The Black Hole Mass of M87 with Stellar Kinematics

Sargent (1978) + Gebhardt (2011)

The Context:

• Schmidt+1963: Quasars + 3C273

• Wolfe and Burbidge+1970: Velocity dispersions could mean a black hole

BLACK HOLES IN ELLIPTICAL GALAXIES

A. M. WOLFE* AND G. R. BURBIDGE Department of Physics, University of California, San Diego Received 1970 January 26; revised 1970 A pril 7

ABSTRACT

 Hoyle, Fowler, Zeldovich, Salpeter, etc. (1965-1975): Mass concentration is likely black hole with jets

ACCRETION OF INTERSTELLAR MATTER BY MASSIVE OBJECTS Observations of quasi-stellar radio sources have indicated the existence in the Uni-

verse of extremely ma the possible further gre of interstellar gas onter evidence for (and poss inside ordinary galaxie of mass $M > 10^6$ (mas what like ours.

ON THE NATURE OF STRONG RADIO SOURCES

F. Hoyle and William A. Fowler

(Received 1962 August 27)

Sargent+1978: First evidence of SMBH

DYNAMICAL EVIDENCE FOR A CENTRAL MASS CONCENTRATION IN THE GALAXY M87

W. L. W. SARGENT* AND PETER J YOUNG Hale Observatories, California Institute of Technology, Carnegie Institution of Washington A. BOKSENBERG*[†] AND KEITH SHORTRIDGE* Department of Physics and Astronomy, University College London

> C. R. LYNDS Kitt Peak National Observatory

> > AND

F. D. A. HARTWICK* Department of Astronomy, University of Victoria Received 1977 September 26; accepted 1977 November 1

Overview of Sargent+1978

New radial velocity **and** velocity dispersion measurements on UCL image photon counting system

M87 "remarkable behavior" NGC 3379 "standard galaxy"

Implement Fourier Quotient Method on spectra (Sargent+1977) to extract velocity dispersion, redshift, line strength

DYNAMICAL EVIDENCE FOR A CENTRAL MASS CONCENTRATION IN THE GALAXY M87

W. L. W. SARGENT* AND PETER J YOUNG Hale Observatories, California Institute of Technology, Carnegie Institution of Washington

> A. BOKSENBERG*[†] AND KEITH SHORTRIDGE^{*} Department of Physics and Astronomy, University College London

> > C. R. LYNDS Kitt Peak National Observatory

> > > AND

F. D. A. HARTWICK* Department of Astronomy, University of Victoria Received 1977 September 26; accepted 1977 November 1

Fit Parameters to King+1966 model, allowing M/L calculations

Model independent calculations of M/L for M87 center

 $M_{BH} \sim 5 \times 10^9 M_{\odot}$

Observations

- Kitt Peak 4m telescope
- 20 simultaneous spectra
- 1000 channels covering 1060Å
- Particular care to avoid jet
- 5m Hale Telescope
- 17 simultaneous spectra
- 1000 channels over 310Å
- Spatial resolution of 2".4 along slit

Additional Spectra of 3 Comparison Stars

An aside...

Measuring Velocity Dispersion

VELOCITY DISPERSIONS FOR 13 GALAXIES

WALLACE L. W. SARGENT Hale Observatories, California Institute of Technology, Carnegie Institution of Washington

> PAUL L. SCHECHTER Institute for Advanced Study

> > AND

A. BOKSENBERG AND KEITH SHORTRIDGE Department of Physics and Astronomy, University College London Received 1976 June 17

"Fourier Quotient Method" (Sargent+1977)

Fourier Quotient Method (Sargent+1977)

- Method to extract velocity dispersion σ, radial velocity *cz*, and line ratio γ (between the galaxy and comparison star)
- Assumption: Each galaxy spectrum is the convolution of a mean stellar spectrum and a Doppler broadening function B(k).
- Least squares solution for σ, z, and γ

$$G(k)=S(k)\circ B(k)$$

S(k)

$$\tilde{B}(k) = \gamma \exp\left[-\frac{1}{2}\left(\frac{2\pi k\sigma_v}{nc\Delta\ln\lambda}\right)^2 + \frac{2\pi ik\ln(1+z)}{n\Delta\ln\lambda}\right]$$

DFT of galaxy spectrum DFT of mean stellar spectrum

G(k)

Q(k) =

$$\tilde{B}(k) = Q(k) = \frac{\tilde{G}(k)}{\tilde{S}(k)}$$

Fourier Quotient Method (Sargent+1977)

$$\tilde{B}(k) = Q(k) = \frac{\tilde{G}(k)}{\tilde{S}(k)}$$

Robustness of Fourier Quotient Method

Previous Tests

- Agreement with visual methods
- Agreement across comparison stars
- Different spectral regions gave the same σ
- Differing regions of Fourier space gave the same results

does it work with faint outer parts of galaxies?

