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ABSTRACT
The orbit of a planet is surrounded by a chaotic zone wherein nearby particles’ orbits are
chaotic and unstable. It was shown by Wisdom that the chaos is driven by the overlapping of
mean motion resonances which occurs within a distance (δa/a)chaos ≈ 1.3µ2/7 of the planet’s
orbit. However, the width of mean motion resonances grows with the particles’ eccentricity,
which will increase the width of the chaotic zone at higher eccentricities. Here we investigate
the width of the chaotic zone using the iterated encounter map and N-body integrations. We
find that the classical prescription of Wisdom works well for particles on low-eccentricity
orbits. However, above a critical eccentricity, dependent upon the mass of the planet, the width
of the chaotic zone increases with eccentricity. An extension of Wisdom’s analytical arguments
then shows that, above the critical eccentricity, the chaotic zone width is given by (δa/a)chaos ≈
1.8e1/5µ1/5, which agrees well with the encounter map results. The critical eccentricity is
given by ecrit ≈ 0.21µ3/7. This extended chaotic zone results in a larger cleared region when a
planet sculpts the inner edge of a debris disc composed of eccentric planetesimals. Hence, the
planet mass estimated from the classical chaotic zone may be erroneous. We apply this result
to the HR 8799 system, showing that the mass of HR 8799 b inferred from the truncation of
the disc may vary by up to 50 per cent depending on the disc particles’ eccentricities. With
a disc edge at 90 au, the necessary mass of planet b to cause the truncation is 8–10 Jovian
masses if the disc particles have low eccentricities (!0.02), but only 4–8 Jovian masses if the
disc particles have higher eccentricities. Our result also has implications for the ability of a
planet to feed material into an inner system, a process which may explain metal pollution in
white dwarf atmospheres.

Key words: chaos – celestial mechanics – planets and satellites: dynamical evolution and
stability – circumstellar matter – stars: individual: HR 8799.

1 IN T RO D U C T I O N

Planets strongly affect the dynamics of bodies on nearby orbits. Bod-
ies coming within around one Hill radius are strongly perturbed on
the synodic time-scale and can either be scattered, resulting eventu-
ally in collision with the star or ejection from the system, or collide
with the planet. However, beyond this region there is a chaotic
zone of unstable orbits. Here, orbits diffuse through phase space
and may eventually find themselves intersecting the planet’s orbit,
which will again result in a strong scattering or collision event. This
unstable chaotic zone is thought to be responsible for sculpting the
inner edges of debris discs such as that around Fomalhaut (Quillen
2006a; Kalas et al. 2008; Chiang et al. 2009), with the location and
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shape of the disc edge being determined by the mass and location
of the planet. The zone may also provide a reservoir for feeding
bodies from an outer disc into the inner system. This is likely to be
important in the late stages of stellar evolution, when scattering of
planetesimals by planets has been invoked to explain metal pollu-
tion observed in some white dwarf atmospheres as well as hot discs
around them (Zuckerman et al. 2003; Farihi, Jura & Zuckerman
2009; Bonsor, Mustill & Wyatt 2011).

Chaos in dynamical systems is often driven by overlapping reso-
nances (Chirikov 1979). Wisdom (1980) derived an analytical for-
mula for the extent of a planet’s chaotic zone based on overlapping
first-order mean motion resonances, finding

(δa/a)chaos = cµ2/7, (1)

where µ = mpl/m! is the ratio of planetary to stellar mass and the
coefficient c = 1.3. This has been confirmed numerically, both using
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iterations of the encounter map (Duncan, Quinn & Tremaine 1989;
see Section 2 below) and in full N-body integrations (Chiang et al.
2009), although the coefficient c when determined numerically is
somewhat higher. However, the result of Wisdom (1980) is only
valid for low-eccentricity particles, since the widths of mean mo-
tion resonances increase at larger eccentricities (Murray & Dermott
1999). Quillen & Faber (2006) extended Wisdom’s result to con-
sider the behaviour of particles orbiting close to an eccentric planet
with low free eccentricities, which is relevant for modelling the Fo-
malhaut disc. They showed that the width of the zone for particles
orbiting close to an eccentric planet with low free eccentricities is
the same as that for low-eccentricity particles orbiting close to a
circular planet.

