Performance study of integrated coronograph-adaptive optics designs In the Spirit of Bernard Lyot, UC Berkeley 2007

Laurent Pueyo, N.J kasdin

Department of Mechanical and Aerospace Engineering Princeton University

June 6, 2007

High contrast for exo-planet detection requires extreme performances from both the coronagraph and the adaptive optics

GOAL: Control two sequential deformable mirrors in order to improve the performances of a classical apodiser while doing wavefront control.

化口压 化晶质 化医压 化原质

Problem Studied

Starting from the observation that two sequential Deformable Mirrors are a modified version of PIAA we looked into relaxing the contrast constraint of a classical apodiser, and thus increase throughput and decrease IWA, while maintaining a 10^{-10} extinction using the DMs

Our approach is one dimensional and follows these three steps:

- We need to understand the physics of the propagation between two curved surfaces and how it limits the contrast of a pure PIAA.
- We need to understand how a classical apodiser breaks down the propagation induced contrast limit
- We need to design control algorithms for the DMs in order to maintain a 10⁻¹⁰ contrast in the presence of wavefront aberrations

For a given \tilde{x} , of all the incident wavelets emitted by the surface M_1 , the one that minimizes Optical Path Length is coming form the point $x_0(\tilde{x}), h(x_0(\tilde{x}))$. That point is defined by:

$$h'(x_0) = \frac{x_0 - \tilde{x}}{nS(x_0, \tilde{x}) + h(x_0) - \tilde{h}(\tilde{x})}$$
(1)

Enforcing the constraint of a flat wavefront coming out of M_2 , constant Optical Path Length Q_0 , leads to the second differential equation of pupil mapping:

$$\tilde{h}'(\tilde{x}) = \frac{x_0 - \tilde{x}}{nS(x_0, \tilde{x}) + h(x_0) - \tilde{h}(\tilde{x})}$$

$$\tag{2}$$

Finally, energy conservation yields the relationship between the mapping and the final E-field apodisation $A(\tilde{x})$

$$A(\tilde{x})^2 = \frac{dx_0}{d\tilde{x}}$$
(3)

Outgoing field

After some algebra, the Huygens integral simplifies to

$$E_{out}(\tilde{x}) = \frac{e^{i\frac{2\pi}{\lambda}Q_0}}{\sqrt{i\lambda Q_0}} \int e^{i\frac{\pi}{\lambda}\frac{d\tilde{x}}{dx_0}\frac{1+(1-n^2)h'(x_0)^2}{S(x_0,\tilde{x})}(x-x_0(\tilde{x}))^2 + o(x-x_0)^3} dx \approx \int_{-\frac{1}{2}}^{\frac{1}{2}} e^{i\frac{\pi D^2}{\lambda A(\tilde{x})Z}(x-\frac{x_0(\tilde{x})}{D})^2} dx \quad (4)$$

Since it is a modified Fresnel Integral, function that is tabulated in most commercial softwares, it provides a method for quick simulations of propagation effects for pupil mapping or 2 sequential DMs

Simulations of the contrast limitation

Limitation with finite optics

In the case of ray optics, that is $D \sim \infty$ or $\lambda \sim 0$, a closed from exists and yields the classical result:

$$E_{out}(\tilde{x}) = A(\tilde{x}) \tag{5}$$

Simulation of a 10^{-10} pupil mapping, with z = 1 and $\lambda = 600$ nm. The diameter of the optics *D* varies from 1 cm to 1 m.

(PropPIAAmovie.avi)

Need for hybrid designs

The phase oscillations of $E_{out}(\tilde{x})$ are responsible for the propagation induced contrast degradation. As proposed by Guyon et Al (2006), we mitigate them using a Classical Pupil Apodisation / PIAA hybrid design.

Classical apodiser with two sequential DMs

For this study we choose to use as a post apodiser a prolate function that provides a factor of 10^{-7} around $3\lambda/D$ and we look for a 2 DM induced apodisation that will bring the contrast down to 10^{-10} between IWA and OWA.

