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ABSTRACT

We describe the design of waveguide circular polarizers for the CARMA 1mm re-

ceivers. A polarizer will be installed between the feedhorn and the orthomode transducer

in each dewar, at a temperature of 4 K. It will convert incoming R and L circularly

polarized signals to X and Y linearly polarized signals, which will be separated by the

OMT.

The polarizer is a 2-section design, using half-wave and quarter-wave retarder sec-

tions rotated axially by 59.5◦ with respect to each other to achieve broadband per-

formance. It is constructed in 0.047′′ diameter circular waveguide; the retarders are

sections of reduced height, or ‘faceted,’ circular waveguide. Network analyzer measure-

ments of K-band scale models were used to verify the retarder design.

The polarizer will be fabricated by electroforming on an aluminum mandrel. Anal-

ysis shows that the diameter of the circular waveguide and the heights of the retarder

sections must be controlled to ±0.0003′′, and the angular offset of the two retarders

to ±0.2◦, in order to achieve a polarization leakage of < 0.05 across the 210-270 GHz

frequency band. Tapered transitions are used to reduce reflections from the faceted

waveguide sections; the predicted return loss is < −20 dB.

The CARMA receivers use Mylar beamsplitters to couple local oscillator power

into the signal beam outside the dewar. The beamsplitters have unequal transmission

coefficients for signals polarized parallel and perpendicular to the angle of incidence,

which will slightly increase the polarization leakage.
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1. Introduction

With an aperture synthesis array it is advantageous to measure linear polarization by cross-

correlating right and left circular polarizations. This avoids the necessity of taking the difference

of two large numbers (the total fluxes E2
X and E2

Y in the X and Y directions) in order to measure

a small number (e.g., Stokes Q = E2
X −E2

Y ). Instead, with circularly polarized receivers, Stokes Q

and U are derived from sums and differences of the RL and LR cross-correlations, which are zero

for an unpolarized input signal.

The dual polarization 1mm receivers for CARMA use a waveguide orthomode transducer (OMT)

(Navarrini & Plambeck 2006; Navarrini, Bolatto, & Plambeck 2006) to split the incoming radiation

into two orthogonal linear polarizations. To observe circular polarizations, one must install a

polarizer in front of the OMT to transform incoming R and L circular polarized signals into X and

Y linear polarizations. The polarizer may be a room temperature waveplate outside the dewar, or

a waveguide device at 4 Kelvin installed between the feedhorn and the orthomode transducer. We

prefer the waveguide polarizer because it is more compact and has lower loss.

The simplest circular polarizer consists of a quarter wave retarder with its principal axes oriented at

45◦ to the linearly polarized receiver. Unfortunately such a single section polarizer has a fractional

bandwidth much narrower than the 210–270 GHz tuning range of the 1mm receivers. One can

achieve broader bandwidths by cascading several retarder sections that are rotated axially with

respect to each other. This was first shown by Pancharatnam (1955) for birefringent wave plates.

Pancharatnam visualized the polarization states on a Poincaré sphere, and used spherical trigonom-

etry to compute the optimum angles for the retarder axes; Fig. 1 illustrates the principle. Stacked

quartz waveplates of this design were used for the SCUBA polarimeter (Greaves et al. 2003).

Kovac and Carlstrom were the first to build broadband waveguide polarizers. For the DASI ex-

periment (Leitch et al. 2002; Kovac 2004) they constructed 2-section polarizers in 0.315′′ diameter

circular waveguide, with dielectric vanes as retarder elements, obtaining good polarization purity

across the 26-36 GHz frequency band. We considered trying to miniaturize this design for the

CARMA polarizers. We planned to broach slots into the walls of 0.047′′ diameter circular waveg-

uide and insert tiny vanes of quartz or other dielectric into these slots. Electromagnetic simulations

showed, however, that the slots themselves produced significant phase shifts, which ultimately led

us to abandon the dielectric vanes altogether. Because of the small dimensions of the waveguide,

we chose to design the retarders from simple truncated, or ‘faceted’ circular waveguide, an idea

orignally suggested by Pyle (1964). The possibility of constructing multisection polarizers from

faceted circular waveguide segments was discussed in an ATNF technical memo by Lilie (2001).
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Fig. 1.— Action of single and 2-element circular polarizers visualized on a Poincaré sphere, adapted from

Fig. 3.7 and 3.8 of Kovac (2004). The goal is to transform linearly polarized radiation, on the equator of

the sphere, to pure circular polarization, at the pole. (top) Passing the incoming radiation through a single

quarter wave plate with principal axes at 45◦ to the linear polarization direction corresponds to a rotation on

the sphere that places the central frequency exactly at the pole, but spreads neighboring frequencies along

an arc, leading to substantial ellipticity. (bottom) In a 2-stage polarizer the signal passes first through a

half wave plate that rotates the center frequency back to the equator (a different linear polarization) and

again spreads neighboring frequencies along an arc. The dispersion along this arc offsets the chromatic errors

introduced by a subsequent rotation to the pole by a quarter wave plate, thus broadening the bandwidth.

2. Faceted circular waveguide retarder sections

The building blocks for the polarizer are quarter wave and half wave retarder sections fabricated

from faceted circular waveguide (Fig. 2). Single mode signals propagating from port 1 to port 2
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Fig. 2.— Cross section of

faceted circular waveguide with

diameter D and facet depth

f. Signals polarized in the Y-

direction (the ‘slow’ axis) un-

dergo a greater phase shift as

they propagate through a length

of this guide.

through a length L of waveguide undergo a phase shift φ such that E2 = E1 exp(−jφ), where

φ =
2πL

λg
, with λg =

λ0
√

1 − (λ0/λc)2
=

c
√

ν2 − ν2
c

.

λc is the cutoff wavelength of the guide. The X- and Y-polarized signals in a faceted guide have

different cutoff frequencies, so after propagating through length L they acquire a differential phase

shift

∆φ(ν) = φ(EY ) − φ(EX) =
2πL

c

(

√

ν2 − ν2
cY −

√

ν2 − ν2
cX

)

(1)

L is chosen to make ∆φ(ν0) = 90◦ for a quarter wave retarder, 180◦ for a half wave retarder.

In the CARMA receivers the polarizers will be installed between 1mm feed horns with 0.050′′ (6-m

antennas) or 0.047′′ (10-m antennas) diameter circular waveguide outputs, and OMTs with 0.044′′

diameter circular waveguide inputs. To minimize reflection losses, we chose to fabricate the circular

polarizer from 0.047′′ diameter circular waveguide.