- Exclusion of Ca II H and K lines so that metallicity doesn't bias σ
- Simulating a central blue continuum source which did not affect velocity dispersion
- Random noise in galaxy and star spectra leads to $\Delta \sigma = 2$ km/s.

Fourier Quotient Method for M87

Results of FQM in Sargent+1978...

King Models (BT, page 307)

How do we measure the mass in order to calculate a mass to light ratio?

We want a family of models that is like an isothermal sphere at small radii and less dense at large radii.

They are characterized by either the concentration c or the quantity $\Psi(0)/\sigma^2$

$$ho_{
m K}(\Psi) =
ho_1 \Biggl[{
m e}^{\Psi/\sigma^2} {
m erf} \Biggl(rac{\sqrt{\Psi}}{\sigma} \Biggr) - \sqrt{rac{4\Psi}{\pi\sigma^2}} \Biggl(1 + rac{2\Psi}{3\sigma^2} \Biggr) \Biggr]$$

$$\widetilde{
ho}\equivrac{
ho}{
ho_0} \quad ext{and} \quad \widetilde{r}\equivrac{r}{r_0}, \quad ext{where} \quad r_0\equiv\sqrt{rac{9\sigma^2}{4\pi G
ho_0}}.$$

$$\mathbf{307} \quad f_{\mathrm{K}}(\mathcal{E}) = \begin{cases} \rho_1 \left(2\pi\sigma^2\right)^{-3/2} \left(\mathrm{e}^{\mathcal{E}/\sigma^2} - 1\right) & \mathcal{E} > 0\\ 0 & \mathcal{E} \le 0 \end{cases}$$

$${\cal E}=\Psi-{1\over 2}v^2 {
m ~where} \ \Psi\equiv \Phi_0-\Phi$$

We typically choose phi0 so that $F(E \le 0) = 0$.

King Models and Photometric Data for NGC 3379 and M87

well fit with King Model (c = 2.20)

central M/L is constant and equal to 6 +/- 1

outer regions well fit with King Model (c = 2.10)

outer regions give M/L equal to 6.5 +/- 0.6

Central Mass Calculation

Gebhardt+2011:

The Black-Hole Mass in M87 from Gemini/NIFS Adaptive Optics Observations

THE BLACK-HOLE MASS IN M87 FROM GEMINI/NIFS ADAPTIVE OPTICS OBSERVATIONS

KARL GEBHARDT¹, JOSHUA ADAMS¹, DOUGLAS RICHSTONE², TOD R. LAUER³, S. M. FABER⁴, KAYHAN GÜLTEKIN², JEREMY MURPHY¹, SCOTT TREMAINE⁵ Draft version September 17, 2018

ABSTRACT

We present the stellar kinematics in the central 2" of the luminous elliptical galaxy M87 (NGC 4486), using laser adaptive optics to feed the Gemini telescope integral-field spectrograph, NIFS. The velocity dispersion rises to 480 km s⁻¹ at 0.2". We combine these data with extensive stellar kinematics out to large radii to derive a blackhole mass equal to $(6.6\pm0.4)\times10^9 M_{\odot}$, using orbit-based axisymmetric models and including only the NIFS data in the central region. Including previously-reported ground-based data in the central region drops the uncertainty to $0.25 \times 10^9 M_{\odot}$ with no change in the best-fit mass; however, we rely on the values derived from the NIFS-only data in the central region in order to limit systematic differences. The best-fit model shows a significant increase in the tangential velocity anisotropy of stars orbiting in the central region with decreasing radius; similar to that seen in the centers of other core galaxies. The black-hole mass is insensitive to the inclusion of a dark halo in the models --- the high angular-resolution provided by the adaptive optics breaks the degeneracy between black-hole mass and stellar mass-to-light ratio. The present black-hole mass is in excellent agreement with the Gebhardt & Thomas value, implying that the dark halo must be included when the kinematic influence of the black hole is poorly resolved. This degeneracy implies that the black-hole masses of luminous core galaxies, where this effect is important, may need to be re-evaluated. The present value exceeds the prediction of the black hole-dispersion and black hole-luminosity relations, both of which predict about $1 \times 10^9 M_{\odot}$ for M87, by close to twice the intrinsic scatter in the relations. The high-end of the black hole correlations may be poorly determined at present.