The effect the particles’ free eccentricities have on the width of
the chaotic zone has not been well explored. Since the Kuiper belt
objects of our own Solar system can have free eccentricities of 0.1
and above, one might expect the debris discs of some extra-Solar
systems to be stirred to a similar degree. Bonsor et al. (2011) found,
in N-body integrations, that the width of the chaotic zone for more
eccentric particles (e up to 0.1) appeared to be greater than that
for less eccentric particles. The small number of particles in the N-
body integrations did not permit definite conclusions to be drawn,
but they confirmed the increasing width using the computationally
more efficient iterated encounter map (Duncan et al. 1989). Bonsor
et al. (2011) speculated that the increasing width of the zone was due
to the particles’ pericentres entering the chaotic zone. This, however,
seems unlikely since the chaos is caused by resonance overlap and
that depends on the particles’ semimajor axes and not directly on
their pericentres. Here we demonstrate that the increasing chaotic
zone width is instead due to the increasing width of mean motion
resonances as particles’ eccentricities are increased. Quillen (2007)
and Chiang et al. (2009) investigated the effects of non-gravitational
effects such as collisions and radiation forces on the inner edge of the
disc, and here we investigate the effects of the particles’ eccentricity.

One reason why it is important to characterize this chaotic zone
properly is that currently much interest revolves around the effects
that perturbing planets can have on debris disc morphology, par-
ticularly with a view to determining or refining the parameters of
known or suspected planets. Accordingly, the µ2/7 law has been
used to constrain the mass and semimajor axis of planets that may
be sculpting the inner edges of debris discs (e.g. Moerchen et al.
2011), to verify the consistency of planet and disc parameters deter-
mined through other means (e.g. Su et al. 2009), and to aid setting
up and interpreting N-body integrations (e.g. Chiang et al. 2009)
studying the sculpting of debris disc edges. Hence, refinements to
and deviations from this law are of prime importance for under-
standing the interaction of planets and debris discs. Given the large
uncertainties which attend determinations of masses of planets de-
tected by direct imaging (Kalas et al. 2008), dynamical constraints
are very valuable and use of accurate dynamical models should be
made. In Section 4.2 of this paper, we discuss the HR 8799 system
and how mass estimates of planet b, thought to be sculpting the
inner edge of the cold debris disc, are affected by deviations from
the µ2/7 law.

This paper is organized as follows. In Section 2, we use the
encounter map and N-body integrations to explore the chaotic zone
as a function of particle eccentricity. In Section 3, we derive the
width of the chaotic zone for eccentric particles using a resonance
overlap criterion. In Section 4, we discuss the implications of this
for studies of debris discs sculpted by planets, particularly the HR
8799 system, and planetary systems orbiting white dwarfs.

2 N U M E R I C A L I N V E S T I G ATI O N

We investigated the structure of the chaotic zone using the iterated
encounter map described in Duncan et al. (1989). This uses the ap-
proximate solution to Hill’s equations calculated by Henon & Petit
(1986), which assumes a moderate separation between the planet
and particle, to calculate the impulsive change to a particle’s orbital
elements due to a conjunction with the planet every synodic period.
We determined whether orbits were regular or chaotic by examining
the Fourier transform of the eccentricity evolution. Regular orbits
have power spectra with a few well-defined peaks, while the more
chaotic an orbit the more peaks its power spectrum displays (this
is a consequence of the phase space of a chaotic dynamical system
being densely filled with periodic orbits). We chose a critical num-
ber of peaks, a peak being defined as where the slope of the power
spectrum changes from positive to negative, to decide between reg-
ular and chaotic trajectories. For the investigations below, with 104

iterations, we found 1000 peaks distinguished regular and chaotic
orbits over the whole range of parameters considered. This classi-
fication method is similar to the spectral number chaos indicator
(Zhou, Dvorak & Sun 2011).