Finding the optimal DM induced apodisation

- We have a measurement of the field $E_{IM}(\xi)$ in the image plane
- We are looking for apodisations of the form:

$$A_{2DM}(\tilde{x}) = 1 + \sum_{p=1}^{N} a_p f_p(\tilde{x})$$
(6)

• The integrated intensity in the Dark Zone of the image plane is:

$$I_{DH} = \int_{DH} |E_{IM}(\xi) + \sum_{p=1}^{N} a_p(\widehat{A_{Post}f_p})(\xi)|^2 d\xi$$
(7)

< 62 ▶

-

3.5

+ DM

Using the inner product introduced by Borde and Traub, rewriting $X = (a_1, ..., a_N)$ and choosing carefully the matrix M, the vector b and the scalar d this integrated energy can be rewritten as a quadratic form:

$$I_{DH} = XMX^T + 2X.b^T + d \tag{8}$$

Minimal apodisation algorithm

In order to find $A_{2DM}(\tilde{x})$ solve the quadratic programing problem: Minimize $\sum a_p^2$ under the constraint that $I_{DH} < 10^{-10}$

We used this algorithm in order to create a Dark Hole between a changing IWA and an OWA $= 10 \lambda/D.$

(MovieDiggingPSFs.avi)

When the IWA is too close the we find a solution that we choose to discard: $A_{2DM}(\tilde{x}) < 0$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Propagation of this solution

We used our new semi analytical method to compute our propagation limited PSFs. In this case $x_0(\tilde{x})$ is always increasing, only remain edge effects that we mitigate using a pre-apodiser.

Limitation: Our quadratic approximation is limited to apodisation with "small" third derivative. This means that it is only valid up to a certain spatial frequency, that was derived in the Fresnel case in Pueyo and Kasdin (2007):

$$n_{lim} = \frac{D}{\sqrt{\lambda_0 Z}} \left(\frac{\lambda_0}{\Delta \lambda}\right)^{\frac{1}{4}} \tag{9}$$

Wavefront compensation, phase

Control Strategy

We assume now that $E_{IM}(\xi)$ also contains speckles due to amplitude and phase aberrations, it can be decomposed in two components:

- $E_{IM}^{amp}(\xi)$ defined by $E_{IM}^{amp}(-\xi) = E_{IM}^{amp}(\xi)^*$, created by pupil amplitude errors.
- $E_{IM}^{\phi}(\xi)$ defined by $E_{IM}^{\phi}(-\xi) = -E_{IM}^{\phi}(\xi)^{\star}$, created by pupil phase errors.

We first correct for the phase errors with the second DM using our algorithm

Wavefront compensation, amplitude and phase

Control Strategy

We then correct for $E_{IM}^{amp}(\xi)$. The resulting $A_{2DM}(\tilde{x})$ compensates for both amplitude errors and the nominal PSF of the post apodiser.

The surface of each mirror is then computed using the differential equations of PIAA.

DH from 3.5 $\frac{\lambda}{D}$ to 8 $\frac{\lambda}{D}$; Average Log Contrast= -9.96951

To study the off-axis distortion of the PSF of our system composed of two sequential DMs we apply this method with $\delta h(x) = \alpha x$, where α in the on-sky angular separation:

(OffAxisMovie.avi)

If the surface of the first DM does not completely satisfy the PIAA differential equation, that is $h(x) = h_0(x) + \delta h(x)$, then the position determined by ray optics is given by: $x_1(\tilde{x}) = x_0(\tilde{x}) + \delta x_0$, with:

$$\delta x_0 = \frac{-n\delta h'(x_0)}{\frac{1}{A(\bar{x})Z} - \delta h''(x_0)} \quad (10)$$

We observe a magnification of a factor of 1.2

Conclusion

Propagation limited PSFs that take into account the magnification.

In this preliminary one dimensional analysis, we have designed an integrated coronagraph/wavefront control unit whose throughput is 30 percent and that can go as close in as $3.2\lambda/D$ under a 200 nm bandwidth.

A whole parameter space to be studied

This method will be generalized to two dimensions and carried out systematically in order to study the whole parameter space and provide a continuum of designs for missions such as TPF....stay tuned