Subject headings: galaxies: elliptical and lenticular, cD; galaxies: individual (M87, NGC4486); galaxies: kinematics and dynamics

Overview:

Gemini Telescope Integral Field Spectroscopy with AO for velocity dispersion measurements in the inner 2" of M87

Determination of PSF and removal of non-stellar features from the spectra

THE BLACK-HOLE MASS IN M87 FROM GEMINI/NIFS ADAPTIVE OPTICS OBSERVATIONS

KARL GEBHARDT¹, JOSHUA ADAMS¹, DOUGLAS RICHSTONE², TOD R. LAUER³, S. M. FABER⁴, KAYHAN GÜLTEKIN², JEREMY MURPHY¹, SCOTT TREMAINE⁵ Draft version September 17, 2018

ABSTRACT

We present the stellar kinematics in the central 2" of the luminous elliptical galaxy M87 (NGC 4486), using laser adaptive optics to feed the Gemini telescope integral-field spectrograph, NIFS. The velocity dispersion rises to 480 km s⁻¹ at 0.2". We combine these data with extensive stellar kinematics out to large radii to derive a blackhole mass equal to $(6.6 \pm 0.4) \times 10^9 M_{\odot}$, using orbit-based axisymmetric models and including only the NIFS data in the central region. Including previously-reported ground-based data in the central region drops the uncertainty to $0.25 \times 10^9 M_{\odot}$ with no change in the best-fit mass; however, we rely on the values derived from the NIFS-only data in the central region in order to limit systematic differences. The best-fit model shows a significant increase in the tangential velocity anisotropy of stars orbiting in the central region with decreasing radius; similar to that seen in the centers of other core galaxies. The black-hole mass is insensitive to the inclusion of a dark halo in the models — the high angular-resolution provided by the adaptive optics breaks the degeneracy between black-hole mass and stellar mass-to-light ratio. The present black-hole mass is in excellent agreement with the Gebhardt & Thomas value, implying that the dark halo must be included when the kinematic influence of the black hole is poorly resolved. This degeneracy implies that the black-hole masses of luminous core galaxies, where this effect is important, may need to be re-evaluated. The present value exceeds the prediction of the black hole-dispersion and black hole-luminosity relations, both of which predict about $1 \times 10^9 M_{\odot}$ for M87, by close to twice the intrinsic scatter in the relations. The high-end of the black hole correlations may be poorly determined at present.

Subject headings: galaxies: elliptical and lenticular, cD; galaxies: individual (M87, NGC4486); galaxies: kinematics and dynamics

Kinematic and Dynamical Modeling for Velocity Dispersions and BH Mass

Black Holes Mass and Consequences of BH-Galaxy Property Relations

 $M_{\rm BH} = (6.6 \pm 0.4) \times 10^9 M_{\odot}$

"Why did we read this paper, too?"

Neglected, systematic effects that are addressed:

Black hole's kinematics are poorly resolved.

Orbital structure near the BH is dominated by tangential orbits. Older models are too radial.

Triaxiality

Factor of 2 increase versus axisymmetric models. These effects predict higher masses.

Observations, Archival Data, and the Power of AO

Spectra to the innermost ~0".2 of the nucleus of M87.

Archival data is so abundant that, "we rely on data that provide the highest spatial resolution, most complete coverage, and highest S/N."

Results use only present work's innermost data, so as to have independent results.

Obtaining similar kinematics, similar resolution, and similar S/N would require 90 hours on Hubble (compared to 10 hours with AO).

PSF and Stellar Components

Measuring stellar kinematics.

- (1) Assume stellar population (color and spectral slope) do not vary near the center.
- (2) Treat the AGN and jet as a set of point sources with flat continuum.

$$\mathrm{PSF}(x,y) = \underbrace{N(x,y)}_{\text{anistropic Gaussian inner PSF}} + \underbrace{M(x,y)}_{\text{power law outer PSF}}$$

Tease out AGN/jet with the CO equivalent width at each pixel.

An aside: The AGN/jet is not offset from center like others (Batcheldor+2010) previously thought.

2.4×10

Goal: Find the best velocity dispersion given some representative spectra.

Task: Adjust stellar spectral weights and LOSVD until we fit the galaxy spectrum.

LOSVD Fitting (Pinkney+2003)

Velocity * Profile

Representative Template Spectra

LOSVDs are not always Gaussian, so we parametrize in terms of the Gauss-Hermite polynomials.

$$f(y) = I_0 \exp\left(-\frac{y^2}{2}\right) \left[1 + h_3 H_3(y) + h_4 H_4(y)\right]$$
$$y \equiv \frac{v - v_{\text{fit}}}{\sigma_{\text{fit}}}$$

h₃: skewness h₄: kurtosis

Dynamical Modeling of the SMBH (Schwarzschild **Method**)

10

100

 $M_{\rm BH} = (6.6 \pm 0.4) \times 10^9 M_{\odot}$

Consequences for the Past and Future

M-σ and M-L Relations

Gas Kinematic Measurement s

Future Mass Measurement s New measurements differ by 0.82 dex. Re-examined with new measurements and definitions of velocity dispersion.

Still disagree at the 2σ level. Disk inclination is the reason?

High SNR, data at large radii break the degeneracy of the BH mass, DM halo, and M/L profile.

Any questions?