In this way, we then investigated the nature of trajectories as a
function of the particles’ semimajor axis ε = (a − apl)/apl and eccen-
tricity e, and the planet:star mass ratio µ. The results are shown in
Fig. 1. In these plots, each point in the grid represents 100 particles,
with initially random values of longitude of pericentre and mean
anomaly. The grey-scale shows the fraction of particles whose orbits
were classed as chaotic, with black representing 100 per cent regular
and white 100 per cent chaotic. In the region at the top left corner
above the black line, the particles are on planet-crossing orbits and
hence the encounter map is invalid. These particles were classed
as chaotic since they will be unstable anyway, except perhaps for a
few protected from close encounters by resonances.

From Fig. 1 we see that the edge of the chaotic zone is a
function of eccentricity, with the more eccentric particles being
chaotic at greater separations from the planet than their less ec-
centric brethren. There are two regimes: a low-eccentricity regime
in which the chaotic zone is independent of eccentricity, and a
moderate-eccentricity regime where the width of the chaotic zone
increases with eccentricity. The former regime is that identified by
Wisdom (1980). The critical eccentricity separating these regimes
increases with µ. The width at low eccentricity is in good agree-
ment with the result from the resonance overlap criterion (Wisdom
1980; shown by a vertical blue line), although this systematically
underestimates it, as previous studies have shown (Duncan et al.
1989). The increased chaotic zone width at larger eccentricities is
likely due to the increasing width of the mean motion resonances
at higher eccentricities, which can clearly be seen as intrusions of
chaotic motion into the regions of regular motion. This increasing
width can be derived analytically, as shown below.

To verify the accuracy of the encounter map results, we ran
an N-body integration using the hybrid algorithm included in the
MERCURY package (Chambers 1999). 961 test particles were placed
on orbits exterior to a planet of mass µ = 10−8 and their orbits
integrated for 10 Myr. These parameters correspond to panel (f) of
Fig. 1. Their final eccentricities and semimajor axes are shown in
Fig. 2. Initially, they fill the shaded region, but many are removed
from regions closer to the planet and scattered on to orbits which
almost intersect the planet’s (shown by the dashed black line). The
vertical solid blue line shows the chaotic zone width according to
Wisdom (1980). More eccentric particles are destabilized at greater
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Figure 1. (a)–(f): extent of chaotic zone as a function of particle eccentricity and semimajor axis and planet mass. The right-hand side of each plot is at two
Hill radii from the planet. The vertical blue line shows the extent of the classical chaotic zone (Wisdom 1980). Above the dashed black line, the particles are on
planet-crossing orbits; these particles were all classed as chaotic regardless of the map behaviour since they will experience close encounters with the planet.
The solid red line shows the analytical estimate of the chaotic zone width as a function of eccentricity (equation 10).

Figure 2. Fates of 961 particles after a 10 Myr N-body integration. Initially,
they are distributed over the grey rectangle and their final semimajor axes
and eccentricities are plotted as crosses. Also shown are the same lines as in
Fig. 1: dashed black – planet-crossing orbits; solid blue – classical chaotic
zone; solid red – extended chaotic zone. Dynamical clearing above the red
line is apparent.

semimajor axes than less eccentric ones, as was seen in the results
from the encounter map. Hence, the encounter map appears to be
giving an accurate picture of the dynamics. Additionally, the region
above the dashed black line is almost totally devoid of particles,
due to scattering by the planet (these particles either have collided
with the planet or are in the unstable population just below the black
line which is in the process of being scattered). This justifies our
labelling of planet-crossing orbits as ‘chaotic’ in Fig. 1.

