

## **Nulling Coronagraph**

# M. Shao, B. Levine, K. Wallace, R. Samuel, S. Rao, B. Lane

- A coronagraph based on nulling interferometry, architecture of a nulling coronagraph
- Deep nulls, Contrast ≠ starlight suppression
- Post coronagraph wavefront sensing and PSF subtraction



### High Contrast imaging with a Nulling Interferometer





Transmission Pattern of Nuller On the sky. (Star is at the center)

Nulling interferometer when the Shear (baseline) > D (dia of telescope) (eg  $\lambda = 10$ um) Nulling coronagraph when the Shear (baseline) < D (dia of telescope) (eg  $\lambda = 0.5$  um)



National Aeronautics and Space Administration Jet Propulsion Laboratory

**California Institute of Technology** 

#### 2-arm vs. 4-arm Nulling Interferometers



 $I = \left| A_0 e^{i\phi_x} - A_0 e^{-i\phi_x} \right|^2$  $\approx I_0 \left( ks \cos \phi \right)^2 \theta^2$ 



$$I = \left| A_0 e^{i\phi_x} - A_0 e^{-i\phi_x} + A_0 e^{i\phi_y} - A_0 e^{-i\phi_y} \right|^2$$









### **Contrast** ≠ **Starlight Suppression**

- At ~4 λ/D the airy function is ~ 10<sup>-3</sup> of the peak
- At ~2 λ/D the airy function is ~ 10<sup>-2</sup> of the peak
- Starlight suppression of 10<sup>-7</sup> will yield a contrast of  $10^{-10} @ 4 \lambda/D$





### Status of Deep Nulling Experiments

#### (Symmetric) Nuller Layout





#### Symmetric nuller

equal # mirror reflections, BS ref, and AR transmission in two arms. Polarization and spectrally balanced Single mode fiber output Inside a single mode fiber a **perfect null** can be obtained by controlling just two parameters, **phase and amplitude** 



### Monochromatic (635nm) Light Nulling



- Laser data:
  - Optical path error of 90 picometer will cause 2x10<sup>-10</sup>/airy spot null leakage
  - rms vibration and drift over ~15 sec is
    ~60pm
- $\frac{1.2x10^{-7} \text{ suppression} \sim 1.2x10^{-10}}{\text{contrast @ 4 }\lambda/\text{D}}$

| Source<br>Null          | Pupil<br>Rotation       | Intensity<br>Mismatch | Pathlength<br>Fluctuations | Birefringence | Dispersion |
|-------------------------|-------------------------|-----------------------|----------------------------|---------------|------------|
| Value achieved          | 0.01 Deg                | 0.03%                 | 0.06 nm, rms               | 0.04 nm       | NA         |
| Contribution to<br>Null | 7.6E-9                  | 2.25E-8               | 8.73E-8                    | 9.7E-9        |            |
| Net Null:               | <b>1.27E-7</b> (7.9M:1) |                       |                            |               |            |
| % Contribution          | 6.0%                    | 17.7%                 | 68.7%                      | 7.6%          |            |



### **Achromatic Nulling Interferometer**





### Broadband Light Nulling Summary



- **Tungsten lamp** (and filter)
- White light data
  - null over 60 sec  $\sim 1.1 \times 10^{-9}$  Contrast
    - Control of dispersive effect to ~1x10<sup>-9</sup>
  - <u>~16% bandwidth</u> around 650nm.
- 1<sup>st</sup> order approx null ~  $(\Delta \lambda)^2$  at 2% bandwidth, potentially 64 times better

Data taken @ 10 hz ~ 20 photons/sample @ null

~8 of those photons are dark photons

The deep white light null illustrates a  $2^{nd}$  property of nulling interferometry, the ability to <u>sense and control</u> optical path to <u>10<sup>-9</sup></u> contrast using literally a <u>handful</u> of detected <u>photons</u> at null.

Nulling interferometry has demonstrated deeper white light suppression than any other coronagraphic approach





**Fiber Array:** 





- Prism 2 corner is cut flat to accommodate Fibers
- New Technology Report filed



#### Lens Array ullet

•Fiber Array

Detail

'W

- Monolithic Lens Array on thin substrate
- Spacer bonded with thickness = focal length
- Coating (and pinhole) at focal plane of lenslets, blocks cladding modes in fiber





### **BU DM + JPL Electronics**

- 61 channel pathfinder DM
  - Boston University





• 128-channel D/A board





### PSF Calibration: Separating the <u>Starlight</u> <u>Speckles from the Planets</u>

- Even with fibers and deformable mirrors, the starlight suppression will not be perfect.
  - How can you tell the difference between starlight speckles and planet light?
- Spectral subtraction
- Angular subtraction
- <u>Coherence of starlight</u> and property that the star light and planet light are incoherent with each other.
- •Spatially filter the starlight from the bright output of the nuller.
- •Interfere it with the output from the nuller (after fiber bundle).
  - •This measures the amplitude and phase of the light in the speckle pattern.

