Principle, simulations and laboratory results of the Self-Coherent Camera

Raphaël Galicher
Pierre Baudoz
Gérard Rousset
Julien Totems

LESIA, Observatoire de Paris, France

Exoplanets imaging

SPHERE (VLT)

XAO + coronagraph + differential imaging : at $5\lambda/D$ accessible contrast $\sim 5.10e-5$ in H band in 20min.

ONE OF THE MAIN LIMITATIONS

Quasi static wavefront aberrations => quasi-static speckles

Exoplanets imaging

SPHERE (VLT)

XAO + coronagraph + differential imaging : at $5\lambda/D$ accessible contrast $\sim 5.10e-5$ in H band in 20min.

ONE OF THE MAIN LIMITATIONS

Quasi static wavefront aberrations => quasi-static speckles

NEEDS

Calibrate and eliminate these speckles

PROPOSITION

The Self-Coherent Camera (Baudoz 2006) based on the non-coherence between star and companion lights

Step 1: encoding star speckles

Step 1: encoding star speckles

Step 1: encoding star speckles

Step 2: Image analysis

speckles information in I+ and I-companion information in Ic

2007, June 6th

Raphaël Galicher

Companion detectability

Galicher, Baudoz; "Expected Performance of a Self-Coherent Camera" accepted in Report in Physics, 2007.

Companion detectability

Galicher, Baudoz; "Expected Performance of a Self-Coherent Camera" accepted in Report in Physics, 2007.

Polychromatic companion detectability

Numerical simulations assumptions:

No atmospheric aberrations.

No Read-out-noise.

No static aberrations.

Photon noise.

 $\lambda = 650$ nm.

 $5^{\mbox{\tiny th}}$ visible magnitude G2 star.

Polychromatic companion detectability

Chromatism is critic and has to be compensated

Solution : A Wynne compensator has been chosen

Numerical simulations assumptions:

No atmospheric aberrations.

No Read-out-noise.

No static aberrations.

Photon noise.

 $\lambda = 650$ nm.

5th visible magnitude G2 star.

Polychromatic companion detectability

Chromatism is critic and has to be compensated

Solution: A Wynne compensator has been chosen

error between monochromatic and compensated images is ~ 0.75%

<u>Numerical simulations assumptions:</u>

- ➤ WITH CORONAGRAPH (FQPM).
- \triangleright Visible : λ =0.8 μ m.
- Common static aberrations: 57nm.
- Non-common static aberrations : 20nm.
- Photon noise; no Read-out-noise.
- > XAO : S=75%.
- > 8m telescope.
- ► 5th magnitude G-star.
- R=8 (perfect chromatic compensator).
- Exposure time : 6ms (1 interferential image).

<u>Numerical simulations assumptions :</u>

- ➤ WITH CORONAGRAPH (FQPM).
- \triangleright Visible : λ =0.8 μ m.
- Common static aberrations : 57nm.
- Non-common static aberrations : 20nm.
- Photon noise; no Read-out-noise.
- ➤ <u>XAO</u> : S=75%.
- > 8m telescope.
- > 5th magnitude G-star.
- > R=8 (perfect chromatic compensator)
- Exposure tik 1 interferential image

Laboratory preliminary results

Objectives:

Testing the image analysis on laboratory images

Conclusions and future studies

- Unlike differential imaging, the Self-Coherent Camera reaches photon noise.
- Fig. The Self-Coherent Camera can be associated with a coronagraph: 10^{-6} at 2λ/D in visible light (R=8) in a fraction of seconde from ground.
- Chromatic effects are not a limitation :
 <u>Hardware solution</u> : Wynne compensator enables R=6.5
 <u>Software solution</u> : A new estimator for polychromatic image is under study.
- More works are planned in the laboratory :
 - a) Self-Coherent Camera.
 - b) Self-Coherent Camera + coronagraph.
 - c) Wynne compensator.
- Impact of Read-out-noise and new estimator.
- Use the Self-Coherent Camera to correct wavefront errors.

Coffee break begins now....

Thank you and Thanks to Bernard Lyot