Status of PIAA-related experiments and projects

Abe L.1, Guyon O.2, Tamura M.1, Enya K.3, Tanaka S.3, Matsuo T.4

1National Astronomical Observatory of Japan
2Subaru Telescope, NAOJ, Hawaii
3Institute of Space and Astronautical Sciences, Japan
4Nagoya University, Japan

In the Spirit of Bernard Lyot Conference, June 3rd – 8th 2007
University of California, Berkeley

Email: abe@optik.mtk.nao.ac.jp
Merits of the PIAA

Phase Induced Amplitude Apodization

- Two-mirror apodization
- In theory, nearly 100% throughput
- 100% search area
- Small Inner Working Angle (<2 \(\lambda/D \))
PIAA Coronagraph Concept

Pupil

Apodization intensity profile (linear scale)

$I_{\text{max}} = 9.78$

On axis image

PSF intensity profile (log scale)

Occulter (focal mask)
Small IWA: the Phase Slope Amplification

For off-axis objects, the phase slope is magnified ($\propto \sqrt{I_{\text{max}}}$)

Typical focal plane intensity distribution of the off-axis point-source ($10 \lambda/D$)
PIAA Lab Demonstrator
(JPL and NAOJ funds)

Optics manufactured by AXSYS

32×32 BMC DM
PIAA Lab Demonstrator
(JPL and NAOJ funds)

PIAA Experiment in Subaru Bldg. Clean Room (Hilo)

Acoustic & Thermal isolation panels

(some panels removed in this picture)

⇒ See J. Totems et al. Poster
Hybrid PIAA/conventional apodization is best

- PIAA optics manufacturing tolerances are relaxed
- Binary apodizer (ring mask)
 See S. Tanaka et al. – poster
- Good achromaticity

PIAA Lab Demonstrator
(JPL and NAOJ funds)

PIAA output pupil image on the 32 x 32 BMC DM
PIAA Lab Demonstrator

- Pointing is critical
 ➔ Continuous pointing corrections

- Annular reflective occulting mask

 ![Focal Plane Occulter (FPO)](image1)

 - Transmissive
 - Reflective
 - Absorptive

![Measured noisy images](image2)

- Estimated best fit images

![Graph](image3)

- Measured

 - Science focal plane
 - LOWFS: inside focus
 - LOWFS: outside focus

- Estimated

 - Science focal plane
 - LOWFS: inside focus
 - LOWFS: outside focus

- RMS WF error in input WF:
 - $1.70 \times 3 \text{ rad} = 0.15 \text{ nm @ 550nm}$

- RMS WF error between input and estimate:
 - $6.45 \times 4 \text{ rad} = 0.056 \text{ nm @ 550nm}$
PIAA Lab Demonstrator
(JPL and NAOJ funds)

DM correction using Phase diversity

Speckle control

Achieved dyn.: 6.10e-7
Future Tests & 2nd Generation PIAA
NASA Ames / TOPS partnership / JPL

- We are acquiring a 2nd generation PIAA improved optical quality & better design (lessons learned with 1st generation PIAA)

- Moving to tests in Vacuum – putting PIAA into HCIT

- Testing PIAA fed by large mirror (~1m) in vacuum for end-to-end tests at 1e10 contrast

⇒ see O. Guyon talk on TOPS (Friday)
HiCIAO is a differential imager combined to a coronagraph

See M. Tamura (Thu. afternoon)

Upgrade plans (MEXT funded):
- Coronagraph: PIAA w/ lenses
- Adaptive Optics: 32×32 MEMS DM + FP WFC
Subaru/HiCIAO Upgrade Plans (II)

- Spider Removal Plate
Subaru/HiCIAO Upgrade Plans (III)

- PIAA Lenses ➔ APLC configuration (i.e. Mask + Lyot Stop) ➔ Small mask (radius 1 λ/D)

- Speckle control ➔ ASICS controller flexibility

▼ PIAA Lenses (Calcium Fluoride)
SPICA Coronagraph (I)

SPace Infrared telescope for Cosmology and Astrophysics

SPICA Mission

- 3.5m on-axis / 4.5K active cooling
- mIR to submm astrophysics (5-200 µm)
 ➔ Complementary to JWST @ >15mic

➔ Coronagraphic mode
- Direct observation of outer self-luminous planets
 (20~100+ UA orbits)
- **Goal contrast** \(>10^{-6} \) within the exploration area
- Benefit from monolithic pupil

➔ Baseline candidate: Checkerboard Pupil Mask
 (See K. Enya et al. – Thu. afternoon)

➔ Advanced option: PIAA
SPICA Coronagraph (II)

Preliminary work

- Central obstruction constraint (20~25%)
 - Sensitivity to tip-tilt (phase discontinuity)
 - increased IWA
 - ...Solution for an APLC? (insensitive to central obstruction)

- PIAA Hybridisation
 - Best combination for PIAA optics/apodizer
 - Achromatization issues

λ: 5-7µm / Fresnel propagation simulations
More information:
Subaru testbed & Subaru Extreme-AO project:
http://www.naoj.org/staff/guyon/PIAA/index.html
http://www.naoj.org/staff/guyon/ExtremeAO/index.html

PIAA-related papers, by our team and others:
http://www.naoj.org/staff/guyon/PIAA/Papers.html

Wanted:
Post-doctoral fellow (available funds for at least 2 years)
Subaru Telescope, Hilo, Hawaii

Contact: guyon@subaru.naoj.org