

Adaptive Optics

Special Topic in Astrophysics

ASTRON 250 - Fall 2013

Atmospheric turbulence and Zernike's

Atmospheric turbulence and Zernike's

- Kolmogorov: *E(k)* ~ *k*^{-5/3}
 - Most of the energy is in the large spatial scale

r.m.s. of residual phase after correcting N modes

Conan (2008) See also Noll (1976)

Short and long exposure image

- Short exposure ("frozen turbulence") contains information out to the highest frequency
 - It is "diffraction-limited"
 - Independent parts of wavefront form images in different locations: speckle pattern
- Long exposures is sum of random short exposures, with constant phase scrambling
 - All high-frequency info is lost, image is completely "turbulence-limited"

OTF under atmospheric turbulence

- Can be described as 2 independent components
 - Same applies to the resulting PSF
 - High-frequency component cancels for long t_{int} , unless AO correction is applied

OTF under atmospheric turbulence

- In first approximation, AO-corrected *OTF*_{atm} is a constant at high frequencies:
 - $-A(f) \approx exp(-\sigma_{\varphi}^{2})$, with σ_{φ}^{2} the leftover phase residuals

Strehl ratio

- A common metric of image quality for diffraction-limited imaging devices
 - In an image: ratio of peak intensity to that of diffraction-limited image
 - From the OTF: ratio of integral of the OTF with and without aberration
 - Equivalent for diffraction-limited images (S > 0.1) as peak and total intensities are proportional
 - In this case $SR \approx exp(-\sigma_{\varphi}^{2})$

Strehl ratio

s ~ 98%!

Alpha Her 11.7 um

Close et al. (2003)

Non-AO methods to beat turbulence

- Law et al. (2006): Lucky Imaging
 - Combine shift-and-add with frame selection for large series of short exposures
- Proba of diffraction-limited image is low $\approx 5.6 \exp[-0.1557 (D/r_0)^2]$ (Fried 1978)

Even without frame selection, recentering is a significant improvement!

Non-AO methods to beat turbulence

- Labeyrie (1970): speckle interferometry
 - Fourier analysis of the speckle patterns, which are intrinsically diffraction-limited
 - Only difference between speckles is their phase, which are randomly fluctuating around the mean and average out in the Fourier domain

Babcock's original idea

- All the basic elements of AO:
 - A "deformable mirror"
 - A real-time wavefront sensor
 - A continuous control loop
- Based on sensing the slope of the wavefront
- No computer! Simple R-C circuit

The first astronomical AO systems

- Buffington et al. (1977)
- McCall et al. (1977)
- Successful despite hard conditions

Segmented, linear

Circular membrane

Current astronomical AO systems

AO correction depends on star brightness

Only a fraction of the sky is "AO-accessible"

Quality of correction depends on turbulence

properties

- Quality of correction depends on wavelength
 - Best compromise depends on science...

FWHM = 0.030''

FWHM = 0.039''

FWHM = 0.047''

Next week's readings

- Speckle properties
 - Hinkley et al. (2007)
- Anisoplanatism
 - Tyson's book (§3.2.6)
 - Wilson & Jenkins (1996, §1-4)
- PSF prediction
 - Véran et al. (1997, §1-3)
- Deconvolution
 - Ten Brumelaar et al. (1996)
 - Christou (1999)