x/2 +O(x2) +O(e), (9)

F 0 =
µ

s2
0

r̂ (10)

=
µ

x2
r̂ [1 +O(e/x)] . (11)
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Let τ be the period of time during which s ∼ s0; then

τ ∼ s0

u0

=
2

3
+O(x) +O(e/x). (12)

The impulse is

δv =

∫
F dt (13)

∼ τF 0 +O
(

τ 3d2F

dt2

)
. (14)

To lowest order in x and e/x, d2F /dt2 vanishes, and we are left with

δv ∼ µ

x2
r̂. (15)

Since δv is directed along r, r × δv vanishes; and since we are working in the impulse

approximation, δr also vanishes. Equation (6) reduces to its first term:

δe ≈ δv × ẑ (16)

∼ − µ

x2
θ̂. (17)

We also want to determine δx. The above expression for δe is accurate to first order in

µ and zeroth order in e/x. However, to these orders, δx ≈ 0. Rather than explicitly include

O(µ2) terms in the above analysis, we employ a trick that exploits the conservation of the

Jacobi constant. Expanding the Jacobi constant to lowest order in x and e, the combination

3x2 − 4e2 is conserved; see Murray & Dermott (1999) eq. (3.213) for a derivation based on

Tisserand’s relation. Assuming for the moment that δx � x we get

2xδx ≈ 4

3

(
|δe|2 + 2e · δe

)
. (18)

Combining eqs. (3) and (18), we find the change in synodic period due to a single kick:

δT ≈ 4π

3x2
δx (19)

≈ 8π

9x3
(|δe|2 + 2e · δe) (20)

∼ 8π

9x3

[
µ2

x4
+

2eµ

x2
sin(λ− ω̃)

]
(21)

∼ 8πµ2

9x7
+

16πeµ

9x5
sin(λ− ω̃). (22)

We call δ∆λ the change in ∆λ after a conjunction: δ∆λ = δT .
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2.2. Criteria for Chaos

Generally, we should expect chaos to appear in a dynamical system when resonances

overlap (Chirikov 1979, Lecar et al. 2001). Since e � 1, in our system the first-order mean-

motion resonances are the most important. In a first-order resonance λ is constant; every

first-order resonance is characterized by an integer m such that ∆λ = 2πm. For a particle

to inhabit the overlap between two neighboring resonances m and m ± 1, it must be able

to jump from m to m ± 1 within a single conjunction. This requirement translates to the

condition

|δT | = |δ∆λ| ≥ 2π. (23)

We therefore expect an orbit to be chaotic if |δT | ever attains order unity. If an orbit is

not protected by a single mean-motion resonance, then regardless of chaos the angle λ − ω̃

should sample all values. Since we are interested in the largest δT an orbit suffers during its

conjunctions, if an orbit is non-resonant then we may replace Eq. (22) with the indicator

Z =
8π

9

(
µ2

x7
+

2eµ

x5

)
. (24)

If Z � 1 then the orbit is either resonant or chaotic; if Z � 1 then the orbit is regular.

We can also motivate the indicator Z through a heuristic argument made by Duncan

et al. (1989) which does not explicitly rely on mean-motion resonances. If µ were zero then

δ∆λ would vanish; the longitudes of conjunction would circulate at a constant rate. Instead,

δ∆λ measures the perturbation in the longitudes of conjunction; if the perturbation is ever

too great, say > π, then the sequence of longitudes “forgets” its past behavior and chaos

ensues. Duncan et al. (1989) include only the µ2/x7 term in δ∆λ, but we can adapt their

argument to our more accurate expression. Taking the maximum of δ∆λ as λ− ω̃ samples

all values, we again derive the indicator Z in eq. (24).

Note that neither argument for the indicator Z predicts the exact threshold value be-

tween ordered and chaotic behavior; we must determine the threshold experimentally.

