Laboratory Results in High Contrast Imaging with the Shaped Pupil Coronagraph

Ruslan Belikova, Amir Give’onb, Brian Kernb, John T. Traugerb, Kunjithapatham Balasubramanianb, N. Jeremy Kasdina, Andreas Kuhnertb

aPrinceton University, NJ
bJet Propulsion Lab, CA

Work sponsored by JPL Contract 1284357 and Michelson Science Center

Spirit of Lyot Conference, Berkeley, CA
June 2007

Contrast: 2.5×10^{-9}
Bandwidth: 10\% @ 800nm
IWA: $4 \lambda/D$
Outline/Acknowledgements

1. Shaped Pupil design
 - Original concept and classical designs
 - Vanderbei, Kasdin, Spergel, et. al.
 - Theoretical analysis
 - Ceperley, Lieber, Neureuther, Vanderbei, Belikov, et. al.
 - Final manufacturable designs
 - Belikov, Shaklan, Cady, et. al.

2. Shaped Pupil Manufacturing
 - Balasubramanian, White, Echternach, Dickie, Belikov, Beal, et. al.

3. Testbed design and setup
 - Trauger, Kern, Shi, Kuhnert, Niessner, Belikov, et. al.

4. Wavefront Correction Algorithms
 - Speckle nulling
 - Trauger, Burrows, et. al.
 - Others
 - Give on, Belikov, Borde, Traub, Pueyo, et. al.
 - Designing experiments, analyzing results
 - Belikov, Kasdin, Give on, et. al.

1. Shaped Pupil Design

- Focal plane
- Entrance Pupil
- Apodization $A(x,y)$
- PSF $B(\xi,\zeta)$
- IFT^2
- IFT^2
Image plane stop (Bowtie)

New design based on "Shaklan Dashing"

Ideal, last year (zoom) Actual, last year (zoom) This year (zoom)
2. Manufacturing

- Manufactured by JPL's MDL
- DRIE etching of SOI wafer
 - New this year: improved process
- 30mm diameter, active area 50\(\mu\)m thick
- Simulation results
 - Vector interactions with sidewalls: \(10^{-9}\)
 - Nanofabrication Center, JPL
 - Manufacturing error: \(10^{-9}\) contrast
 - Tapered sidewalls: \(10^{-10}\)
 - 3x larger masks: \(10^{-10}\)

Photos courtesy of K. Balasubramanian

3. JPL's High Contrast Imaging Testbed

- State-of-the-art facility
- Vacuum chamber
- Light source
 - 760-840nm (10%)
 - 5 2% filters
- Years of painstaking work to make sure there are no artifacts and things are stable at \(10^{-10}\) level

Image courtesy of J. T. Trauger
4. Wavefront Correction Algorithms

- DM diversity concept
 - Use the DM to throw known EF onto the science camera, thus "probing" the EF in the dark zone
- Algorithms
 - Classical Speckle nulling (Trauger and Burrows)
 - Others (Give’on, Borde, Traub, Belikov)
- Broadband experiment
 - Correct at 2% at 800nm
 - Switch to the other 2% filters and 10%

2% @ 768nm
2% @ 784nm

2% @ 800nm
2% @ 816nm

2% @ 832nm
Contrast: 2.5×10^{-9}
Bandwidth: 10% @ 800nm
IWA: $4 \lambda/D$
Contrast: 2.5×10^{-9}
Bandwidth: 10% @ 800nm
IWA: $4 \lambda / D$
Speckle contrast vs. detection limit

- Automatic incoherent light detection
- Other tricks
 - SDI
 - Rotating the telescope
 - Matched filtering

Data courtesy of Amir Give'on

Conclusions and Significance of Results

- 2.5 x 10^{-9} contrast at 4 λ/D in 10% BW
- Shaped pupils require at least a 4m telescope to do TPF, so who cares?
 - Studying high contrast physics
 - Better IWA/throughput are possible
 - Especially with hybrid systems
 - Demonstrate that we can get to TPF-level contrast in time for decadal survey!!

6/15/07