Photochemical Generation of Hydrocarbon Haze

Máté Ádámkovics
Boering Group
Overview

The Problem:

explain presence of liquid
H$_2$O on >3.8 Ga Earth

The Explanations:

Accepted (and other) hypotheses

The Chemistry:

An experiment to quantitatively test a reasonable explanation
Solar Evolution and Temperatures on Earth

The Faint Young Sun

\[F = \sigma T^4 \]

\[T_{\text{eff}} = \left[\frac{F (1-\alpha)}{\sigma} \right]^{1/4} \]

I-H\(_2\)O present on Earth

Modern Greenhouse Effect

\(2.75 \text{ Ga}\)

\(T_s\)

\(T_{\text{eff}}\)

\(273\text{ K}\)
Evidence for liquid water: sedimentary rocks >3.8 Ga

Direct Evidence:
- Banded Iron Formation (BIF) indicates sedimentary rock
- U-Pb isotope ratio dating of zircon via SHRIMP

Ample indirect evidence:
- metamorphic rocks

Island of Akilia, southern West Greenland
(aerial photo)
The Greenhouse effect basics

- 6000K Blackbody
- Sun
- Atmosphere: Haze, O₂/O₃, CO₂, CH₄
- Surface: 255K Blackbody

Wavelength [μm]
Analysis of Proposed Solutions

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Advantages</th>
<th>Disadvantages</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decrease Albedo</td>
<td>Very Simple</td>
<td>Not sufficient flux increase with $\alpha=0$</td>
<td>not sufficient</td>
</tr>
<tr>
<td>Alter Earth’s Inclination</td>
<td>Well modeled, no climate change</td>
<td>Can’t explain current inclination</td>
<td>more data necessary</td>
</tr>
<tr>
<td>Increase CO$_2$</td>
<td>Simple effect</td>
<td>Contradicts geological record</td>
<td>contributing effect</td>
</tr>
<tr>
<td>Increase CH$_4$</td>
<td>Simple effect</td>
<td>Large flux necessary is unphysical</td>
<td>contributing effect</td>
</tr>
<tr>
<td>Form Haze Layer</td>
<td>Corresponds with existing data</td>
<td>Difficult to quantify net effect</td>
<td>lab data required</td>
</tr>
</tbody>
</table>
Chemical mechanisms: $\text{CH}_4 \rightarrow C_2H_m$

Methane Branching Ratios

For $h\nu = \text{Lyman } \alpha$

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Product</th>
<th>Branching Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{CH}_4 + h\nu$</td>
<td>$^1\text{CH}_2 + \text{H}_2$</td>
<td>$q_1 = 0.41$</td>
</tr>
<tr>
<td>$\text{CH}_2 + 2\text{H}$</td>
<td></td>
<td>$q_2 = 0.51$</td>
</tr>
<tr>
<td>$\text{CH} + \text{H} + \text{H}_2$</td>
<td></td>
<td>$q_3 = 0.08$</td>
</tr>
<tr>
<td>$\text{CH}_3 + \text{H}$</td>
<td></td>
<td>$q_4 = 0.00$</td>
</tr>
</tbody>
</table>

Photofragment Reactions (a)

$$2 \left(\text{CH}_4 + h\nu \rightarrow ^1\text{CH}_2 + \text{H}_2 \right)$$

$$2 \left(^1\text{CH}_2 + \text{H}_2 \rightarrow \text{CH}_3 + \text{H} \right)$$

$$\text{CH}_3 + \text{CH}_3 + \text{M} \rightarrow \text{C}_2\text{H}_6 + \text{M}$$

Net Reactions

$$2 \text{CH}_4 \rightarrow \text{C}_2\text{H}_6 + 2\text{H} \quad (a)$$
Chemical mechanisms: $\text{CH}_4 \rightarrow C_2H_m$

Methane Branching Ratios

For $h \nu = \text{Lyman} \alpha$

\[
\begin{align*}
\text{CH}_4 + h \nu & \rightarrow ^1\text{CH}_2 + \text{H}_2 & q_1 &= 0.41 \\
\text{CH}_2 + 2\text{H} & \rightarrow & q_2 &= 0.51 \\
\text{CH} + \text{H} + \text{H}_2 & \rightarrow & q_3 &= 0.08 \\
\text{CH}_3 + \text{H} & \rightarrow & q_4 &= 0.00
\end{align*}
\]

Photofragment Reactions (b)

\[
\begin{align*}
\text{CH}_4 + h \nu & \rightarrow ^1\text{CH}_2 + \text{H}_2 \\
\text{CH}_4 + h \nu & \rightarrow \text{CH}_2 + 2\text{H} \\
^1\text{CH}_2 + \text{H}_2 & \rightarrow \text{CH}_3 + \text{H} \\
\text{CH}_2 + \text{CH}_3 & \rightarrow C_2H_4 + \text{H}
\end{align*}
\]

Net Reactions

\[
\begin{align*}
2 \text{CH}_4 & \rightarrow C_2H_6 + 2\text{H} & \text{(a)} \\
2 \text{CH}_4 & \rightarrow C_2H_4 + 4\text{H} & \text{(b)}
\end{align*}
\]
Chemical mechanisms: $\text{CH}_4 \rightarrow \text{C}_2\text{H}_m$