2.3. The 1/5 Law

Due to the presence of protective mean-motion resonances, the condition Z � 1 is

necessary but not sufficient to produce chaos. Nonetheless, when Z ∼ 1, first-order mean-

motion resonances do not cover the entire phase space, so we should be able to find at least

a few chaotic orbits with Z just greater than order unity. For given initial conditions e, ω̃,

and λ, let us define x∗ to be the largest x for which the motion is chaotic. By the argument

just given, we expect Z(x∗) ∼ 1.
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If the eccentricity is small, e � µ/x2, then Z is dominated by its first term. In this case

we have

Z(x∗) ∼ µ2

(x∗)7
∼ 1 (25)

and therefore

x∗ ∼ µ2/7. (26)

Equation (26) is Wisdom’s (1980) “2/7 law” for the onset of chaos. On the other hand,

if the eccentricity is large compared with that induced by an individual kick—that is, if

e � µ/x2—then Z is dominated by its second term. In this case we have

Z(x∗) ∼ eµ

(x∗)5
∼ 1 (27)

and therefore

x∗ ∼ (eµ)1/5. (28)

The “1/5 law” for chaos at moderate eccentricity is a new result.

3. NUMERICAL EXPERIMENTS

3.1. Maps

Let en, xn, and λn be the values of e, x, and λ immediately preceding the nth conjunc-

tion. A numerical procedure which takes as its input (en, xn, λn) and outputs (en+1, xn+1, λn+1)

is called an encounter map. Encounter maps approximate the true motion, and some are

more accurate than others.

Duncan et al. (1989) use eq. (17) to define an encounter map, hereafter the “DQT

map.” Its derivation assumes e � µ/x2. By contrast, we are primarily interested in the

e � µ/x2 regime. Namouni et al. (1996) describe a family of more accurate encounter

maps that expand the interaction Hamiltonian in e/x to arbitrary order. The “order M

Namouni map” employs a Fourier expansion in (λ− ω̃) up to order M , followed by a Taylor

expansion in e up to order M . We implement Namouni maps of orders 1, 2, and 10. Below,

we present the order 2 map in detail, after which we define the maps of orders 1 and 10

through modifications of the order 2 map.

To begin computing the second order Namouni map, we define an intermediate eccen-

tricity vector e′n that reflects the first-order shift in e,

e′n = en − g
µ

x2
1

θ̂, (29)
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where the interaction strength

g =
16

9
K0

(
2

3

)
+

8

9
K1

(
2

3

)
≈ 2.239567,

and K0, K1 are modified Bessel functions of the second kind. The value of g is given as an

elliptic integral in Appendix B of Namouni et al. (1996); it also appears in eq. (9) of Duncan

et al. (1989). In rectangular coordinates, eq. (29) becomes

e′nx = enx + g
µ

x2
1

sin λn, (30)

e′ny = eny − g
µ

x2
1

cos λn. (31)

We then define en+1 as a higher-order correction to e. In polar e, ω̃ coordinates, we have

e2
n+1 = e′2n + 4g2 sin(2λn − 2ω̃′n)

µ

x3
1

e2
n+1, (32)

ω̃n+1 = ω̃′n +

(
2

3
+ g2 cos(2λn − 2ω̃′n)

)
µ

x3
1

, (33)

where

g2 =
160

27
K0

(
4

3

)
+

152

27
K1

(
4

3

)
≈ 3.571554.

In the notation of Namouni et al. (1996), g2 = −(4/3)W 2,0
2 . We determine xn+1 by conser-

vation of the Jacobi constant:

x2
n+1 = x2

n +
4

3
(e2

n+1 − e2
n). (34)

Finally, we use the new separation xn+1 to get the longitude λn+1 of the next conjunction:

λn+1 = λn +
4π

3xn+1

. (35)

Equations (29)–(35) correspond to equations (36)–(43) in Namouni et al. (1996). Their

equations look superficially different from ours because their variables suppress factors of

µ/3. Furthermore, Namouni et al.’s eqs. (37) and (38) contain typographical errors: sin λn

and cos λn should be exchanged for one another. Note that the map employs the initial

separation x1 instead of the current separation xn; this change ensures the symplecticness of

the map without altering its qualitative behavior (Namouni et al. 1996, Duncan et al. 1989).

