Widespread Morning Drizzle on Titan
Máté Ádámkovics, et al.
Science 318, 962 (2007);
DOI: 10.1126/science.1146244

The following resources related to this article are available online at www.sciencemag.org (this information is current as of November 30, 2007):

Updated information and services, including high-resolution figures, can be found in the online version of this article at:
http://www.sciencemag.org/cgi/content/full/318/5852/962

Supporting Online Material can be found at:
http://www.sciencemag.org/cgi/content/full/1146244/DC1

This article cites 23 articles, 5 of which can be accessed for free:
http://www.sciencemag.org/cgi/content/full/318/5852/962#otherarticles

This article appears in the following subject collections:
Planetary Science
http://www.sciencemag.org/cgi/collection/planet_sci

Information about obtaining reprints of this article or about obtaining permission to reproduce this article in whole or in part can be found at:
http://www.sciencemag.org/about/permissions.dtl
Widespread Morning Drizzle on Titan

Máté Ádámkovics,1,2* Michael H. Wong,1 Conor Laver,1 Imke de Pater1,2

Precipitation is expected in Titan’s atmosphere, yet it has not been directly observed, and the geographical regions where rain occurs are unknown. Here we present near-infrared spectra from Widespread Morning Drizzle on Titan an instrument on the Very Large Telescope (VLT), are an ideal source of data for such an analysis. These instruments may be used to create a global picture of Titan’s lower atmosphere and surface.

During our campaign to monitor the seasonal changes in the global distribution of Titan’s aerosol, we observed Titan on 28 February 2005 over the Very Large Telescope and W. M. Keck Observatories that reveal an enhancement of opacity in Titan’s troposphere on the morning side of the leading hemisphere. Retrieved extinction coefficients from a new class of instruments, such as two instruments provide independent measurements of Titan at different epochs and viewing geometries. Systematic errors that arise from mosaicking and correcting for Earth’s atmosphere (fig. S1) are specific to each instrument, and comparison facilitates the rejection of observational artifacts. Here we describe a method for making measurements of condensed-phase opacity from specific altitude regions in Titan’s atmosphere using narrow (10- to 15-nm) spectral bandpass difference imaging. We used RT models to quantify the altitude and magnitude of the opacity enhancements, and we report the detection of widespread methane drizzle: precipitation from stratiform clouds of solid methane.

To discern the light scattered by clouds, drizzle, and haze in the lower troposphere, the contribution from the surface albedo variation (Fig. 1A) was removed from the images that probed the bottom of the atmosphere (Fig. 1B). We empirically quantified the relative surface flux f in images taken at wavelengths with significant and with negligible methane gas opacity by minimizing the correlation coefficient between the surface-subtracted image of the atmosphere and the image of the surface (fig. S2). The mean surface flux in images probing the lower troposphere is 0.72 of the flux in images of the surface, which is confirmed by our RT models. After subtracting the surface contribution from images that probe the lower troposphere, we can identify equatorial opacity changes (5) at the Very Large Telescope (VLT), are an ideal source of data for such an analysis. These instruments may be used to create a global picture of Titan’s lower atmosphere and surface. During our campaign to monitor the seasonal changes in the global distribution of Titan’s aerosol, we observed Titan on 28 February 2005

1Department of Astronomy, University of California, Berkeley, CA 94611, USA. 2Center for Integrative Planetary Science, University of California, Berkeley, CA 94611, USA.
*To whom correspondence should be addressed. E-mail: mate@berkeley.edu

962 9 NOVEMBER 2007 VOL 318 SCIENCE www.sciencemag.org
The lower troposphere (below 20 km) can be probed by subtracting images at wavelengths sensitive to the variations in surface reflectivity (A) from those that probe both the surface and the lower troposphere (B). The difference images (C) reveal a dark feature in the morning equatorial regions, with sub-observer longitudes of 89°W and 42°W for the VLT and Keck, respectively. Artifacts such as the narrow linear feature in the VLT data are not observed with both instruments. The regions with lower $\Delta I/F$ in the difference images (C) have increased atmospheric opacity. The lower stratosphere can be similarly probed by subtracting images of the upper stratosphere (D) from images of the lower stratosphere (E) to highlight the contrast from the SPH (F); in this case, larger $\Delta I/F$ indicates more scattering. Difference images of the troposphere and stratosphere have a (1σ) pixel-to-pixel noise of $\Delta I/F = 0.003$ and 0.0005, respectively.