Methane Branching Ratios

$\text{CH}_4 + h\nu \rightarrow \text{CH}_2 + \text{H}_2 \quad q_1 = 0.41$

$\text{CH}_2 + 2\text{H} \quad q_2 = 0.51$

$\text{CH} + \text{H} + \text{H}_2 \quad q_3 = 0.08$

$\text{CH}_3 + \text{H} \quad q_4 = 0.00$

for $h\nu = \text{Lyman } \alpha$

Photofragment Reactions (c)

$$2 \ (\text{CH}_4 + h\nu \rightarrow \text{CH}_2 + 2\text{H})$$

$$\text{CH}_2 + \text{CH}_2 \rightarrow \text{C}_2\text{H}_2 + \text{H}_2$$

net $$\text{2 CH}_4 \rightarrow \text{C}_2\text{H}_2 + 2\text{H}$$

Net Reactions

(a) $$2 \ \text{CH}_4 \rightarrow \text{C}_2\text{H}_6 + 2\text{H}$$

(b) $$2 \ \text{CH}_4 \rightarrow \text{C}_2\text{H}_4 + 4\text{H}$$

(c) $$2 \ \text{CH}_4 \rightarrow \text{C}_2\text{H}_2 + 2\text{H}$$
Photosensitized Dissociation and Larger Hydrocarbons

Photosensitized Dissociation
\[\text{C}_2\text{H}_2 + h\nu \rightarrow \text{C}_2\text{H} + \text{H} \]
\[\text{C}_2\text{H} + \text{CH}_4 \rightarrow \text{C}_2\text{H}_2 + \text{CH}_3 \]
\[\text{net} \quad \text{CH}_4 \rightarrow \text{CH}_3 + \text{H} \]

C\text{\textsubscript{2}} to C\text{\textsubscript{4}}: An Example
\[\text{C}_2\text{H}_2 + h\nu \rightarrow \text{C}_2\text{H} + \text{H} \]
\[\text{C}_2\text{H} + \text{C}_2\text{H}_2 \rightarrow \text{C}_4\text{H}_2 + \text{H} \]
\[\text{net} \quad 2\text{C}_2\text{H}_4 \rightarrow \text{C}_4\text{H}_2 + 2\text{H} \]

In General for Polyynes
\[\text{C}_2\text{H}_2 + h\nu \rightarrow \text{C}_2\text{H} + \text{H} \]
\[\text{C}_2\text{H} + \text{C}_{2n}\text{H}_2 \rightarrow \text{C}_{2n+2}\text{H}_2 + \text{H} \]
\[\text{net} \quad \text{C}_2\text{H}_2 + \text{C}_{2n}\text{H}_2 \rightarrow \text{C}_{2n+2}\text{H}_2 + 2\text{H} \]
A small problem with current quantitative models

\[x \text{C}_n\text{H}_m \text{ (gas)} \xrightarrow{k} y \text{C}_n'\text{H}_m' \text{ (solid)} \]

“the species C\(_3\)H\(_4\), C\(_4\)H\(_2\) and HC\(_3\)N were allowed to go to soot at an arbitrary rate”

“at CH\(_4\)/CO\(_2\) ratios lower than this critical value [unity], most of the CH\(_4\) undergoes oxidation, rather than polymerization, so organic haze does not form.”

The Experiment

1) Photochemical production of particulates
 reactants: CH$_4$ and CO$_2$
 He carrier gas
 120-230nm photolysis with D$_2$ arc lamp

2) *in situ* Optical Detection/Characterization
 Detect 632.8nm scatter/reflection from particulates
 Monitor reservoir of gas to constrain chemistry
Experiment Schematic

D₂ Lamp

Beam Dump

Polarizer

Fiber Launch (Input)

HeNe Line Filter

Polarizer

Fiber Launch (Output)
Observed Scatter and Reflectance Signal

Rayleigh scatter is greatly reduced

Zero Mie scatter at $\theta=90$ for any size parameter, $\chi = r/\lambda$

Observed flux must be from multiple scattering
Inside the reaction chamber
Output from Multi-Channel Scaler

2.6ms scan with 1kHz optical modulation

30K scans averaged per dataset

Rise/fall times excluded
Hydrocarbon Formation with CH_4

Concentration/Pressure Dependence

- Reproducibility of signal
- Similar formation timescale
Time Series RGA-MS Data: $[\text{CH}_4] = 70 \text{ torr}$
Time Series RGA-MS Data: $[\text{CH}_4] = 70$ torr
Time Series RGA-MS Data: $[\text{CH}_4] = 70$ torr
CH$_4$ Pressure Dependence

Same number density of CH$_4$ with and without He

- Order of magnitude larger signal at 700 torr
- Can be kinetic or microphysical effect
Particulate formation with both CO₂ and CH₄

- Comparable optical scatter
- Notable difference formation timescale
Modelling the observed signal

Microphysics and Kinetics

Rate of Scatter increase:
- chemical reaction rates
 for C_nH_m species up to $n=4$:
 74 photodissociation reactions
 194 chemical reactions (31 3-body reactions)
- nucleation properties
 (particle size distribution function)

Rate of Scatter decrease:
- depletion of reactants
- decrease in VUV flux
 coating surface of MgF_2 window
 shielding from haze formation
- nucleation
Summary

Designed, assembled, and tested photochemistry reaction chamber

Observed formation of particulate haze with CH_4 and preliminarily with CO_2

Started models and experiments to determine the kinetics pertinent to haze formation
Acknowledgements

Kristie Boering

Amanda Cole Ron Cohen
Kate Hoag James Delattre
Mike McCarthy Paul Wooldridge
Sunyoung Park Kevin Wilson
Mark Perri
Annalise Van Wyngarden

Center for Integrated Planetary Science
Space Sciences Laboratory
David and Lucile Packard Foundation