It is straightforward to generalize the above order 2 map to obtain encounter maps of

other orders. Equations (30), (31), (34), and (35) apply to all the Namouni maps. The

order 10 map extends eqs. (32) and (33) into degree 10 and degree 8 polynomials in en+1,
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respectively. Equation (32) is then solved for en+1 implicitly, using the modified Newton-

Raphson scheme described in eq. (2.62) of Murray & Dermott (1999).

The order 1 Namouni map replaces eqs. (32) and (33) with en+1 = e′n. This map is

almost, but not precisely, the DQT map, which uses eq. (1) to advance λ. In other words,

DQT replaces eq. (35) with λn+1 = λn + 2π/[(1− x)−3/2 − 1].

3.2. Experimental Setup

We design two types of experiments that use the Namouni encounter maps to test the

validity of the 2/7 and 1/5 laws. First, we attach a tangent map to the encounter map,

allowing us to directly test for chaos by estimating Lyapunov exponenents. Such tests are

most useful for broadly characterizing the chaotic zone in phase space. Second, to precisely

measure the outer limit of the chaotic zone, we develop a simpler criterion for instability.

We define a stepping algorithm that applies the new criterion to home in on the boundary

of chaos.

The indicator Z which we intend to test is a function of x and e but not of ω̃ or λ. We

must therefore decide which initial angles ω̃1 and λ1 we should choose in our experiments.

When an orbit resides in a single first-order interior mean-motion resonance—in fact, any

interior resonance of odd order (Murray & Dermott 1999)—the angle λ− ω̃ librates about 0.

It follows that orbits with λ1 − ω̃1 = π are least likely to be protected by resonances. Since

our experiments are meant to find x∗ and not to map out the resonant islands below x∗, we

set λ1 = 0 and ω̃1 = π in all the following experiments.

3.2.1. Criterion 1: The tangent map

Chaos in a dynamical system is characterized by exponential separation of infinitesi-

mally close orbits. For any map, one can test for chaos by calculating two nearby orbits,

a “particle” and its “shadow,” and measuring their separation rate. This method requires

us to periodically rescale the separation to ensure that the shadow remain close to the par-

ticle; yet if they get too close, we suffer from numerical round-off errors. Fortunately, the

encounter map is simple enough that we can use the tangent map method instead.

The tangent map runs in parallel with the encounter map; it calculates the orbit of a

shadow whose separation from the particle is a true infinitesimal (de, dx, dλ). We choose

dx1 = 0. The tangent map equations are the total derivatives of the encounter map equations;
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for example, eq. (30) implies

de′nx = denx + g
µ

x2
1

(cos λn)dλn. (36)

The Lyapunov exponent is

` = lim
n→∞

ln |den|
n

; (37)

if ` > 0 then the orbit is chaotic by definition. Of course, we cannot take the limit n → ∞
numerically. We are most interested in the boundary between chaotic and regular behavior,

and ` converges very slowly as we approach this boundary. Nonetheless we can use the

Lyapunov exponent to broadly map out the regimes which are definitely regular or chaotic.

3.2.2. Criterion 2: Eccentricity growth

To more precisely determine the outer boundary of chaos, we apply a simple observa-

tional criterion for instability (Duncan et al. 1989). In a chaotic orbit, the eccentricity vector

executes a random walk, and eventually it develops e > x1. Therefore we label an orbit stable

if during the length of a computation we always have e < x1; if any en ever surpasses x1

then we label the orbit unstable and halt the calculation.

Due to conservation of the Jacobi constant, as e grows larger than e1, so x must grow

larger than x1. Therefore our condition en > x1 for instability does not imply the orbit-

crossing condition en > xn; neither does it imply that the particle will enter the Hill sphere

or be ejected from the system. The new instability condition is therefore sensitive to bounded

chaos.