There are no exact analytic expressions for the cutoff frequencies νcX and νcY in faceted circular

waveguide. Calculations based on various approximations have been published by Pyle and Angley

(1964), Sinnott et al. (1969), Levy (1995,1997), Wang (2000), and Lin et al. (2001). We used both

the analytic approximations of Wang (2000) and electromagnetic simulations with Ansoft HFSS

to find the cutoff frequencies for 0.047′′ diameter faceted guide. The python script used for the

analytic solutions is given in Appendix A. Initially the HFSS calculations were disappointing –

they failed to reproduce the cutoff frequency ν = c/(3.4126 r) for plain circular waveguide. Finally

we realized that HFSS was representing the circular guide as an inscribed N -sided polyhedron

with a rather coarse value for N (∼ 24), even when we specified very fine gridding. Because an

inscribed polygon has a smaller effective radius than the circle that it approximates, the waveguide

cutoff frequency was too high. One can get better accuracy by specifying an override value for

the Number of Segments parameter in the Properties Window, after creating a cylindrical form

in the 3D Modeler window. With N=192, HFSS returned a cutoff frequency of 147.189 GHz for

0.047′′ diameter circular guide; the correct value is 147.176 GHz. The ratio of these two numbers,

1.000088, is almost precisely equal to r/reff , the ratio of the true waveguide radius r to an effective
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Fig. 3.— Example HFSS cutoff frequency calculation, in this case for an X-polarized signal propagating

through a 0.5′′ long section of 0.047′′ diameter waveguide with 0.002′′ deep facets. The wave is launched

inside the faceted guide. The cutoff frequency is most easily measured by locating the cusp on the S11 curve.

radius reff , defined such that:

π r2
eff = area of N−sided polygon inscribed in radius r =

1

2
Nr2 sin(

2π

N
).

A sample HFSS result is shown in Fig. 3. Table 1 lists the cutoff frequencies for facet depths

up to 0.007′′. The values derived from the analytic calculation and from the HFSS simulation

are typically within 30 MHz of one another. The final column gives the lengths L90 of quarter

wave retarders at 230 GHz, computed from equation (1) and the HFSS cutoff frequencies. For

calculational convenience, we fit the normalized cutoff wavenumbers kc = 2πrνc/c from the HFSS

simulations with 5th order polynomials:

kcX = 1.841184 + 0.301574 x + 8.9118 x2 − 33.253 x3 + 93.2359 x4 − 94.615 x5 (2)

kcY = 1.841184 − 0.0862305 x − 3.41638 x2 + 14.65 x3 − 32.7165 x4 + 31.7498 x5 (3)

where x = f/r. Cutoff frequencies derived from the polynomial fits are plotted in Fig. 4.

What is the optimum facet depth f? On the one hand, reflection losses from the circular–faceted

interfaces are smaller for shallow facets. On the other hand, manufacturing tolerances are tighter

for shallow facets because a small error in f causes a larger fractional error in ∆φ. Based on the

tolerance tests given in section 5, we ultimately chose f = 0.006′′.
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f νcX [Wang] νcY [Wang] νcX [HFSS] νcY [HFSS] L90(230GHz)

(in) (GHz) (GHz) (GHz) (GHz) (in)

0.000 147.176 147.176 147.176 147.176 . . .

0.001 149.316 146.465 149.307 146.471 1.2392

0.002 153.134 145.193 153.119 145.203 0.4373

0.003 158.066 143.660 158.048 143.674 0.2359

0.004 164.011 142.004 163.985 142.030 0.1503

0.005 170.960 140.346 170.938 140.363 0.1042

0.006 179.016 138.706 178.985 138.732 0.0757

0.007 188.321 137.108 188.256 137.176 0.0562

Table 1: Cutoff frequencies νcX , νcY as a function of facet depth f for 0.047′′ diameter waveguide, derived

from the analytic approximations of Wang (2000) and from HFSS simulations. The HFSS cutoff frequencies

listed here have been divided by 1.000088 to correct for r/reff , as discussed in the text. The last column

gives lengths of 90◦ retarder sections.

Fig. 4.— (top) Cutoff frequencies νcX and νcY for 0.047′′ diameter faceted circular waveguide. Smooth

curves show polynomial fits (eqn 2,3); small squares, analytic approximations of Wang (2000); open circles,

HFSS results. (bottom) frequency differences from the polynomial curves.
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3. Transitions

Thus far we have ignored the effect of reflections at the interfaces of the circular and faceted

waveguide sections. The voltage reflection coefficient is

Γ =
Zfacet − Zcirc

Zfacet + Zcirc
,

where Z, the wave impedance for TE modes in circular waveguide is (Pozar 1998, equation 3.129)

Z =
ηk

β
= 377

k
√

k2 − k2
c

= 377
ν

√

ν2 − ν2
c

.

We assume that this formula also can be applied to faceted circular guide if the cutoff frequencies

dervied from equations (2) and (3) are used. At the junction of 0.047′′ diameter circular guide and

faceted guide with a 0.006′′ facet depth, the expected return loss −20 log|Γ| is roughly −19.9 dB

for X-polarized signals and −34.5 dB for Y-polarized signals. In a 2-section polarizer there are four

such junctions; at unfavorable frequencies where the reflections add in-phase, the return loss could

be as high as ∼ −8 dB.

Stepped or tapered transitions may be used to minimize reflections. Fig. 5 shows a slice through

a retarder with curved transitions that are convenient to produce if the flats on an electroform

mandrel are machined with the side of a milling cutter. To compute the differential phase shift

∆φ that occurs in the transitions, pol.dphitaper2 (part of the python script given in Appendix

B) approximates the transition as a series of small steps. With R = 0.125′′, each curved transition

produces 26◦ differential phase shift at 230 GHz. The lengths of quarter and half wave retarders

must be adjusted to take into account the phase shifts through the transitions.

4. Verification of the retarder design with scale models

To verify the retarder design we constructed scale models in K-band (18–26.5 GHz) waveguide and

measured the differential phase shifts through them with an 8722 network analyzer. The first scale

Fig. 5.— Cross section of a

waveguide retarder with curved

transition sections. Dimensions

are in inches. The retarder is

fabricated by electroforming on

an aluminum mandrel; the 0.006′′

deep flats on the top and bottom

of the mandrel are machined by

side cutting with an end mill of

radius R.
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model was a section of straight faceted guide; the second used cylindrical inserts simulating back

to back curved transitions. Dimensions of the models are given in Fig. 6. The waveguide diameter,

0.455′′, was chosen to match K-band rectangular–circular waveguide transitions that we had in

hand; thus the models are scaled up by a factor of 9.68085 relative to the mm retarders. The two

heights tested in model (a) correspond to facet depths f = 0.0038′′, 0.0060′′ in 1mm waveguide.

Coax to waveguide adapters (Agilent K281C) and rectangular–circular waveguide transitions were

attached to each end of the model as shown in Fig. 7. The network analyzer ‘through’ calibration

was done with polarization parallel one axis, then the retarder was rotated by 90◦ and the phase

of the orthogonal polarization was measured relative to this calibration.

Fig. 6.— K-band scale models of (a) straight faceted waveguide retarder, (b) back to back curved transitions

from circular to faceted guide. Dimensions are in inches. For model (a), one set of measurements was made

with 0.382′′ waveguide height, then the part was remachined and remeasured with 0.338′′ height.

Fig. 7.— Photo of K-band scale model (a) under test.
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Fig. 8.— Network analyzer measurements of the differential phase shift ∆φ through the K-band scale models

in Fig. 6 are shown as open circles. Red curves show the predictions from HFSS simulations; green curves,

from pol.py using equations (1)-(3). For both the network analyzer data and the HFSS simulations, the

phase shifts are computed as ∆φ = −phase(SY

21) + phase(SX

21) – phases are inverted to maintain consistency

with our sign convention.



