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Characterizing Planets

® Why do it?

® How to measure M and R?

® Evolution and spectral fitting

® Atmospheric modeling and spectra

® Conclusions




Why Characterize Giant
Planets?

Giant Planets are
Interesting

® Radial velocity & SIM will determine masses and orbits
® Giants are not interesting for astrobiology

® Giant planet science provides no heritage for terrestrial
planet characterization and is a “niche” field

® Why build specialized instruments?
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Giant Planets Interesting

® Radial velocity & SIM will determine masses and
orbits: Planets are more than masses on springs and well
characterized planets are fiducials for more distant objects

® Giants are not interesting for astrobiology: they
provide a record of stellar system formation &
perhaps volatile transport

® Giant planet science provides no heritage for
terrestrial planet characterization: provide end to end
experience of planet characterization, heritage for
bigger efforts

Characterization

® Mass - Images can resolve
sin i; RV less useful for
some groundbased :
detections (longer P, young =3
stars)

® Radius - Scattered light
alone does not tightly
constrain radius since

albedo uncertain - R%a 7 ALl z-:':.’l'l\\'?.{'-x"’-\\i&;“-:
Need independent M & R measures
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How to Constrain M & R?

Radius: IR + Visible
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A case study: Gl 570D (T8) - Saumon et al. (2003)

Primary (Gl 570A):

d =5.91+0.05pc !

(Perryman et al. 1997)

[Fe/H] = 0.00+0.12 = 3

(Feltzing & Gustafsson 1998)

(mly)

F

Age = 2-5 Gyr

(Saumon et al. 2000)

Spectroscopy:

Optical (Burgasser)

Near IR (Leggett) 0
M’ (Geballe)

Mid IRS (Spitzer/IRS Dim Suns team)

~70% of SED has been samplec




Luminosity constrains Tett & g

1) bolometric correction
from model spectra
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2) Evolution S
evol &)
l@ol(JQT’g) g

3) Te(g) follows from
L (T, 8) = LTy, 8)

T.+=800 K l0g g=5.09  Ly,o/L,=2.99X10

The resulting spectrum (not normalized!)
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Evolution Works,
But....

® Assumes companion composition = primary

® Substantial wavelength coverage to measure Lol
® Gyr age primary
® Radii of mature brown dwarfs understood

® More challenging at young ages & lower masses

® Spectra most definitive
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2M 1207 Companion

® Companion to ~M8 brown dwarf in
TW Hydrae (age ~ 8 Myr)

® red J-K implies late L, T - 1250 K
@

® Models give M =5 + 2 MJ
up

Chauvin et al. (2004)

Source SpT Age ] H K L

(Myr)  (mag) (mag) (mag) (mag)
IMASSWII207334-393254 M8 84 13.00 £0.03°  12,39£003° 11.95+003° 11.38+0,10%
giant planet candidate L5-L9.5 = 18.5° 18090217 1693+0.11° 1528+0,14°

EXIZX] BBC News in video and audio

Last Updated: Saturday, 30 April, 2005, 15:03 GMT 16:03 UK
B2 E-malil this to a friend & Pprintable version

Planet 'seen' around distant sun

European and American
scientists say they have
photographed a planet
outside the Solar System for
the first time.

The European Southern

Ohaarystory geoup @ald fhie red Dr Chauvin added: "Given the

image is the first direct shot of .

a planet around another star. rather unusual properties of
the 2M1207 system, the giant

The planet, known as 2M1207b,times th : p ;
is about five times the mass of Jupiter and is orbiting at a planet most pr°bably did not

distance nearly twice as far as Neptune is from our Sun. form like the planets in our
Solar System."

"Instead it must have formed
the same way our Sun formed,
by gravitational collapse of a
cloud of gas and dust."




