

Adaptive Optics

Special Topic in Astrophysics

ASTRON 250 - Fall 2013

Beyond conventional AO

- Most of our discussions have been focused on conventional single conjugate AO (SCAO)
 - Single guide star (or 1 LGS + 1 NGS)
 - Single WFS
 - Single DM
 - Modest number of d.o.f.
 - Single layer corrected
 - Ground or high z

Beyond conventional AO

- SCAO has a number of limitations:
 - Small FOV, limited coverage
 - Spatially varying correction
 - Moderate Strehl ratios (≈50% in NIR)
 - Cone effect (for LGS)
- AO now exists in many different flavors to achieve different scientific goals
 - Particularly important in astronomy for "Extremely Large Telescopes" (30+ m), but could also be used in other fields

Extreme AO (XAO)

- Science goal: achieve very high contrast
 - Requires extremely stable and high quality PSF
- Technical goal: obtain extremely high Strehl ratio (≥ 90% in NIR)
 - Use high number of sensors/actuators (1000s)
 - DM = secondary mirror is an option
 - Run at very high frequency (≈1-2 kHz)
 - Good performance at visible wavelengths
- Only possible for bright stars

Extreme AO (XAO)

 Need to control/remove all sources of error, not just fitting/aliasing/temporal errors

GPI

Extreme AO (XAO)

- Gemini Planet Imager (GPI)
- SPHERE (ESO VLT)
- SCExAO (Subaru Telescope)
- LBT AO
- MagAO (Magellan Telescope)

Ground-layer AO (GLAO)

- Science goal: improve image quality over large FOV (>> θ_0), but not up to diffraction limit
- Technical goal: decrease uniformly FWHM by factor of 2-4 ("super-seeing")
 - Use multiple guide stars
 - Single DM conjugated to ground layer: neglect turbulence from high atmosphere

Ground-layer AO (GLAO)

- Possibly of interest to all ground-based telescopes (better image quality)
- Requires tomographic reconstruction

MMT

Tomographic reconstruction

 Different lines of sight intercept turbulent layers at different location, in principle enabling to separate contributions

Helin & Yudytskiy (2013,

Ragazzoni et al. (2000)

Multi-Conjugate AO (MCAO)

- Science goal: obtain diffraction-limited images over large FOV (>> θ_0)
- Technical goal: correct turbulence at all elevations over whole FOV (modest Strehl)
 - Use multiple guide stars
 - Use 2 or more DMs
- Requires tomographic reconstruction

Multi-Conjugate AO (MCAO)

SCAO

MAD (3 NGS, 2 DM)

Multi-Conjugate AO (MCAO)

GeMS (5 LGS + 3 NGS. 3DM)

Multi-Object AO (MOAO)

- Science goal: combine AO with small-FOV multiobject observations over large FOV
- Technical goal: decrease FWHM in discrete number of small spots
 - Multiple guide stars
 - Multiple DMs (one per science FOV)
 - One extra ground-layer DM can help
- Requires tomographic reconstruction
- Complex optical set-up and control (open loop)

Multi-Object AO (MOAO)

 Achieving SCAO-equivalent correction in open loop is possible!

AO post-processing

Doing science with AO

- AO acts as a "pre-instrument", feeding "normal" instruments
 - Same data analysis as normal observing
- However, precise knowledge of PSF is needed
 - A simple Gaussian/Voigt model does not work!
- Not an easy task:
 - Off-axis point sources suffer from anisoplanatism
 - Non-contemporaneous observations probe a different realization of the turbulence

Predicting the PSF

- One can/should use data from the AO system itself (WFS data, DM commands, ...) to predict the PSF
 - Works well for high SNR cases, but fails for faint guide stars due to noise propagation

Post-processing techniques

- Many techniques can be applied, depending on the scientific goal:
 - Improved "data reduction" (e.g., alignment of individual images)
 - Image filtering (e.g., edge sharpening)
 - Forward model fitting (need to know PSF!)
 - Deconvolution (need to know PSF!)

Deconvolution

- Two main families:
 - "regular" assumes PSF is known
 - "myopic"/"blind" treats PSF as a (partial) unknown
- All techniques rely on "penalty terms" and regularization methods
 - Positivity
 - Continuity
 - Smoothness
 - Finite support (PSF has to be λ/D in size)

Deconvolution

- Deconvolution can/should also take advantage of "diversity" whenever possible:
 - Multiple images with same set-up
 - Different realizations of noise/turbulence/AO correction
 - Multi-wavelength (simultaneous) images
 - Use knowledge about chromatic behavior of object
 - Use dual polarization imaging
 - Multi-aperture images (e.g., concentric annuli)
 - Simultaneous images with different resolutions and enforce continuity in spatial frequency domain

Deconvolution

- Many existing algorithms:
 - Maximum Likelihood
 - Lucy-Richardson (Richardson 1972, Lucy 1974)
 - CLEAN (Högbom 1974) [ten Brumelaar 1996]
 - IDAC (Jefferies & Christou 1993) [Christou 1999]
 - MISTRAL (Mugnier et al. 2004)
 - AIDA (Hom et al. 2007)

— ...

Next week readings

- AO and laser propagation (J. Ballesta's presentation)
- Course wrap-up