– 11 –

Fig. 8 compares the phase shifts measured on the scale models with the predictions from HFSS

and from formulas (1)-(3). The phase shifts predicted by HFSS are 4–6% larger than the ones

predicted by formulas (1)-(3) because HFSS correctly accounts for reactances at the interfaces of

the circular and faceted guides. For model (a) we confirmed that the HFSS simulation exactly

reproduces the analytic calculation if signals are launched and received inside the faceted guide,

with no transition to circular waveguide at either end. The discrepancy between the HFSS results

and the measurements for the 0.382′′ thickness in model (a) could be explained if the faceted guide

were actually 0.384′′ thick; unfortunately the part is no longer available to check this dimension.

5. Leakage calculation

The performance of the polarizer may be characterized by its leakage D. Following Thompson,

Moran, & Swenson (2001), the leakages Dr and Dl are defined by

v′r = vr + Dr vl, v′l = vl + Dl vr.

Here v′r and v′l are the measured signal voltages at the two outputs of the OMT, and vr and vl are

the signals that would be observed with an ideally polarized feed. The magnitudes of the leakages

(which are complex numbers) should be as small as possible, but they need not be zero. As long

as the leakages are stable, they can be calibrated by observing astronomical sources.

To evaluate the leakage for various polarizer designs, we represent the electric field in the polarizer

as a two component column vector

p =

[

Ex

Ey

]

.

Ex and Ey are complex numbers representing the E-field amplitudes and phases. Only the relative

amplitudes and phases are significant for the leakage calculation. Basis vectors for linearly and

circularly polarized waves (traveling in the +z direction, out of the plane of the paper in Fig. 2)

are

x =

[

1

0

]

, y =

[

0

1

]

, l =

[

1/
√

2

j/
√

2

]

, r =

[

1/
√

2

−j/
√

2

]

To follow the signals through one or more polarizer sections, we multiply p by a series of 2 × 2

Jones matrices. There are just two operations: Jrot(θ) computes the polarization vector in a new

coordinate system rotated by angle θ, while Jdelay(∆φ(ν)) retards the phase of the Y-component

of the polarization vector by ∆φ(ν).

Jrot(θ) =

[

cos θ sin θ

− sin θ cos θ

]

, Jdelay(∆φ(ν)) =

[

1 0

0 e−j∆φ(ν)

]

It is convenient to deal with the case where the receiver transmits signals toward the antenna. In

this case we assume that a purely linearly polarized wave (x or y) enters the circular polarizer
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from the OMT. We calculate the polarization vector p′(ν) = Jn Jn−1 · · ·J1 p that emerges from

the polarizer. Ideally p′(ν) is a pure circular polarization. The leakage D is the dot product of p′

with the complex conjugate of the other circular basis vector r* or l*. D is a complex number.

For circular polarization the phase of D depends on the angle at which it is evaluated, but the

magnitude is independent of this angle. Our goal is to minimize the magnitude |D(ν)| over a wide

frequency range.

As an example, compute the polarization that emerges when an X-polarized input is incident on a

perfect quarter wave retarder with its fast axis oriented at 45◦:

p′ = Jrot(−45◦) Jdelay(90◦) Jrot(45◦) x

=

[

cos(−π
4 ) sin(−π

4 )

− sin(−π
4 ) cos(−π

4 )

] [

1 0

0 e−jπ/2

] [

cos(π
4 ) sin(π

4 )

− sin(π
4 ) cos(π

4 )

] [

1

0

]

=

[

1
2(1 − j)
1
2(1 + j)

]

= e−jπ/4

[

1/
√

2

j/
√

2

]

= e+jπ/4 l

The output p′ will be recognized as pure left circular polarization: EX and EY have equal amplitude,

and EX lags EY by 90◦. Thus the leakage Dl = p′ · r∗ = 0. The same retarder converts a Y-

polarized signal to pure right circular polarization. Or, we can reverse the direction of the signals,

injecting l or r into the horn end of the polarizer and computing the X and Y leakages at the OMT

end; the magnitudes of the leakages are just the same.

6. Multisection polarizer designs

Table 2 summarizes a few of the possible designs for multisection circular polarizers derived by

Kovac (2004) and by Pancharatnam (1955). Each retarder section is described by its phase shift

(always 90◦ or 180◦) at the center frequency, and by the angle of its fast axis (the axis with smaller

phase shift) relative to the input reference plane. Polarizer A is a simple quarter wave retarder.

Polarizers B and D (Kovac 2004) are ‘maximally flat’ in the sense that the derivatives of the

leakage are zero at the center frequency. Designs C and E achieve greater bandwidths by rotating

the retarders slightly to make the leakages (but not the derivatives) zero at 2 or 3 frequencies within

the band. Fig. 9 shows the leakage vs. frequency for the polarizers in Table 2, as computed using

script pol.py, listed in Appendix B. The detailed frequency response depends on the delay vs.

frequency of the retarder elements, thus on the particular choice of f/r, the ratio of facet depth to

waveguide radius.

Note that multisection polarizers are directional, in the sense that the ‘horn’ and ‘OMT’ ends are

distinct. Injecting a linearly polarized signal into the ‘horn’ end does not, in general, produce a

circularly polarized signal at the ‘OMT’ end. This is because rotations on the Poincaré sphere are

not commutative.
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∆φ1 θ1 ∆φ2 θ2 ∆φ3 θ3

A 90◦ 45◦

B 180◦ 15◦ 90◦ 75◦

C 180◦ 15◦ 90◦ 74.5◦

D 180◦ 6.05◦ 180◦ 34.68◦ 90◦ 102.27◦

E 180◦ 6.50◦ 180◦ 34.57◦ 90◦ 101.14◦

Table 2: Retarder phase shifts and angles

for 1-, 2-, and 3-section polarizer designs.

A is a simple quarter wave retarder; B

and D are maximally flat designs from Ko-

vac(2004); C is the design adopted for the

CARMA polarizers; E was a 50% band-

width design from Pancharatnam (1955).

Fig. 9.— Leakages computed for the ideal polarizers in Table 2, for retarder elements constructed of faceted

circular waveguide (diameter d = 0.047′′, facet depth f = 0.006′′). The retarder lengths were chosen to

achieve phase shifts ∆φ = 90◦, 180◦ at 230 GHz. Curve C is the design adopted for the CARMA polarizers.

Fig. 10.— Leakages computed for polarizer design B, for ±0.0002′′ facet depths and for ±1◦ rotations.
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Fig. 10 shows the leakage response of polarizer design B if the facet depths vary by ±0.0002′′ or

if the angle between the halfwave and quarter wave retarders varies by ±1◦. Changes in the facet

depth shift the center frequency of the polarizer, while angular variations affect the shape of the

leakage response. From Fig. 10 one concludes that it is advantageous to shift θ2 to an angle slightly

less than 75◦ to broaden the frequency response; this is the genesis of design C, which was chosen

for the CARMA receivers.

7. Tolerance analysis

It is the exquisite cancellation of chromatic errors by a series of retarder sections that leads to ex-

cellent broadband performance in a multisection polarizer. Tiny variations in the dimensions of the

retarder elements quickly spoil these cancellations, however. What are the allowable manufacturing

tolerances that will give acceptable polarizer performance?