The nature of the increased opacity is determined by creating a model of the observed data cube. A 1.50- to 2.25-μm spectrum, corresponding to each observed spatial pixel, was calculated using a two-stream numerical solution to the RT equation (16, 17). We accounted for the spatial variation in surface albedo by using a Visual and Infrared Mapping Spectrometer (VIMS) map of the 2.018-μm albedo (18) as input for the surface reflectivity. The surface spectrum is gray with four Gaussian absorption features (19). The aerosol (haze) extinction at the tropopause is 0.0025 km$^{-1}$ at southern latitudes above 45°S and increases toward the north by a factor of 0.0065 per degree of latitude (13). Aerosol extinction decreases with altitude above the tropopause, with a scale height of 100 km. The south polar hood (SPH) is included as a doubling of extinction from 50 to 70 km altitude and is located poleward of 45°S. Uniform aerosol extinction (0.001 km$^{-1}$), consistent with results from the Huygens probe, was used throughout the troposphere. Based on the temperature at a particular altitude, condensed-phase methane opacity was included as a layer of liquid or solid methane. The optical depth of condensed methane is the product of the absorption coefficient (20) and path length (i.e., column volume). A normalized point spread function from a calibration star was used to convolve the model for comparison with the observations. Images from the model datacube show excellent agreement with the observed data (fig. S1).

With a model of Titan’s atmosphere and surface, various hypotheses for the source of the observed dark contrast feature (Fig. 1C) may be tested. We calculated a characteristic spectrum and determined the mean flux in the wavelength regions corresponding to images in Fig. 1 to obtain a nominal subtracted image flux ($\Delta I/F_{0}$) for both the lower troposphere and the lower stratosphere. The contrast was then defined as the difference between $\Delta I/F_{0}$ and the $\Delta I/F$ from a new spectrum in which a model parameter was changed. In Fig. 2, we plot the contrast expected in images of the lower troposphere and lower stratosphere when the column of condensed-phase methane is varied. Changes in aerosol haze density have been systematically ruled out by inadequately reproducing the observed contrast. If the observed opacity enhancement were attributed to small tropospheric haze particles (<0.001 mm), then the steep wavelength dependence of the extinction efficiency would extrapolate to unit optical depth at 0.938 μm (fig. S3), yet there have not been reports of aerosol enhancements over Xanadu or near the morning hemisphere. On the other hand, a mist...
or drizzle of methane droplets (>0.01 mm) that is optically thin at 2.0 μm would be optically thin at visible wavelengths as well and could more easily elude detection.

The altitude and total column of condensed methane were fit to observations by minimizing the root mean square deviation between a model datacube and observations. The cloud of methane was indeed found to be globally widespread, with a column volume of 1.65 cm³ cm⁻² in the altitude range of 25 to 35 km (Fig. 3A). Temperatures at these altitudes indicate that methane must be a solid (7). The morning enhancement of opacity is consistent with an additional column volume of 0.25 cm³ cm⁻² below 20 km, where methane is a liquid (Fig. 3B). The difference images are a sensitive test of the vertical profile of the tropospheric extinction, and the calculated datacubes with condensed methane opacity reproduce the observations (Fig. 3C). Artifacts or variations in surface absorption were are excluded by performing analogous (fig. S4) difference imaging at 1.5 μm. The difference images in the H band (fig. S5) can be used to independently reach all the qualitative conclusions arising from the K-band analysis (fig. S6). The improvement in spectral fit across both bands, when condensed methane is included, is illustrated in Fig. 4.

Depending on size and composition, drizzle will either reach the surface or form a near-surface mist. Although no direct detection of drizzle has been reported by Huygens (8), the uniform methane mixing ratio below 6 km (27) is consistent with the evaporation of methane from droplets (22). We detected both the solid methane cloud at 25 to 35 km and morning drizzle below.

It had been suggested that precipitation from subvisible clouds would reach the surface and close the methane cycle and that the drizzle could be occurring over nearly 60% of the globe (7). By measuring the global extent of methane cloud, we see here that the methane drizzle is indeed precipitation related to stratiform clouds and does cover a substantial fraction of Titan.

Drizzle is observed in the morning hemisphere, and we first consider a diurnal mechanism that facilitates condensation. Because the methane is saturated around 15 km (7) in the morning [Huygens landed at local true solar time (LTST) of 9:47 a.m.], a small overnight drop in temperature at this altitude could initiate droplet formation that would then lead to drizzle in the lower troposphere. During our observations, it seems it was drizzling on Titan until approximately 10:40 a.m. LTST (roughly 3 Earth days after sunrise), which is consistent with the Huygens results.