3 A NA LY T I C A L D E R I VAT I O N

The standard derivation of the chaotic zone width (Wisdom 1980;
Quillen & Faber 2006) takes the widths of the mean motion reso-
nances to be independent of eccentricity. Working from the reso-
nance Hamiltonian,

H = J 2 + βJ − J 1/2 cos θ, (2)

where J∝e2 is the canonical momentum, θ is the resonant argument,
and β is a parameter measuring distance to the nominal resonance
location (see Quillen 2006b; Mustill & Wyatt 2011), one can show
that the width of a first-order resonance at low eccentricity is ap-
proximately (Wisdom 1980)

(δa/a)res = 3.2µ2/3j 1/3, (3)

where j numbers the resonance, j: (j − 1). In the limit of large j,
adjacent resonances are separated by a distance

(δa/a)sep = 2/(3j 2). (4)
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Figure 3. Black, solid line and crosses: the chaotic zone width at a moderate
eccentricity of e = 0.01 as a function of planet:star mass ratio. Points
show the numerical results from the grids in Fig. 1, and the line shows the
regression line, given by (δa/a)chaos = 0.86µ0.208, close to the analytical
result predicted by equation (10). Blue, dotted line and stars: the chaotic
zone width at zero eccentricity. Here the regression line (dotted) has a slope
of 0.278 ± 0.0077, close to the 2/7 predicted by the analytical arguments of
Wisdom (1980).

Equating these two distances gives the outermost resonance where
overlap occurs as

j = 0.51µ−2/7. (5)

Since a − apl = 2/(3j) for large j, the chaotic zone width is thus
given by

(δa/a)chaos = 1.3µ2/7. (6)

This scaling is successfully reproduced by numerical iterations of
the encounter map (Duncan et al. 1989, and Fig. 3 of this paper).

However, the resonance width grows with particle eccentricity, as
can be seen in panel (a) of Fig. 1. This means that resonances that do
not overlap at low eccentricities may overlap at higher eccentricities,
and cause the chaotic zone to be wider. When eccentricities are not
small, the width of the resonance can be found by considering the
width of the resonant libration region after the resonant separatrix
forms, which is given by δJ = 4(4J)1/4 (Murray & Dermott 1999)
in terms of the canonical momentum J. Now J is related to e by

J = kj (mpl/M⊕)−2/3(m!/M&)2/3e2, (7)

where kj ∼ (3jM&/2M⊕)2/3/2 in the limit of large j (Quillen &
Faber 2006; Mustill & Wyatt 2011), and so

δJ = 1.3µ−2/3j 2/3eδe. (8)

Using the relationship between eccentricity change and semimajor
axis change in a resonance δa = 2jaeδe (Murray & Dermott 1999),
we then have

(δa/a)res = 7.78e1/2µ1/2j 1/2, (9)

for the maximum libration width in semimajor axis. Equating this
to the resonance separation and redoing the previous derivation then
give

(δa/a)chaos = 1.8e1/5µ1/5 (10)

as the width of the chaotic zone at higher eccentricities. Note the two
implications of this equation. First, the chaotic zone width grows
weakly with eccentricity. The dependence is shown in Fig. 1 as
solid red lines. The agreement with the results from the encounter
map is striking. We also show the dependence in Fig. 2, where we
can see many unstable particles above the solid red line. Secondly,
the µ2/7 dependence of the chaotic zone width on planet mass,
valid in the low-eccentricity regime, is replaced with a µ1/5 depen-
dence. To verify this, in Fig. 3 we plot the width of the chaotic
zone at an eccentricity of e = 0.01 as a function of µ. The width
was determined by finding the innermost cell where all trajectories
were regular from the grids presented in Fig. 1. The regression line
through these points gives a dependence (δa/a)chaos = 0.86µ0.208, in
excellent agreement with the analytical result from equation (10).
Thus, for higher eccentricities, the chaotic zone width is given by a
µ1/5 scaling, not the more familiar µ2/7. For comparison, the width
of the chaotic zone at e = 0 as a function of µ is shown in the same
figure. The regression line here gives (δa/a)chaos = 1.35µ0.278, in
excellent agreement with Wisdom’s original result.