The Jones matrix formalism makes it easy to investigate the effect of fabrication tolerances on the

polarizer performance. We consider errors in the waveguide diameter, facet depths, retarder section

lengths, and retarder section angles. An error in the waveguide diameter or facet depth that is

uniform for all the polarizer sections simply shifts the center frequency of the polarizer. More likely,

however, the facet depth will differ randomly from one section to another. In order to simulate such

effects, we assume that dimensional errors have truncated Gaussian distributions, with probability

P (δ) =

{

A exp(−δ2/2σ2) for δ ≤ σ

0 for δ > σ
(4)

For each choice of machining tolerances, we computed leakage vs frequency for 200 instances of each

polarizer design. We assumed that the error in the circular waveguide radius was uniform along

each polarizer, but varied the facet depths, lengths, and rotations of the sections independently,

with the following choices for σ:

σ(r), σ(f) = 0.00005′′, 0.00010′′, 0.00015′′ (5)

σ(L) = 0.001′′ (6)

σ(θ) = 0.2◦ (7)

For each retarder, we assume that the facet depths are precisely equal on the top and bottom of

the waveguide so that the facets remain symmetrical about the midplane of the waveguide.

Fig. 11 and 12 display the results of some of these tolerance tests; the red curve with error bars on

each plot displays the mean and rms of the 200 tests. Fig. 11 demonstrates that the mean leakage

and its rms scatter are smaller for deeper facets. This is simply because the fractional error in the

facet depth, and hence in the phase shift, is smaller for deep facets. The benefits of deeper facets

are partially offset by the greater reflection losses at the ends of the retarder sections, which led
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Fig. 11.— Leakages computed for 200 polarizers of design C, with truncated Gaussian dimensional errors

given by equations (4)-(7). The nominal facet depth is 0.003′′ for the simulations in the left hand panels,

0.006′′ for the simulations on the right. σ(r, f) is indicated in each panel. σ(L) = ±0.001′′ and σ(θ) = ±0.2◦

in all cases. Red curves with error bars on each plot show the mean and rms of the 200 trials.

Fig. 12.— Leakages computed for 200 polarizers of 2-section design C and a 3-section design E, with

truncated Gaussian dimensional errors given by equations (4)-(7). The mean facet depth is 0.006′′ and

σ(r, f) = 0.00015′′ in both cases. When manufacturing tolerances are taken into account, the typical

performance of a 3-section polarizer is little better than that of a 2-section polarizer.
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us to limit the facet depth to f = 0.006′′. Fig. 12 demonstrates that it is not worth the trouble to

build a 3-section polarizer, at least not in the 1mm band. Its performance is little different than

that of a 2-section polarizer unless one demands impossibly tight manufacturing tolerances.

8. Final design

Based on the tolerance analysis of section 7, we decided to use a 2-section polarizer (design C in

Table 2) with 0.006′′ deep facets on the retarder sections. The curved transition in Fig. 5, with

R = 0.125′′, was adopted for the matching sections. HFSS simulations were used to determine the

phase shifts through these matching sections, hence the correct total lengths of the 90◦ and 180◦

retarders. The final dimensions and tolerances are shown in Fig. 13; a rendering of the mandrel

that will be used to electroform the polarizer is shown in Fig. 14.

Fig. 13.— Dimensions and tolerances for the polarizer.

HFSS was used to check the final 2-stage design. Fig. 15 show that if a linearly polarized signal

is incident on the OMT end of the polarizer, then the X- and Y-polarized signals at the horn end

have almost equal amplitudes and differ in phase by approximately 90◦, as expected for circular

polarization. S11 and S22 (not shown) are below -20 dB across the band for both X- and Y-

polarizations, not including the effect of the small step from the 0.047′′ polarizer waveguide to the

0.044′′ OMT waveguide. The leakage computed from the HFSS results is shown in Fig. 16. The

E-field amplitudes in the polarizer, driven by both X- and Y-polarized signals at the OMT end, are

shown in Fig. 17.
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Fig. 14.— 3-D rendering of the

final polarizer design. This can

be thought of as an image of the

aluminum mandrel that will be

used for electroforming.

9. Leakage contributions from other optical elements

The polarization leakages computed thus far do not include the effects of optical elements between

the feedhorn and the sky. There are at least 2 such elements that can degrade the polarization

purity – the antireflection grooves on IR filters in the 6-m dewars, and the Mylar beamsplitters

used on both the 6-m and 10-m receivers to inject the local oscillator into the beam.

Grooved IR filters. The 6-m dewars use 0.3′′ thick Teflon windows in the 50K radiation shields as

infrared filters. Both the front and back surfaces of the windows are grooved to reduce reflections;

the groove depth is 0.010′′ for the 1mm windows. The refractive index of the matching layers differ

for signals polarized parallel and perpendicular to the grooves:

n‖ =

√

ǫ + 1

2
, n⊥ =

√

2ǫ

ǫ + 1
.

For Teflon (ǫ = 2.08) the matching layer has refractive index 1.24 for the electric field component

E‖ aligned with the grooves, and 1.16 for E⊥. Unfortunately the grooves are oriented in the same

direction on the front and back surfaces of the window, leading to a phase difference at 230 GHz of

∆φ =
2π

λ
(2d) (n‖ − n⊥) ∼ 11◦,

which causes a leakage of ∼ 0.1, a very serious degradation in performance. Fortunately this can be

avoided by regrooving one side of the Teflon filters in the perpendicular direction, or by replacing

the Teflon windows with foam IR filters.

The lenses that serve as windows on the 6-m dewars also are antireflection coated with a series of

concentric grooves. These grooves are expected to have much less effect on the leakage because the

path delays are equal for the 2 polarizations when averaged over the lens. Another set of lenses at

the feedhorn apertures – at an image of the primary mirror – were antireflection-coated by drilling

a grid of holes into the surfaces (Plambeck 2000) to avoid polarization-sensitive delays.

Beamsplitters. The polarization purity also will be degraded by the beamsplitters that couple local

oscillator power to the SIS mixers. The beamsplitter transmission differs for electric fields parallel
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Fig. 15.— HFSS simulation results for the final 2 stage design in Fig. 13.

and perpendicular to the plane of incidence (at Brewster’s angle E‖ is transmitted with no loss at

all), hence a perfectly circularly polarized signal becomes elliptically polarized after passing through

the beamsplitter. The effect is worse on the 10-m antennas, where the beamsplitters are mounted

at a 45◦ angle of incidence; it is somewhat less troublesome on the 6-m antennas, where the angle

of incidence is 35◦. For the current SIS mixers (1 or 2 junction devices, 1 polarization), the 6-m

receivers use a 0.0005′′ thick Mylar beamsplitter in its more reflective orientation (LO polarized

perpendicular to the plane of incidence), while the 10-m receivers use a 0.001′′ thick splitter in

its less reflective orientation. The beamsplitter reflectivities are plotted in Fig. 18. The new dual
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Fig. 16.— (solid curve) Polarization leakage through the polarizer in Fig. 13 computed from the HFSS

simulation results in Fig. 15. (dashed) Leakage computed using the analytic model in pol.py for these same

dimensions; the analytic model does not include phase shifts due to reactance at the transitions, hence the

retarders are not exactly the correct lengths.