Geographic factors may affect circulation and control localized condensation. One possibility is that the observed drizzle is due to the cooling of air caused by advection. Large-scale winds may push a moist airmass upslope, thus cooling it and driving condensation. Observations of sand dunes have shown that prevailing easterlies blow toward the bright continent of Xanadu (23). If the bright region is indeed a topographical high, then a “coastal” drizzle may form and cover the landmass. The relationship between the drizzle and the bright reflectivity of Xanadu is unclear (24), and it is possible that the drizzle contributes to rinsing the bright surface of the dark deposited aerosol. Perhaps the combination of nighttime cooling and local microclimates together make for consistently misty mornings in Xanadu.

References and Notes
Facultative Mate Choice Drives Adaptive Hybridization

Karin S. Pfennig

Mating between species typically results in no, few, or poor-quality offspring (1). Consequently, females generally prefer to mate with males of their own species (1–3). When hybridization does occur, it is often ascribed to mate with males of their own species (1–3) (choice (3)). When hybridization does occur, it is often ascribed to favor hybridization. Indeed, those females with phenotypic characteristics for which hybridization is most favorable were most likely to switch from choosing conspecifics to heterospecifics. Moreover, environmentally dependent mate choice has evolved only in populations and species that risk engaging in, and can potentially benefit from, hybridization. Thus, when the benefits of mate choice vary, females may radically alter their mate selection in response to their own phenotype and their environment, even to the point of choosing males of other species.

Mating between species typically results in no, few, or poor-quality offspring (1). Consequently, females generally prefer to mate with males of their own species (1–3). When hybridization does occur, it is often ascribed to mate with males of their own species (1–3) (choice (3)). When hybridization does occur, it is often ascribed to favor hybridization. Indeed, those females with phenotypic characteristics for which hybridization is most favorable were most likely to switch from choosing conspecifics to heterospecifics. Moreover, environmentally dependent mate choice has evolved only in populations and species that risk engaging in, and can potentially benefit from, hybridization. Thus, when the benefits of mate choice vary, females may radically alter their mate selection in response to their own phenotype and their environment, even to the point of choosing males of other species.

Facultative Mate Choice Drives Adaptive Hybridization

Karin S. Pfennig

Mating between species typically results in no, few, or poor-quality offspring (1). Consequently, females generally prefer to mate with males of their own species (1–3). When hybridization does occur, it is often ascribed to mate with males of their own species (1–3) (choice (3)). When hybridization does occur, it is often ascribed to favor hybridization. Indeed, those females with phenotypic characteristics for which hybridization is most favorable were most likely to switch from choosing conspecifics to heterospecifics. Moreover, environmentally dependent mate choice has evolved only in populations and species that risk engaging in, and can potentially benefit from, hybridization. Thus, when the benefits of mate choice vary, females may radically alter their mate selection in response to their own phenotype and their environment, even to the point of choosing males of other species.

Facultative Mate Choice Drives Adaptive Hybridization

Karin S. Pfennig

Mating between species typically results in no, few, or poor-quality offspring (1). Consequently, females generally prefer to mate with males of their own species (1–3). When hybridization does occur, it is often ascribed to mate with males of their own species (1–3) (choice (3)). When hybridization does occur, it is often ascribed to favor hybridization. Indeed, those females with phenotypic characteristics for which hybridization is most favorable were most likely to switch from choosing conspecifics to heterospecifics. Moreover, environmentally dependent mate choice has evolved only in populations and species that risk engaging in, and can potentially benefit from, hybridization. Thus, when the benefits of mate choice vary, females may radically alter their mate selection in response to their own phenotype and their environment, even to the point of choosing males of other species.

Facultative Mate Choice Drives Adaptive Hybridization

Karin S. Pfennig

Mating between species typically results in no, few, or poor-quality offspring (1). Consequently, females generally prefer to mate with males of their own species (1–3). When hybridization does occur, it is often ascribed to mate with males of their own species (1–3) (choice (3)). When hybridization does occur, it is often ascribed to favor hybridization. Indeed, those females with phenotypic characteristics for which hybridization is most favorable were most likely to switch from choosing conspecifics to heterospecifics. Moreover, environmentally dependent mate choice has evolved only in populations and species that risk engaging in, and can potentially benefit from, hybridization. Thus, when the benefits of mate choice vary, females may radically alter their mate selection in response to their own phenotype and their environment, even to the point of choosing males of other species.