Given e1 and µ, we wish to find the maximum unstable x1, which we call x∗ as before.

Duncan et al. (1989) use a recursive bisection algorithm: they pick an interval [X1, X2]

believed to contain x∗ and test the midpoint orbit x1 = (X1 + X2)/2. If x1 is stable, the

algorithm sets X2 := x1; otherwise it sets X1 := x1. Once the interval shrinks to some

desired accuracy, the algorithm reports that it has found x∗. This method works for the

DQT map, but it relies on the assumption that the space of regular orbits is connected;

so if x1 is regular then all of [x1,∞) is regular. As Namouni et al. point out, the phase

space of the DQT map is unrealistic. We find that the bisection algorithm does not reliably

find x∗ for the higher-order Namouni maps; instead it often gets “caught” near islands of

stability which can be found anywhere between x∗ and the Hill sphere. Figure 1 illustrates

the phenomenon with the order 10 map. This error reflects a deficiency in the bisection

algorithm, not the encounter map.
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Fig. 1.— Analogue to Figure 2 of Duncan et al. (1989), using order 1 and 10 Namouni maps.

The bisection algorithm determines x∗; the experimental parameters are e1 = 0, N = 103;

the stability criterion is e < x1. We also plot the 2/7 law and the Hill sphere.
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To find x∗ with our higher-order maps, we employ a stepping algorithm which starts in

the stable region and gingerly steps downward to find the largest unstable orbit in its path.

We pick an x1 believed to be greater than x∗ and a step size D, and we test the orbit x1. If

x1 is stable, we assign x1 := x1−D. Otherwise, we assign x1 := x1 + 3D and D := D/4; the

algorithm retreats well back into the supposedly stable region and resumes stepping down

more slowly. When D reaches the desired accuracy, we conclude x∗ = x1±D. The stepping

algorithm is much slower than the bisection algorithm, but it finds x∗ more reliably.

Like Duncan et al. (1989), we calculate the midpoint x1 = (X1 + X2)/2 and the step

x1 := x1 + 3D in logarithmic units. Therefore the bisections are evenly spaced on the

logarithmic vertical axis of Figure 1.

3.3. Results

3.3.1. Criterion 1: The tangent map

We calculated a grid of orbits of the order 10 Namouni map + tangent map with µ

ranging from 10−25 to 10−5, e1 = 0, and Z ranging from 0.0001 to 100. The results are

graphed in Fig. 2. A similar experiment was carried out in which e1 = 2µ1/3; those results

are in Fig. 3. Since particles outside the Hill sphere have x1 > µ1/3, every orbit of this latter

experiment has e1 > 2µ/x2
1. Thus the condition e1 = 2µ1/3 insures that the 1/5 law applies.

The experiments support the indicator hypothesis: for nonresonant orbits, Z � 1

implies regularity and Z � 1 implies chaos. We also carried out experiments with e1 =

0.5µ, µ, and 5µ; the resulting data do not contain any new features, and they continue to

support our interpretation of Z.

3.3.2. Criterion 2: Eccentricity growth

We used the stepping algorithm with the order 10 Namouni map to find x∗ for µ be-

tween 10−18 and 10−2, and fixed e1 = 10−4; the results are displayed in Figure 4. Series of

experiments are run having different values of the maximum iteration N . For µ > 10−12,

N = 5×104 is sufficient to converge on x∗, while for 10−18 < µ < 10−12, N = 2×106 suffices.

There are three regimes of interest. For µ > 10−12, we have e1 � µ/(x∗)2. The data in this

regime follow Wisdom’s 2/7 law,

x∗ = Aµ2/7.
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Fig. 2.— Chaotic boundary of the order 10 Namouni map + tangent map as determined

by Lyapunov exponents. Every orbit has e1 = 0. Regular orbits are plotted as blue points;

chaotic orbits are plotted as magenta points. Orbits which hit the Hill sphere and were

ejected are shown in black. Each point is followed up to 32000 conjunctions.
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Fig. 3.— The same experiment as in Fig. 2, except that every orbit here has e1 = 2µ1/3.
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For 10−18 < µ < 10−12, e1 � µ/(x∗)2. Here, the data follow our 1/5 law,

x∗ = B(eµ)1/5.

