

Adaptive Optics

Special Topic in Astrophysics

ASTRON 250 - Fall 2013

Homework

- Let's discuss your results!
- Strehl ratio? r_o ? Time/wavelength dependence?
- Binary properties?
- Which methods did you use?

Wavefront correction methods

- Goal: apply a deliberate aberration in an optical system to compensate for unwanted ones
- As for wavefront sensing, there are many methods, and none is perfect...
 - Many factors to be considered in selecting one method over all others

Transmission vs. reflexion

- A corrugated wavefront can be corrected via
 - a transmission device whose refractive index can be adjusted: Spatial Light Modulator
 - a reflective device whose surface can be adjusted:
 Deformable Mirror

Transmission vs. reflexion

- A corrugated wavefront can be corrected via
 - a transmission device whose refractive index can be adjusted: Spatial Light Modulator
 - a reflective device whose surface can be adjusted:
 Deformable Mirror
- + SLMs can adjust phase and intensity, while DMs can only adjust phase
- SLMs are λ- and polarization-dependent, and cannot "phase wrap"

DM properties to consider (I)

- Number of actuators
- Spatial density of actuators
- Amplitude of displacement (stroke)
 - Absolute for one actuator
 - Local (i.e., for two neighboring actuators)
- Bi-directionality of displacement
- Influence function and actuator coupling
- (Non-)Linearity of response

DM properties to consider (II)

- Temporal response of an actuator
 - "rise time", "settling time"
- Quality of actuator response
 - Precision
 - Repeatability
- Hysteresis
- Quality of "flat" mirror and overall calibration
- Fraction of dead/faulty actuators

DM properties to consider (III)

- Operating voltages and currents
- Weight
- Response to environment (T, humidity, vapor)
- Cost
- Durability
- Repair/replacement practicality

Some key parameters

© TURN

© AZO Optics

Hysteresis

Two generic categories of DMs

Continuous face-sheet/membrane

Segmented

McCall et al. (1977)

Buffington et al. (1977)

Locally-controlled DMs

Piezo-electric

Magnetic

© ImagineEyes

Electrostatic MEMS

DM shape set in zonal manner

Globally-controlled DMs

Membrane mirror

DM shape set in "modal" manner

Ferro-fluid mirror

Bimorph mirror

Credit: InTechOpen

Two generic categories of DMs

Continuous

Smooth WF surface

No loss of light (gaps)

Modal correction

Segmented

Easier control

Larger strokes

Scalable to many actuators

Microchip-sized option

Cross-actuator influence

"Dead" actuators problem

Smaller strokes

Hysteresis

Larger physical size

Discretization of WF Edge discontinuities

Loss of light in gaps

Diffraction off edges

Using multiple "DMs"

- In most situations, the mode requiring the most stroke is global tip-tilt
 - Use a dedicated flat mirror on a tilting platform

Using multiple "DMs"

- In most situations, the mode requiring the most stroke is global tip-tilt
 - Use a dedicated flat mirror on a tilting platform
- Focus term can (sometimes) be offloaded to a dedicated motorized focus stage

Using multiple "DMs"

- In most situations, the mode requiring the most stroke is global tip-tilt
 - Use a dedicated flat mirror on a tilting platform.
- Focus term can (sometimes) be offloaded to a dedicated motorized focus stage
- Residual high-order aberrations can be dealt with a separate DM of relatively modest stroke, or use 2 successive DMs
- This is a typical woofer-tweeter set-up

Secondary DM

- A particular set-up: using the secondary mirror of a telescope as a DM
 - +Can achieve high density of actuators (size ~ 1m)
 - + Minimize AO-related optics
 - +Larger field-of-view
 - Not in pupil plane (Fresnel...)
 - Complex control system
- Currently achieving the highest Strehl ratios on large telescopes (LBT)

Next week

- Michael Helmbrecht (IrisAO) on MEMS DMs
- (re-)Readings on PSF reconstruction and deconvolution:
 - Véran et al. (1997, §1-3)
 - ten Brumelaar et al. (1996)
 - Christou (1999)