Fig. 17.— HFSS simulation showing E-field amplitudes in the polarizer. A Y-polarized signal incident from

the left is converted to L (top), while an X-polarized signal is converted to R (bottom).

polarization system should require approximately 30 times more LO power because there are two

mixers, each with a series array of 4 SIS junctions. The LO polarization will be flipped by 90

degrees on the 10-m telescopes when the new system is installed, and it will probably be necessary

to use 0.001′′ or even 0.0015′′ thick beamsplitters.

We now evaluate the polarization leakage including the effects of the beamsplitters. From Born &

Wolf (1959; sections 1.5.2 and 7.6.1) the amplitude of a signal transmitted through the beamsplitter

is given by

A(t) =
tt′

1 − r′2eiδ
A(i) (8)
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Fig. 18.— Reflectivity of the Mylar beamsplitters for signals polarized parallel (dashed) and perpendicular

(solid) to the plane of incidence. The angle of incidence is 45◦ (red) on the 10-m telescopes, 35◦ (blue) on

the 6-m telescopes. Solid squares indicate the beamsplitter thicknesses and orientations currently used for

local oscillator injection.

Fig. 19.— Theoretical effect on leakage for 0.0015′′ thick mylar splitters at a 45◦ angle of incidence. The

blue curve shows the plane of incidence parallel to the X-axis, while the red curve shows it parallel to the

Y-axis. The right hand panel shows Gaussian error analysis of Fig. 12 with the beamsplitter.
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where δ is the phase shift incurred by a signal that makes one round trip through the beamsplitter,

δ =
4π

λ0
n′ t cosθ′, (9)

and where the transmission and reflection coefficients at the air–beamsplitter interface are t and r

going from air into the beamsplitter (n1 = 1, n2 = 1.5), and t′ and r′ from the beamsplitter into

air (n1 = 1.5, n2 = 1.0). These coefficients differ for signals polarized parallel and perpendicular to

the plane of incidence:

t‖ = 2 n1 cosθi
n2 cosθi + n1 cosθt

t⊥ = 2 n1 cosθi
n1 cosθi + n2 cosθt

r‖ = n2 cosθi − n1 cosθt
n2 cosθi + n1 cosθt

r⊥ = n1 cosθi − n2 cosθt
n1 cosθi + n2 cosθt

Since the beamsplitter attenuates the parallel and perpendicular components unequally, the orien-

tation of beamsplitter plane of incidence relative to the polarizer axes matters, as demonstrated

in the left hand panel of Fig. 19. Note that in rare cases the beamsplitter can even reduce the

polarization leakage. The right hand panel in Fig. 19 shows the results of a Gaussian error analysis

like that in section 7, but including the effect of a beamsplitter as well as machining tolerances for

the polarizer. In this simulation the beamsplitter is 0.0010′′ thick, at angle of incidence 45◦, with

the plane of incidence at 45◦ to the principal axes of the OMT. From 218–250 GHz the average

leakage is still ≤ 0.05. The beamsplitters will be eliminated in the future when CARMA switches

to sideband separating mixers, for which the local oscillator is injected via waveguide directional

couplers.
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10. Appendix A

Python script to compute cutoff frequencies for faceted circular waveguide using the method of

Wang (2000).

# ---------------------------------------------------------------------------------------------------------- #

# wang.py - compute cutoff wavenumbers and frequencies for faceted circular waveguide using the

# method of Wang (2000, IEEE MTT, 48, 1763-65)

# ---------------------------------------------------------------------------------------------------------- #

from scipy.special import *

import math

# --- convert wavenumber to frequency (GHz) for waveguide with radius r_inches --- #

def fGHz ( k, r_inches ) :

c = 2.99792458e10

rcm = 2.54 * r_inches

return 1.e-9 * c * k / (2 * math.pi * rcm)

# --- eqn (4) --- #

def rho ( theta, a ) :

return sqrt( 1. + 4.*a*a - 4.*a*cos(theta) )

# --- eqn (5) --- #

def phi ( theta, a ) :

return math.atan2( sin(theta), (2.*a - cos(theta)) )

# --- compute cofactors of Cn from eqn (18) for pol = ’Y’, or for equivalent eqn for pol = ’X’ --- #

def element ( pol, n, a, theta, k ) :

fact = float(math.factorial(2.*n - 1))

if (cos(theta) > a ) :

if (pol == ’X’) :

term = cos( (2.*n-1.)*theta ) * jv( 2.*n-1, k ) \

- cos( (2.*n-1.)*phi(theta,a) ) * jv( 2.*n-1, k*rho(theta,a) )

else:

term = sin( (2.*n-1.)*theta ) * jv( 2.*n-1, k ) \

- sin( (2.*n-1.)*phi(theta,a) ) * jv( 2.*n-1, k*rho(theta,a) )

else :

term0 = (k * jv( 2.*n-2., k ) - (2*n - 1) * jv( 2*n-1., k ) )

if (pol == ’X’) :

term = cos( (2.*n-1.)*theta ) * term0

else :

term = sin( (2.*n-1.)*theta ) * term0

return fact*term

# --- compute determinant; determinant should be zero for nontrivial Cn --- #

def detarray ( pol, N, a, k ) :

ma = zeros( (N,N) )

for j in range(0,N) :

thetaj = (j + 0.5) * math.pi/ (2. * N)

for i in range(0,N) :

n = i+1

ma[j,i] = element( pol, n, a, thetaj, k )

return linalg.det(ma)

# ---------------------------------------------------------------------------------------------------------- #

# solve for k by stepping through range, finding zero-crossing of determinant
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# pol = ’X’ (E-field parallel to facets, higher cutoff) or ’Y’

# N = number of terms in Bessel function expansion

# a = 1-f/R, where R is the radius, f is the facet depth

# k0 = initial estimate for k

# kstep = step size to begin with

# ---------------------------------------------------------------------------------------------------------- #

def ksolve ( pol, N, a, k0, kstep ) :

k = k0

lastdet = detarray( pol, N, a, k0 )

while (kstep > .0000005) and (k < 4) :

k = k + kstep

det = detarray( pol, N, a, k )

if ((lastdet > 0.) and (det > 0.)) or ((lastdet < 0.) and (det < 0.)) :

lastdet = det

else : # zero crossing somewhere between k-delta and k

k = k - kstep

kstep = kstep/2. # reduce step size by factor of 2

print k, kstep, lastdet, det

if (k >= 4) : print "ERROR"

return k

# ---------------------------------------------------------------------------------------------------------- #

# ksolve answer oscillates vs N, so use average solution for N=20,60,1

# ---------------------------------------------------------------------------------------------------------- #

def kiterate ( pol, a ) :

k0 = 1.5

kstep = 0.5

N = 20

k20 = ksolve ( pol, N, a, k0, kstep )

sum = k20

n = 1

for N in range (21, 60, 1) :

k = ksolve ( pol, N, a, (k20-.01), 0.001 )

sum = sum + k

n = n + 1

return sum/float(n)

# --- find cutoff frequencies vs facet depth for our waveguide --- #

def solvall ( ):

for f in arange(0.0014,0.0082,0.0002):

a = (.0235 - f)/.0235

kX = kiterate( ’X’, a )

kY = kiterate( ’Y’, a )

ofile = open("wang.dat", "a")

ofile.write("%8.5f %8.5f %9.6f %9.6f %11.5f %11.5f\n" % (a, f, kX, kY, fGHz(kX,.0235), fGHz(kY,.0235)) )

ofile.close()
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11. Appendix B

All calculations discussed in this memo were done with the following Python script. Subroutines

pol.fig1(), pol.fig2(), etc. were used to generate data for the corresponding figures.