Equation (10) also allows the critical eccentricity separating the
two regimes to be estimated. Equating (δa/a)chaos obtained from
equation (10), for eccentric particles, with the value from equa-
tion (6), for low-eccentricity particles, gives

ecrit ≈ 0.21µ3/7, (11)

growing with µ, as is seen in Fig. 1. Note that e = 0.01 is the critical
eccentricity for µ = 10−3, and indeed the widths of the classical
and extended zones coincide at this point (Fig. 3).

Note that there is a maximum eccentricity for which this deriva-
tion of the extended chaotic zone is valid. This occurs where the
solid red line in Fig. 1 marking the boundary of the extended
chaotic zone intersects the dashed black line denoting the region
of planet-crossing orbits. At eccentricities above this, particles will
be removed directly by close encounters rather than via chaotic
diffusion. The maximum eccentricity is given by

emax = 2.1µ1/4, (12)

and in this regime particles are unstable if

δa/a < e. (13)

In the next section, we adopt the slightly more conservative condi-
tion that particles are also unstable if they approach within one Hill
radius of the planet.

4 D ISCUSSION

4.1 The shape of debris disc inner edges

This result has important implications for the interactions of plan-
ets and debris discs. Discs showing inner clearings are commonly
explained by the existence of a planet removing particles from its
chaotic zone (e.g. Quillen 2006a). The mass and semimajor axis of
the planet determine both the location and the sharpness of the inner
edge (Quillen 2006a; Quillen & Faber 2006; Chiang et al. 2009).
Since our investigations above have revealed that the extent of the
chaotic zone differs from the classical prescription, we now explore
its effect on the nature of inner edges to debris discs. As discussed
by Chiang et al. (2009), to correctly model the shape of a disc edge
it is necessary to account not only for particles located in semima-
jor axis at the edge of the chaotic zone, but also ones further out
whose eccentricities may cause them to affect the radial distribu-
tion of particles at the disc edge. Accordingly, we generate surface
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density profiles for discs in the following way. We consider simple
model discs where 5 × 104 planetesimals are uniformly distributed
in eccentricity between 0 and a maximum em and semimajor axis
between 1 and 2 au. Particles are removed if their orbits under iter-
ations of the encounter map are chaotic, or if their periapsis comes
within one Hill radius of the planet. We then sample 100 mean
anomalies from each particle’s orbit, and sum the particles in radial
bins to find the surface density profile. We also vary the particles’
eccentricities and semimajor axes according to the encounter map
results, because the particles do not remain at their initial a and e
even if their orbits are regular.

The results, for mass ratios µ = 10−3, 10−4 and 10−5 and a maxi-
mum eccentricity of em = 0.1, are shown in the top panel of Fig. 4 as

Figure 4. Surface densities at the inner edges of debris discs cleared by a
planet at 1 au. Top: comparison of the encounter map results (solid) with
the prescription of Wisdom (1980; dotted). Vertical dotted lines show the
location of the classical zone edge in semimajor axis; irregular dotted lines
show the planetesimal distribution when their eccentricities are accounted
for. Maximum particle eccentricities are 0.1. Planet masses are µ = 10−3

(black), µ= 10−4 (blue) and µ= 10−5 (red). Bottom: disc profiles according
to the encounter map results for different planet masses and planetesimal
eccentricities. Planet masses are as above; maximum particle eccentricities
are 0.01 (solid), 0.03 (dashed) and 0.1 (dotted).

solid lines. We see that the shape of the inner disc edge depends on
both the planet’s mass, with more massive planets making the edge
shallower. We show on the same plot with dotted lines the results
from the original prescription of Wisdom (1980), showing a dis-
crepancy both in the location of the edge and in the shape of it. The
discrepancy is greater for larger planet mass. In the bottom panel of
Fig. 4, we show the results from the encounter map iterations for
a range of planet masses and particle eccentricities. More massive
planets and more eccentric particles lead to shallower slopes. In
addition, fluctuations in the surface density outside the cleared zone
caused by mean motion resonances can be seen (see also Quillen
2007), and these are more apparent for lower eccentricities. The
shallowness of the edge means that its precise location is ill de-
fined, but if it is attempted to be quantified by a single statistic, for
example the half-maximum, then it should be noted that this value
depends on the particles’ eccentricities, leading to a degeneracy
between planet mass and particle eccentricity.