Finally, for µ < 10−18 we have x∗ = e, since if x1 < e then the orbit is immediately tagged

as unstable.

We fit values of A and B to the data; the result is the modified indicator

Z ′ = 45
µ2

x7
+ 10

eµ

x5
. (38)

In Figure 4 and all the figures to follow, the solid line represents the prediction of x∗ based

on the condition Z ′(x∗) = 1, where Z ′ is given by eq. (38).

We repeated the experiment represented by Figure 4 with the order 2 Namouni map;

the results are displayed in Figure 5. Since the order 2 map is faster to compute, we were

able to run it for longer N and verify that x∗ has converged at all masses. The same modified

indicator Z ′ is plotted, demonstrating that the order 2 map and the order 10 map agree for

our purposes.

We also reversed the roles of e1 and µ in an experiment plotting x∗ against e1 in which

µ = 10−12 is held fixed. Those results are displayed in Figure 6. The physical regimes are

now encountered in reverse order; the horizontal line on the left side of Figure 6 reflects the

2/7 law, while the right side reflects the degenerate x∗ = e1 case. The middle regime is again

the 1/5 law.

Finally, we repeated the experiment represented by Figure 4 with the order 1 Namouni

map; the results are displayed in Figure 7. Here we see several changes in behavior from the

order 2 map; the order 1 map seems to adhere to a 2/7 law at high µ, but the value of x∗ is

higher than before. More strikingly, the 1/5 law never appears.

4. CONCLUSIONS

In this work, we generalize Wisdom’s (1980) 2/7 law to finite eccentricity. Our new law

can be motivated by considering either overlap of first-order mean-motion resonances or the

requirement that the longitudes of conjunction lose long-term correlations. For e � µ/x2,

the boundary value of x between chaotic and regular behavior no longer scales as µ2/7 but as

(eµ)1/5. We test the new prediction with a combination of numerical techniques drawn from

Duncan et al. (1989) and Namouni et al. (1996). All but one of our experiments confirm

both the 2/7 and 1/5 laws; only the least accurate encounter map disagrees.
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Fig. 4.— Plot of x∗ versus µ, given fixed e1 = 10−4; the order 10 Namouni map is applied

up to 107 times; the stability criterion is e < x1. The prediction of the modified indicator Z ′

is plotted for comparison.
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Fig. 5.— Plot of x∗ versus µ, given fixed e1 = 10−4; the order 2 Namouni map is applied up

to 5 × 107 times; the stability criterion is e < x1. The prediction of the modified indicator

Z ′ is plotted for comparison.
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Fig. 6.— Plot of x∗ versus e1, given fixed µ = 10−12; the order 2 Namouni map is applied up

to 5 × 106 times; the stability criterion is e < x1. The prediction of the modified indicator

Z ′ is plotted for comparison.
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Fig. 7.— Plot of x∗ versus µ, given fixed e1 = 10−4; the order 1 Namouni map is applied up

to 2 × 106 times; the stability criterion is e < x1. The prediction of the modified indicator

Z ′ is plotted for comparison.
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Although the 1/5 law is verified, we are left with a puzzle. Why do the order 1 and

order 2 encounter maps differ so widely in their assignments of x∗ in the moderate eccentricity

regime? Our heuristic derivation of Z involves only the lowest-order contributions in e. It is

therefore surprising that the map which includes exactly those contributions fails to detect

a chaotic boundary consistent with Z. We suspect that a solution to this puzzle will require

a more detailed understanding of the mechanism by which chaos appears.

We thank David Nesvorný for prompting us to make good plots; Yoram Lithwick for

pointing out the existence of an intermediate regime of eccentricity; and Eugene Chiang for

three years of providing sound advice and interesting problems, including this one.
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