# ---------------------------------------------------------------------------------------------------------- #

# pol.py

from Numeric import *

import math

import cmath

import random

# ---------------------------------------------------------------------------------------------------------- #

# define basis vectors in reference coordinate system (aligned with OMT axes)

# each vector consists of 2 complex numbers [ (Re_x,Im_x), (Re_y,Im_y) ]

# R and L propagate in +Z direction according to right hand rule

# note: x.conjugate() gives complex conjugate of a number

# ---------------------------------------------------------------------------------------------------------- #

X = array( [1,0] )

Y = array( [0,1] )

R = array( [1./sqrt(2.), -1j*(1./sqrt(2.))] )

L = array( [1./sqrt(2.), +1j*(1./sqrt(2.))] )

clight = 29.9792458 # speed of light, cm/nanosec

# ---------------------------------------------------------------------------------------------------------- #

# returns new basis vector in a coordinate system rotated by thetaDegrees

# ---------------------------------------------------------------------------------------------------------- #

def Jrot ( vec, thetaDegrees ) :

rad = math.pi * thetaDegrees/180.

rotmat = array( [[cos(rad),sin(rad)],[-sin(rad),cos(rad)]] )

return dot(rotmat,vec)

# ---------------------------------------------------------------------------------------------------------- #

# returns basis vector after passing through polarizer section

# component 2 (Y-axis) is advanced by delayDegrees relative to component 1 (X-axis)

# ---------------------------------------------------------------------------------------------------------- #

def Jdelay ( vec, delayDegrees ) :

rad = math.pi * delayDegrees/180.

rotmat = array( [ [1, 0], [0, cmath.exp(-1.j * rad)] ] )

return dot( rotmat,vec )

# ---------------------------------------------------------------------------------------------------------- #

# returns basis vector after transmission through a beamsplitter

# tpel is thickness in inches, angI is angle of incidence in degrees

# X axis is assumed parallel to the plane of incidence; light polarized parallel to the plane of incidence

# is less strongly reflected; at Brewster’s angle none will be reflected

# Y axis is perp to plane of incidence; it is more strongly reflected

# ---------------------------------------------------------------------------------------------------------- #

def Jbsplit ( vec, tpel=.001, angI=45., fGHz=230. ) :

[tpar,tperp,Rpar,Rperp] = pellicle( tpel=tpel, angI=angI, fGHz=fGHz)

rotmat = array( [ [tpar, 0.], [0., tperp] ] )

return dot( rotmat,vec )

# ---------------------------------------------------------------------------------------------------------- #

# returns cutoff freqs [fcX, fcY], in GHz, for faceted circular waveguide that is squeezed along Y-direction
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# r is waveguide radius in inches, x is the normalized facet depth f/r

# based on 5th order polynomial fit to analytic results from Appendix A, or HFSS simulations

# use source=’HFSS’ for HFSS (default), source=’Wang’ for analytic fits

# ---------------------------------------------------------------------------------------------------------- #

def cutoff( r, x, source=’HFSS’ ) :

if ( source == ’Wang’) :

kX = 1.841184 + 0.309847*x + 8.60483*pow(x,2.) - 29.3916*pow(x,3.) + 75.4104*pow(x,4.) - 67.4144*pow(x,5.)

kY = 1.841184 - 0.0900839*x - 3.30519*pow(x,2.) + 13.3106*pow(x,3.) - 26.8144*pow(x,4.) + 22.970*pow(x,5.)

else :

kX = 1.841184 + 0.301574*x + 8.9118*pow(x,2.) - 33.253*pow(x,3.) + 93.2359*pow(x,4.) - 94.615*pow(x,5.)

kY = 1.841184 - 0.0862305*x - 3.41638*pow(x,2.) + 14.65*pow(x,3.) - 32.7615*pow(x,4.) + 31.7498*pow(x,5.)

fcX = clight * kX / (2. * math.pi * r * 2.54)

fcY = clight * kY / (2. * math.pi * r * 2.54)

return [fcX, fcY]

# ---------------------------------------------------------------------------------------------------------- #

# compute length in inches of faceted guide to achieve differential phase shift dphi0, in degrees

# r is waveguide radius in inches, f is facet depth in inches, fGHz is freq in GHz

# fcX and fcY are override cutoff freqs in GHz; if either is zero, cutoff freqs will be taken from

# subroutine cutoff, using 5th order polynomial fit to the HFSS-derived cutoffs

# ---------------------------------------------------------------------------------------------------------- #

def length( r=0.0235, f=0.006, dphi0=90., fGHz=230., fcX=0., fcY=0. ) :

if (f == 0.) : return 0.

if ( (fcX == 0.) or (fcY == 0.) ) :

[fcX,fcY] = cutoff( r, f/r, source=’HFSS’ )

length = clight * dphi0 / (2.54 * 360.* (sqrt(fGHz*fGHz-fcY*fcY) - sqrt(fGHz*fGHz-fcX*fcX)))

return length

# --- L90 retarder lengths in table 1 are from the actual HFSS freqs, not the polynomial fit --- #

def table1 () :

print "0.001 %8.4f" % length( r=0.0235, fcX=149.307, fcY=146.471, fGHz=230.)

print "0.002 %8.4f" % length( r=0.0235, fcX=153.119, fcY=145.203, fGHz=230.)

print "0.003 %8.4f" % length( r=0.0235, fcX=158.048, fcY=143.674, fGHz=230.)

print "0.004 %8.4f" % length( r=0.0235, fcX=163.985, fcY=142.030, fGHz=230.)

print "0.005 %8.4f" % length( r=0.0235, fcX=170.938, fcY=140.363, fGHz=230.)

print "0.006 %8.4f" % length( r=0.0235, fcX=178.985, fcY=138.732, fGHz=230.)

print "0.007 %8.4f" % length( r=0.0235, fcX=188.256, fcY=137.176, fGHz=230.)