In this subsection, and the subsequent, we consider only the grav-
itational influence of the planet on the planetesimals which the disc
comprises. It is likely that in many debris discs the eccentricities
of planetesimals are high, if they have been dynamically excited by
planets’ secular perturbations (Mustill & Wyatt 2009) or by large
planetary embryos embedded in the disc (Kenyon & Bromley 2010).
In such a disc, collisions between planetesimals will be destructive
due to the high relative velocities. Furthermore, eccentricities will
remain high as ongoing stirring processes will dominate over colli-
sional damping (Kenyon & Bromley 2004; Shannon & Wu 2011).
We do note that there may be discs where the relative velocities re-
main low (Heng & Tremaine 2010) in which eccentricities may be
continually damped by collisions. The truncation of such discs will
be governed by both dynamical clearing from the classical chaotic
zone and viscous spreading of the disc due to the inelastic collisions
(Quillen 2007). We do not consider such discs here.

4.2 Case study: HR 8799

As an example of the effects of the extended chaotic zone, consider
the HR 8799 system. The 1.5 M& star is orbited by four known
planets and at least two debris belts. Su et al. (2009) estimated that
the inner edge of the outer disc lies at 90 au based on fitting the
disc’s spectral energy distribution (SED); the inner edge of the disc
is not resolved. It is thought that the outermost planet, HR 8799 b,
at a projected distance of 68 au from the star (Marois et al. 2008),
is responsible for the truncation. Su et al. (2009) argued that the
radius of the truncation, the location of planet b at 68 au, and a
planet mass of 10 Jovian masses, at the upper end of the range
suggested by photometry (Marois et al. 2008), are all consistent
with a scenario in which the truncation is due to planet b’s chaotic
zone. Quantitatively, Su et al. (2009) took the chaotic zone to be
given by 1.4µ2/7 as given by Malhotra (1998).

As we have seen, this relationship underestimates the width of
the chaotic zone at high eccentricities. If the disc particles’ eccen-
tricities are above ∼0.02 (estimated from equation 11), the extent
of the clearing will be greater than this because of the extended
chaotic zone. Hence, if the disc particles have low eccentricities,
the mass estimated by Su et al. (2009) will be correct, and the planet
mass will be around 10 Jovian masses. However, if the disc parti-
cles’ eccentricities are higher than ∼0.02, the same clearing will
be achieved with a smaller planet mass. We quantify this effect in
Fig. 5. This compares the shape and extent of the clearing due to
planets of 2, 4, 6, 8 and 10 Jovian masses, under the assumptions
that particles are removed only in the classical chaotic zone (dotted
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Figure 5. Comparison of disc edge profiles for the disc around HR 8799
truncated by planet b at 68 au. The maximum eccentricity of the disc particles
is 0.1. Solid lines show disc profiles derived from the encounter map results;
dotted show profiles when truncated by the classical Wisdom prescription.
The vertical dotted lines show the location of the disc edge for particles on
perfectly circular orbits. Planet masses increase from left to right: 2, 4, 6,
8 and 10 Jovian masses. Note that all the disc surface densities are 104 far
from the planet; the different heights visible here are due to the effects of
the 2:1 mean motion resonance at 108 au.

lines) or also in the extended chaotic zone (solid line). In each case,
particle eccentricities were distributed uniformly between 0 and 0.1.
We also show as vertical dotted lines the location of the edge for
particles on circular orbits. We see that the profiles for 8 and 10 Jo-
vian mass planets under the Wisdom prescription (whose medians
straddle 90 au) are similar to the profiles for the 4 and 8 Jovian mass
planets, respectively, under the extended zone prescription. Hence,
the planet masses required to achieve a given clearing may be less
than predicted by the Wisdom criterion by as much as 50 per cent.