•The PSF (starlight speckle pattern) is estimated by the Fourier transform of the measured amplitude and phase





## Importance of Post Coronagraph Calibration Interferometer

- Post coronagraph wavefront sensor that can produce 10<sup>-9</sup> contrast with detection of a few dozen photons (per subaperture) that leaks through the coronagraph.
- PSF subtraction based on coherence of light (as opposed to telescope rotation, spectral features, or polarization of source)
  - In space, relaxes the wavefront stability by a few orders of magnitude (over angle diff imaging)
  - Through the atmosphere, can measure quasi-static telescope and non-common path AO errors.
    - Extend contrast from 10<sup>-3</sup>~10-4 to 10-7~10-8
    - Offer the possibility of atmospheric speckle subtraction



## Projects Using these Concepts

- PICTURE (nulling coronagraph and calibration interferometer on a sounding rocket)
- TPF-C Instrument concept study
- EPIC (discovery proposal)
- Gemini Planet Imager (calibration interferometer)
- TMT extreme AO coronagraph concept study. (nuller and calibrator)



### Summary

- Nulling interferometry (with single mode fiber) has demonstrated the largest amount of starlight suppression, in laser light, and in white light.
  - White light suppression using realistic photon fluxes. (~100 detected photons/second (16% bandpass) at 10<sup>-9</sup> constrast)
- Post coronagraph interferometer is a key subsystem for both ground and space based coronagraphs.
  - In space, relaxes stability requirement by orders of magnitude (replace angular differential imaging) for speckle subtraction
  - Through the atmosphere, the calibration system measures the quasistatic AO/telescope errors that produce "pinned speckles" and also offers the possibility of removing residual atmospheric speckles.



### **Backup slides**



National Aeronautics and Space Administration Jet Propulsion Laboratory

**California Institute of Technology** 

#### 2-arm vs. 4-arm Nulling Interferometers



 $I = \left| A_0 e^{i\phi_x} - A_0 e^{-i\phi_x} \right|^2$  $\approx I_0 \left( ks \cos \phi \right)^2 \theta^2$ 



$$I = \left| A_0 e^{i\phi_x} - A_0 e^{-i\phi_x} + A_0 e^{i\phi_y} - A_0 e^{-i\phi_y} \right|^2$$









### **Nuller Architecture for Planet Imaging**



• Yields  $\theta^4$  null



### SNR comparison

- Canonical Earth @ 10pc
- Wavelength =  $055 \mu m$
- $\Box \Delta \lambda = 20\%$  band pass

| Telescope | Nuller<br>SNR | Lyot SNR |
|-----------|---------------|----------|
| 8.3 x 3m  | 9.6           | 5.2      |
| 4m        | 5.9           | Not det. |



### # Targets for Characterization



- Spectroscopy @ 0.8um (limitation of  $2\lambda/D$  vs.  $4\lambda/D$ )
- Spectroscopy @ 1.6um
- The target list for spectroscopy will be smaller than detection/discovery because  $\lambda$  is bigger



### Post Starlight suppression wavefront sensing

- $\theta^4$  nuller
- Shot noise, Detector noise, pixelization included
- Contrast improvement α integration time<sup>-1/3</sup>





### **Future Work**

- Near Term
  - Advanced Automation of Nuller Experiment
  - Design and Modification of Nuller Test Bed
- Long Term Experiments:
  - Integration of Nuller and SMF Array in Test Bed System Demonstration on Test Bed

- Integrated nuller and calibration wavefront sensor design
- Design suitable for a future sounding rocket experiment





### **Status of Nulling Experiments**



- Prior to 2005, experiment was conducted on an optical table
- Since May nuller moved into the vacuum chamber
- To date, experiments have been run at 1 atm, with the door shut



### **Boston University MEMS Pathfinder Deformable Mirror**



### 61 Pixel TPF Array



Mask designs complete: Mirror in fabrication now at MEMS silicon foundry

- **Current development is for a 361** segment device
- Future development path is for a **1000 segment DM**





- Measurements show:
  - 125.75µm fiber spacing
  - 2.8µm rms position error
- Lens arrays to be integrated with Fiber Array