# --- generate smooth curves of cutoff freq for FIG 4 --- #

def fig4() :

r = .0235

for f in arange( 0.000, 0.0072, 0.0002) :

[fcX,fcY] = cutoff( r, f/r )

print "%6.4f %8.4f %8.4f" % (f, fcX, fcY)

# ---------------------------------------------------------------------------------------------------------- #

# compute phase delay in degrees of Y-pol vs X-pol signals traveling through length L; dimensions in inches

# fcX and fcY are override cutoff freqs in GHz; if either is zero, use values from subroutine cutoff

# ---------------------------------------------------------------------------------------------------------- #

def dphi( r=0.0235, f=0.006, L=0.001, fGHz=230., fcX=0., fcY=0. ) :

if ( (fcX == 0.) or (fcY == 0.) ) :

[fcX,fcY] = cutoff( r, f/r, source=’HFSS’ )

dphi = 360. * L * 2.54 * (sqrt(fGHz*fGHz-fcY*fcY) - sqrt(fGHz*fGHz-fcX*fcX)) / clight

return dphi

# ---------------------------------------------------------------------------------------------------------- #

# compute [length, differential phase shift] through a radiused adapter from faceted circ to circ guide

# Rc is the cutter radius in inches; axis of cutter is perpendicular to axis of waveguide
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# ---------------------------------------------------------------------------------------------------------- #

def dphitaper2 ( r=0.0235, f=0.006, Rc=0.125, fGHz=230., nsteps=1000 ) :

df = f/nsteps # increment in facet depth

f1 = f # facet depth at start of segment

x1 = 0. # x-coordinate at start of segment

totphase = 0.

for n in range(nsteps) :

f2 = f1 - df # facet depth at end of segment

x2 = sqrt(Rc*Rc - pow((f - f2 - Rc), 2.)) # x-coordinate at end of segment

dphase = dphi(r=r, f=(f1+f2)/2., L=(x2-x1), fGHz=fGHz ) # using avg facet depth

totphase = totphase + dphase

x1 = x2

f1 = f2

return [x2, totphase] # return X length of transition in inches, and total diff phase through it

# ---------------------------------------------------------------------------------------------------------- #

# predictions for Kband scale models; gap = 0.382" for straight case 1, 0.338" for straight case 2

# ---------------------------------------------------------------------------------------------------------- #

def fig8ab () :

ofile = open("KbandStraight.dat","w")

for f in arange(19.,30.05,.05) :

ofile.write("%6.2f %8.4f %8.4f\n" %

(f, dphi( r=0.2275, f=.0365, L=1.822, fGHz=f ), dphi( r=0.2275, f=.0585, L=1.822, fGHz=f )) )

ofile.close()

def fig8c () :

ofile = open("KbandCurved.dat","w")

for f in arange(19.,30.05,.05) :

[x2, ph] = dphitaper2( r=0.2275, f=.05675, Rc=1.210, fGHz=f ) # min gap is 0.3415"

ofile.write("%6.2f %8.4f \n" % (f, 2.*ph))

ofile.close()

# ---------------------------------------------------------------------------------------------------------- #

# reflection coefficient from circular guide of radius r1 (inches) to guide of radius r2 (inches)

# ---------------------------------------------------------------------------------------------------------- #

def reflect( fGHz, r1, r2 ) :

fc1 = clight/(3.4126 * r1 * 2.54)

fc2 = clight/(3.4126 * r2 * 2.54)

Z1 = fGHz * 377./sqrt(fGHz*fGHz - fc1*fc1)

Z2 = fGHz * 377./sqrt(fGHz*fGHz - fc2*fc2)

vR = (Z1 - Z2)/(Z1 + Z2)

print "voltage, power reflection coefficients: %.3e %.3e" % (vR, vR*vR)

# ---------------------------------------------------------------------------------------------------------- #

# check algebra of example at end of section 5

# ---------------------------------------------------------------------------------------------------------- #

def example() :

v1 = X

v2 = Jrot(v1, 45)

v3 = Jdelay(v2, 90)

v4 = Jrot(v3, -45)

print v4

rad = math.pi/4

print cmath.exp(+1.j * rad) * v4

print "D_L ", dot(v4,L), abs(dot(v4,L)) # note: R* = L

print "D_R ", dot(v4,R), abs(dot(v4,R)) # note: L* = R

# ---------------------------------------------------------------------------------------------------------- #
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# writes out dimensions of a single polarizer to 1 line of output file;

# convert inches to mils for more compact format

# ---------------------------------------------------------------------------------------------------------- #

def dumpDimensions( dimfile, r, a1, f1, L1, a2, f2, L2, a3, f3, L3 ) :

ofile = open(dimfile, "a")

ofile.write(" %6.3f %7.2f %5.3f %6.2f" % (1000.*r, a1, 1000.*f1, 1000.*L1) )

ofile.write(" %7.2f %5.3f %6.2f" % (a2, 1000.*f2, 1000.*L2) )

ofile.write(" %7.2f %5.3f %6.2f\n" % (a3, 1000.*f3, 1000.*L3) )

ofile.close()

# ---------------------------------------------------------------------------------------------------------- #

# writes out one polarizer dimension (e.g., facet depth of section 1) per line for multiple polarizers

# ---------------------------------------------------------------------------------------------------------- #

def dumplist ( ofile, x, label, fmt, mult ):

ofile.write( label )

ntrials = len(x)

for n in range(ntrials) :

ofile.write( fmt % (mult * x[n] ) )

ofile.write("\n")

# ---------------------------------------------------------------------------------------------------------- #

# compute ampX, phsX, ampY, phsY, phsdif given a pol vector [ (re X, im X), (re Y, im Y) ]

# ---------------------------------------------------------------------------------------------------------- #

def ampPhs( vec ) :

phsX = 180. * math.atan2(vec[0].imag,vec[0].real) / math.pi

phsY = 180. * math.atan2(vec[1].imag,vec[1].real) / math.pi

phsdif = phsX - phsY

if (phsdif > 180.) :

phsdif = phsdif - 360.

if (phsdif < -180.) :

phsdif = phsdif + 360.

return [ abs(vec[0]), phsX, abs(vec[1]), phsY, phsdif ]

# ---------------------------------------------------------------------------------------------------------- #

# compute leakages vs freq for 1-section, 2-section, or 3-section polarizers

# read polarizer dimensions from ’dimfile’, write leakages to ’leakfile’

# note: one polarizer per ROW on input, one per COLUMN on output

# dimfile should have 10 columns (as in dumpDimensions); angles in degrees, lengths in mils

# optional: apfile lists amps and phase difference of X and Y components for comparison with HFSS

# optional: evaluate leakage after beamsplitter apel,tpel,aIpel,aeval

# apel = angle of plane of incidence, relative to X=0 axis

# tpel = beamsplitter ("pellicle") thickness in inches

# aIpel = angle of incidence to the beamsplitter, degrees (0 = beamsplitter normal to axis)

# optional: evaluate leakage at angle aeval (shouldn’t affect magnitude of the leakage)

# optional: compute correlation efficiency < V1 V0* > for all polarizers vs the first one

# ---------------------------------------------------------------------------------------------------------- #

def computeLeakage( dimfile, leakfile, apfile=None, apel=0., tpel=0., aIpel=0., aeval=0., efficfile=None ) :

r = [] # empty list of circular waveguide radii

a1 = [] # angle of section 1 relative to input Y-pol

f1 = [] # facet depth of section 1

L1 = [] # length of section 1

a2 = [] # angle of section 2 relative to section 1

f2 = [] # facet depth of section2

L2 = [] # length of section 2

a3 = [] # angle of section 3 relative to section 2

f3 = [] # facet depth of section 3

L3 = [] # length of section 3
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# --- read the dimensions into internal lists --- #

infile = open(dimfile, "r")

ofile = open(leakfile, "w")

if (efficfile) : ofile3 = open( efficfile, "w" )

if (apfile) :

ofile2 = open( apfile, "w")

ofile2.write("# fGHz, abs(Ex), phs(Ex), abs(Ey), phs(Ey), phsdif, leakage, phsleak\n" )

ntrials = 0

for line in infile:

if line.startswith("#"):

ofile.write(line)

else:

a = line.split() # split line into string tokens

r.append( float(a[0])/1000. ) # convert diameter from mils back to inches

a1.append( float(a[1]) )

f1.append( float(a[2])/1000. ) # convert facet depth from mils back to inches

L1.append( float(a[3])/1000. )

a2.append( float(a[4]) )

f2.append( float(a[5])/1000. ) # convert facet depth from mils back to inches

L2.append( float(a[6])/1000. )

a3.append( float(a[7]) )

f3.append( float(a[8])/1000. ) # convert facet depth from mils back to inches

L3.append( float(a[9])/1000. )

ntrials = ntrials + 1

infile.close()