Thus, if the edge of the outer disc is located at 90 au, and the
particles in the disc have eccentricities of the order of 0.1, then the
mass of planet b is in the range 4–8 Jovian masses, rather than the 8–
10 Jovian masses that it would be if the particles’ eccentricities were
below 0.02. For now it is not possible to make such firm conclusions,
since observations have yet to resolve the inner edge of the disc, and
its 90 au location inferred from SED modelling is degenerate with
the assumptions made about the particle properties. Nevertheless,
the inner edge will likely be resolved by future observations, and
this will help to reduce the uncertainty in the planet mass. For
example, some authors, e.g. Currie et al. (2011), claim a lower
mass for planet b of 6–7 Jovian masses, and this is consistent with
the planet truncating a disc of planetesimals, whose eccentricities
range up to 0.1, at 90 au, if the edge indeed be located there. The
eccentricities of the disc particles may have been excited to such
an extent by the growth of large planetesimals in the disc (Kenyon
& Bromley 2010), secular perturbations from the planets, if one or
more is eccentric (Mustill & Wyatt 2009), or sweeping by mean
motion or secular resonances during past evolution of the system
(Minton & Malhotra 2011; Mustill & Wyatt 2011).

Finally, we note that our main conclusion – that the mass of planet
b estimated from the extent of the chaotic zone will depend on the
eccentricities of the disc particles – does not depend on the actual
location of the disc edge. If the disc prove to be at a greater radius,

the mass estimated for a disc of eccentric particles will still be
greater than that estimated for particles on circular orbits, although
each will be greater than its corresponding mass estimated for a disc
edge at 90 au.

4.3 Post-main-sequence evolution of planetary systems

There are also important implications for the evolution of planetary
systems when a star loses mass during post-main-sequence evo-
lution. When stars lose mass on the asymptotic giant branch, the
planet:star mass ratios increase and previously stable systems can be
destabilized (Debes & Sigurdsson 2002; Bonsor et al. 2011). Stars
typically lose mass at relatively modest rates, and under these con-
ditions orbits expand adiabatically and the ratios of semimajor axes
are unchanged (Veras et al. 2011). However, since the planet:star
mass ratio increases as the star loses mass, quantities which depend
on this ratio, such as the Hill radius and the widths of resonances
and the chaotic zone, will change too. The chaotic zone expands,
and after mass loss particles which were previously on stable or-
bits may find themselves in the chaotic zone. The presence of this
reservoir of newly unstable material may explain the existence of
metal pollution in the atmospheres of white dwarfs (Zuckerman
et al. 2003), as well as hot discs orbiting some white dwarfs (Farihi
et al. 2009), as bodies are scattered on to highly eccentric orbits
and tidally disrupted (Zuckerman et al. 2003; Bonsor et al. 2011).
Bonsor et al. (2011) estimated the amount of destabilized material
simply by expanding the µ2/7 zone according to the new, lower, stel-
lar mass. While this will correctly describe the new chaotic zone at
low eccentricity, seemingly vulnerable particles with higher eccen-
tricity may escape being engulfed by the new chaotic zone. This is
because the lower boundary of the extended chaotic zone increases
as µ increases. However, a further complication may counteract
this: Veras et al. (2011) showed that if mass-loss rates are relatively
rapid then particles’ orbits do not expand adiabatically and they may
acquire some eccentricity. This could push seemingly safe bodies
into the extended chaotic zone. Since the eccentricities required to
enter the extended chaotic zone are relatively modest, this could be
an important mechanism for destabilizing bodies.
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