EPICS: A planet hunter for the European ELT

42-m E-ELT

Adaptive (integrated deformable mirror)
Corrects for active optics residuals and ground layer
Reduces DM stroke for post focal AO systems
Makes instrumentation easier.

Multiple sodium LGS
In detailed study phase (phase B) until 2009

M4 specifications
- 2.5 m flat
- ~8000 actuators
- 30 mm pitch
- 1 ms response
- Stroke 25-90 μm
- Inter act: 2-3 μm

M5 specifications
- 2.7 m flat
- Field stabilization
- Monolithic
- Lightweight

EPICS for the E-ELT

Lyot 2007, 03/06/2007
EPICS phase-A study

- Partners: ESO, LAOG, LAM, LESIA, LUAN, Oxford University, Padova University, ETH Zuerich, ...
- 2-year phase-A study starts end of 2007, finish at the same time as E-ELT phase-B end of 2009
- Phase 1 (6 months): Simulations, Requirements, Concept
- Phase 2 (18 months): Conceptual design, analysis, feasibility studies, breadboard testing (FPWS, IFS incl. data processing, Coronagraphs, woofer/tweeter concept)

EPICS Consortium Organisation Chart

- Science
 - R. Gratton (INAF)
- Management and PI
 - M. Kasper (ESO)
- Co-PI
 - J.L. Beuzit (LAOG)
- System Design and Analysis
 - C. Vrinaud (LAOG)
- Wave-Front Control
 - C. Vrinaud (LAOG)
- Coronagraphy
 - N. Yaitskova (ESO)
- Integral Field Spectroscopy
 - N. Thatte (Oxford Univ.)
- Polarimetry
 - H.M. Schmid (ETHZ)
- Novel Concepts
 - P. Baudoz (LESIA)
SPHERE science

- Directly detect photons from extrasolar giant planets (0.5 M_J) around
 - Young nearby stars (age 5-50 Myr)
 - Young active F-K stars (age 0.1-1 Gyr)
 - Nearby (mostly late type) stars
- Explore the mass-period distribution (1-20 Mjup, 1-1000 years)
- Survey an extended number of stars
- First order characterisation of the atmosphere (Clouds, dust content, Methane, water absorption, Effective temperature, radius, dust polarization)

⇒ Understand the planetary system origins

Main TLR for AO guide stars V<9:

<table>
<thead>
<tr>
<th></th>
<th>5σ contrast at 0.1"</th>
<th>5σ contrast at 0.5"</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRDIS</td>
<td>5e-5 (goal 1e-5)</td>
<td>5e-6 (goal 5e-7)</td>
</tr>
<tr>
<td>IFS</td>
<td>1e-6 (goal 1e-8)</td>
<td></td>
</tr>
</tbody>
</table>

Lyot 2007, 03/06/2007
EPICS science

- Detection and 1st order characterization of terrestrial planets and super-Earths for very nearby stars (≤ 10pc), ultimately located in the HZ (for M-dwarfs)

- Young self-luminous gas giants in star forming regions or young associations
 - Good resolution achieved even for star forming regions at ~100pc, young planets at separation > 3 AU can be detected, very important observations to understand planet formation (talk Jang-Condell)

- Mature gas giants at orbital distances between ~5 and 15 AU in the solar neighbourhood (≤ 20 pc)
 - Not an easy observation
 - Determine frequency and mass distribution of giant planets

- Warm Jupiters that have been discovered by radial velocity searches
 - Fairly easy, spectral characterization
 - Understand giant planets’ atmosphere composition and structure
EPICS TLR

- XAO: SR=90% in H band, ~200x200 act (for 42-m), Starlight Halo Rejection (→ contrast)
- IFS spectro-imaging: Y-H band, R ~ 50
- Polarimetry: 600-900 nm
- Inner Working angle: 20 mas (central blind spot of 5 λ/D @ H)
- FoV: 4” diameter

Contrast (J, H) for I < 8 mag (AO NGS):
- 30 mas – 100 mas: \(10^{-8}\)
- 100 mas – 800 mas: \(10^{-9} \rightarrow \text{goal: } 10^{-10}\)

Contrast (J, H) for I < 10 mag:
- 30 mas: \(10^{-7}\)
Photon Noise Limit

- Seeing: 0.6", 10h on-source integration (same performance as with 30h in 1"")
- XAO system,
 - Pyramid WFS,
 - 0.2-m actuator spacing (~25,000 actuators),
 - 3 kHz,
 - I band for WFS (small chromatic errors)
- Perfect coronagraph (no diffraction residuals)
- Perfect speckle subtraction (only photon noise residuals)
- Transmission to science detector: 10%
- Observation: J-band with 100nm bandwidth (all planet photons supposed to contribute to detection),
- NO INSTRUMENT AND TELESCOPE ERRORS (perfect optics and detectors)
- ONLY PHOTON NOISE originating from AO residuals
Ultimate performance

<table>
<thead>
<tr>
<th></th>
<th>Earth size in HZ</th>
<th>Jupiter at 5 AU</th>
</tr>
</thead>
<tbody>
<tr>
<td>G2V</td>
<td>< 6.7 pc</td>
<td>< 33.9 pc</td>
</tr>
<tr>
<td>K0</td>
<td>< 8.2 pc</td>
<td>< 25.9 pc</td>
</tr>
<tr>
<td>M0</td>
<td>< 11.1 pc</td>
<td>< 19.5 pc</td>
</tr>
</tbody>
</table>

EPICS contrast

Lyot 2007, 03/06/2007
Challenge, quasi-static speckles

Aberrations in front of coronagraph:

\[
\langle |I_1 - I_2| \rangle \approx |\hat{\phi}_{\text{common}}| |\hat{\phi}_{\text{dif,shift}}|
\]

Aberrations behind coronagraph:

\[
\langle |I_1 - I_2| \rangle \approx |\hat{\phi}_{\text{common}}|^2 \cdot \sigma_{\text{dif,ins}}
\]

Static aberrations must be controlled at nm level by DM:

- Focal Plane Wavefront Sensor for \(\phi_{\text{common}} \)
- IFS or differential polarimetry for \(\phi_{\text{dif,ins}} \)

Cavarroc et al., 2006

Lyot 2007, 03/06/2007 EPICS for the E-ELT
Challenges, Chromatic effects

- Spectral differential aberrations already in common path
- AO residual error

- Keep optics close to pupil plane
- ADC as early as possible in optical design
- Observe close to zenith
- $\lambda_{WFS} \approx \lambda_{Science}$
- Dedicated AO algorithm
- Spectral deconvolution
Challenges, Diffraction suppression

- Similar effect as static aberrations
- Cannot be beat down by long integrations
- High rejection required, PSF contrast < 10^{-7}

✓ many promising concepts

✓ cascade
 - 4-QPM (Baudoz talk)
 - APLC (Soummer)
 - ...

Lyot 2007, 03/06/2007

Martinez et al., 2007
Other challenges

- Amplitude errors introduced by optics
 - Keep optics clean, additional corrector (phase/ampl)

- Gaps between telescope mirror segments
 - Optimize segment size, fancy apodization

- Dust introducing scattering
 - Keep optics clean (especially when close to image plane), high spatial frequencies

- Ghosts
 - Minimize number of transmissive optics, wedged surfaces, optimized coatings,…

- Technological: DM, detectors, real-time computer, optical polishing, …