Facultative Mate Choice Drives Adaptive Hybridization

Karin S. Pfennig

Mating between species typically results in no, few, or poor-quality offspring (1). Consequently, females generally prefer to mate with males of their own species (1–3). When hybridization does occur, it is often ascribed to mate with males of their own species (1–3) (choice (3)). When hybridization does occur, it is often ascribed to favor hybridization. Indeed, those females with phenotypic characteristics for which hybridization is most favorable were most likely to switch from choosing conspecifics to heterospecifics. Moreover, environmentally dependent mate choice has evolved only in populations and species that risk engaging in, and can potentially benefit from, hybridization. Thus, when the benefits of mate choice vary, females may radically alter their mate selection in response to their own phenotype and their environment, even to the point of choosing males of other species.

Facultative Mate Choice Drives Adaptive Hybridization

Karin S. Pfennig

Mating between species typically results in no, few, or poor-quality offspring (1). Consequently, females generally prefer to mate with males of their own species (1–3). When hybridization does occur, it is often ascribed to mate with males of their own species (1–3) (choice (3)). When hybridization does occur, it is often ascribed to favor hybridization. Indeed, those females with phenotypic characteristics for which hybridization is most favorable were most likely to switch from choosing conspecifics to heterospecifics. Moreover, environmentally dependent mate choice has evolved only in populations and species that risk engaging in, and can potentially benefit from, hybridization. Thus, when the benefits of mate choice vary, females may radically alter their mate selection in response to their own phenotype and their environment, even to the point of choosing males of other species.

Facultative Mate Choice Drives Adaptive Hybridization

Karin S. Pfennig

Mating between species typically results in no, few, or poor-quality offspring (1). Consequently, females generally prefer to mate with males of their own species (1–3). When hybridization does occur, it is often ascribed to mate with males of their own species (1–3) (choice (3)). When hybridization does occur, it is often ascribed to favor hybridization. Indeed, those females with phenotypic characteristics for which hybridization is most favorable were most likely to switch from choosing conspecifics to heterospecifics. Moreover, environmentally dependent mate choice has evolved only in populations and species that risk engaging in, and can potentially benefit from, hybridization. Thus, when the benefits of mate choice vary, females may radically alter their mate selection in response to their own phenotype and their environment, even to the point of choosing males of other species.

Facultative Mate Choice Drives Adaptive Hybridization

Karin S. Pfennig

Mating between species typically results in no, few, or poor-quality offspring (1). Consequently, females generally prefer to mate with males of their own species (1–3). When hybridization does occur, it is often ascribed to mate with males of their own species (1–3) (choice (3)). When hybridization does occur, it is often ascribed to favor hybridization. Indeed, those females with phenotypic characteristics for which hybridization is most favorable were most likely to switch from choosing conspecifics to heterospecifics. Moreover, environmentally dependent mate choice has evolved only in populations and species that risk engaging in, and can potentially benefit from, hybridization. Thus, when the benefits of mate choice vary, females may radically alter their mate selection in response to their own phenotype and their environment, even to the point of choosing males of other species.

Facultative Mate Choice Drives Adaptive Hybridization

Karin S. Pfennig

Mating between species typically results in no, few, or poor-quality offspring (1). Consequently, females generally prefer to mate with males of their own species (1–3). When hybridization does occur, it is often ascribed to mate with males of their own species (1–3) (choice (3)). When hybridization does occur, it is often ascribed to favor hybridization. Indeed, those females with phenotypic characteristics for which hybridization is most favorable were most likely to switch from choosing conspecifics to heterospecifics. Moreover, environmentally dependent mate choice has evolved only in populations and species that risk engaging in, and can potentially benefit from, hybridization. Thus, when the benefits of mate choice vary, females may radically alter their mate selection in response to their own phenotype and their environment, even to the point of choosing males of other species.

Facultative Mate Choice Drives Adaptive Hybridization

Karin S. Pfennig

Mating between species typically results in no, few, or poor-quality offspring (1). Consequently, females generally prefer to mate with males of their own species (1–3). When hybridization does occur, it is often ascribed to mate with males of their own species (1–3) (choice (3)). When hybridization does occur, it is often ascribed to favor hybridization. Indeed, those females with phenotypic characteristics for which hybridization is most favorable were most likely to switch from choosing conspecifics to heterospecifics. Moreover, environmentally dependent mate choice has evolved only in populations and species that risk engaging in, and can potentially benefit from, hybridization. Thus, when the benefits of mate choice vary, females may radically alter their mate selection in response to their own phenotype and their environment, even to the point of choosing males of other species.