Believable at young ages?
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2M0535
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Young Brown Dwarfs

® Evolutionary models passed some tests

® But...early evolution is highly sensitive to
initial conditions

® Need more observational tests

Planets remember their formation
mechanism, which is likely different from low
mass companions.
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Core Accreted
Planets:

® Smaller

® Cooler

® Fainter

Marley et al. (2007)
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Core Accreted Giants

® Model luminosity depends on treatment of
accretion shock

® Many uncertainties (geometry, energy partioning,
disk) remain

® Baseline model suggests young Jupiters are
much fainter than expected

® Discrepancy increases with mass

® See Marley et al. (2007)




Low Mass Companions can
be Distinguished from
Planets

® Formation clues are detectable
® Composition (different from primary)

® Radius

® | uminosity

Courtesy B. Macintosh & J. Graham



Characterization

® Mass - spectra

® Radius - spectra

® Albedo

® Effective temperature - spectra
® Equilibrium temperature

® |nternal luminosity

Characterization

® Mass

® Radius

® Albedo

® Effective temperature
® Equilibrium temperature
® |nternal luminosity

® Atmospheric Composition




Ratio to Solar

Geometric Albedo

Neptune

:

® Jupiter
* Urvar.w‘us
4 Neptune

signature of planethood?




But...

Requiring compostion
information turns most of |
the “Known Exoplanets” Gl i iacae =
into “Known Exoplanet suRn
Candidates”

Known Exoplanets: [
HD149026b '
Gl 436b

P A
Orbital Semimajor Axis (AU) Catema Carnoge

Pianet Sewch

Models




a b
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DUST FREE L

PRESSURE, rner

Marley & McKay (1999)

Composition  Metallicity, C/O, ...
Chemistry Sedimentation
Opacities High T CH4

®  Condensates

® + Dynamics

®  Thermal Structure & Spectrum




EGP Characterization Requires
Spectra
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R=70
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Marley et al. (1999)




Lessons from Brown Dwarfs
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T

4 1 M, 5 Gyr planet
orbiting a G2V star

Sudarsky et al. (2003); Burrows (2005)

Photochemistry

Jupiter at | AU

® 25x higher UV flux
® H,C, O,N,S, P chemistry
® Many pathways to hazes

® But...Liang et al. (2004) find no
hazes in hot Jupiters




Haze Production

CaHe

!
CsHs

|

parafin

?

Substantially alter spectra and
colors of canonical haze-free
models

Dynamics & Chemical
Equlibrium




Non-equilibrium

® Convection or eddy mixing can
transport CO

® Strong bond allows dynamical ©
<< chemical equilibrium t

® Excess CO observed in Jupiter
(Prinn & Barshay 1977)

® Predicted (Fegley & Lodders
1996) and observed (Noll et al.
1997) in GI229B

® Can CO attenuate EGP 5-um
excess? Relevant for JWST

lanet search

Flux (mJy)

CO and Vertical

Emergent Flux for a 15 M, Object

log, F (Wansky)

Wavelength (jum)

CO

470 4.80 4.90
wavelength (um)

Noll et al. (1997)

Miingred)
H, K

, L’ reassflably

well

® T dwarfs are generally
fainter at M than
expected

® Brightness at M band
advertised to ease
EGP direct detection:
“...we believe that this
band is a universal
diagnostic for brown
dwarfs and jovian
planets.” Marley et al.
1996



1000 K; 1 bar

Spectra of non—equilibrium models

log ¥, (arbitrary units)
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Saumon et al. 2003

Methane arrives late at L, CO hangs in longer




Effect of CO transport on M’ flux
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Saumon et al. 2003
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M band Less Favorable for
Planet Searches

® Up to 40% dimmer than previously expected

® Full phase space of mixing, chemistry not yet
explored

® Clouds also major impact

® |’ may be more favorable (lower background,
less affected by mixing)

A novel L-band imaging search for giant planets
in the Tucana and S Pictoris moving groups *

M. Kasper!. D. Apai*®, M. Janson®, and W. Brandner*®

At Low Spectral Resolution

® Clouds trump
® Hazes are a concern
® Metallicity

® C/O ratio

® Non-equilibrium chemistry influences search
band (L’ vs. M)




Conclusions

® Modeling issues are well understood
® Mass and Radius are just starting points

® For most objects, composition should be
major goal of characterization

® Condensates can cloud our vision

® True characterization is challenging, but
rewarding