# --- compute leakage array for each set of polarizer dimensions --- #

freq = arange(200.,271.)

leakage = zeros([len(freq),ntrials],Float) # create array to hold leakages

effic = zeros([len(freq),ntrials],Float) # create array to hold correlation efficiencies

for n in range(ntrials) :

m = 0 # freq index

for fGHz in freq :

v1 = Y # Y-pol incident on section 1

v2 = Jrot( v1, a1[n] )

afinal = -1.*a1[n]

v3 = Jdelay( v2, dphi( r[n], f1[n], L1[n], fGHz ) )

if (f2[n] > 0.) : # section 2, if present

v2 = Jrot( v3, a2[n] )

afinal = afinal - a2[n]

v3 = Jdelay( v2, dphi( r[n], f2[n], L2[n], fGHz ) )

if (f3[n] > 0.) : # section 3, if present

v2 = Jrot( v3, a3[n] )

afinal = afinal - a3[n]

v3 = Jdelay( v2, dphi( r[n], f3[n], L3[n], fGHz ) )

v1 = Jrot(v3, afinal) # rotate back to original reference frame

if (tpel > 0.) : # optional beamsplitter section

v2 = Jrot( v1, apel ) # rotate X axis parallel to plane of plane of incidence

v3 = Jbsplit(v2, tpel, aIpel, fGHz ) # apply amplitude and phase shifts

v1 = Jrot( v3, -1.*apel ) # rotate back to original reference frame

vout = Jrot( v1, aeval ) # evaluate leakage at angle aeval
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if (n == 0) : vsave = array( [vout[0].conjugate(), vout[1].conjugate() ] )

# save polarization vector of 1st trial for optional efficiency calculations

# --- assume RCP out (true for positive angles a1,a2,a3) --- #

cleak = dot(vout, R) # single complex number; note R = L*

leakage[m,n] = abs(cleak) # magnitude of the leakage

if (efficfile) : effic[m,n] = abs(dot(vsave,vout))

if (apfile) :

[ampX, phsX, ampY, phsY, phdif ] = ampPhs( vout )

ofile2.write("%6.1f %8.4f %8.4f %8.4f %8.4f %8.4f\n" % (fGHz, ampX, phsX, ampY, phsY, leakage[m,n]))

m = m + 1

if (apfile) : ofile2.close()

# --- write dimensions in columns to output file --- #

dumplist ( ofile, r, "# r :", " %6.3f", 1000.)

dumplist ( ofile, a1, "# a1 :", " %6.2f", 1.)

dumplist ( ofile, f1, "# f1 :", " %6.3f", 1000.)

dumplist ( ofile, L1, "# L1 :", " %6.2f", 1000.)

dumplist ( ofile, a2, "# a2 :", " %6.2f", 1.)

dumplist ( ofile, f2, "# f2 :", " %6.3f", 1000.)

dumplist ( ofile, L2, "# L2 :", " %6.2f", 1000.)

dumplist ( ofile, a3, "# a3 :", " %6.2f", 1.)

dumplist ( ofile, f3, "# f3 :", " %6.3f", 1000.)

dumplist ( ofile, L3, "# L3 :", " %6.2f", 1000.)

if (tpel == 0.) :

ofile.write("# evaluated without any beamsplitter\n")

else :

ofile.write("# beamsplitter at angle apel = %.2f\n" % apel)

ofile.write("# beamsplitter thickness tpel = %.4f\n" % tpel)

ofile.write("# beamsplitter angIncidence aIpel = %.2f\n" % aIpel)

ofile.write("# leakages evaluated after rotation by aeval= %.2f\n" % aeval)

# --- dump leakages at each freq, for all polarizers; also compute avg and rms --- #

m = 0

for fGHz in freq :

ofile.write("%6.1f" % fGHz)

if (efficfile) : ofile3.write("%6.1f" % fGHz)

sum = 0.

for n in range(ntrials) :

ofile.write(" %6.4f" % leakage[m,n])

sum = sum + leakage[m,n]

if (efficfile) : ofile3.write(" %6.4f" % effic[m,n] )

avg = sum/ntrials

var = 0.

for n in range(ntrials) :

dif = leakage[m,n] - avg

var = var + dif*dif

if (ntrials > 1) :

var = var/(ntrials-1)

ofile.write(" %6.4f %6.4f\n" % (avg,sqrt(var)))

if (efficfile) : ofile3.write("\n")

m = m + 1

ofile.close()

if (efficfile) : ofile3.close()

# ---------------------------------------------------------------------------------------------------------- #
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# leakage of idealized polarizers

# ---------------------------------------------------------------------------------------------------------- #

def fig9() :

r = .0235

f = 0.006

L90 = length( r=r, f=f, dphi0=90., fGHz=230. )

L180 = 2. * L90

a1 = 45.

dumpDimensions( ’dim9A.dat’, r, a1, f, L90, 0., 0., 0., 0., 0., 0.)

computeLeakage( ’dim9A.dat’, ’leak9A.dat’ )

# simple 1-section polarizer

a1 = 15.

a2 = 60.

dumpDimensions( ’dim9B.dat’, r, a1, f, L180, a2, f, L90, 0., 0., 0.)

computeLeakage( ’dim9B.dat’, ’leak9B.dat’ )

# 2-section polarizer, maximally flat, from Kovac

a1 = 15.

a2 = 59.5

dumpDimensions( ’dim9C.dat’, r, a1, f, L180, a2, f, L90, 0., 0., 0.)

computeLeakage( ’dim9C.dat’, ’leak9C.dat’ )

# 2-section polarizer, CARMA design

a1 = 6.05

a2 = 28.63

a3 = 67.59

dumpDimensions( ’dim9D.dat’, r, a1, f, L180, a2, f, L180, a3, f, L90 )

computeLeakage( ’dim9D.dat’, ’leak9D.dat’ )

# 3-section polarizer, maximally flat, from Kovac

a1 = 6.50

a2 = 28.07

a3 = 66.57

dumpDimensions( ’dim9E.dat’, r, a1, f, L180, a2, f, L180, a3, f, L90 )

computeLeakage( ’dim9E.dat’, ’leak9E.dat’ )

# wideband 3-section polarizer derived by Pancharatnam

def fig10() :

r = .0235

f = 0.006

L90 = length( r=r, f=f, dphi0=90., fGHz=230. )

L180 = 2. * L90

a1 = 15.

a2 = 60.

# nominal dimensions of 2-section polarizer, maximally flat, from Kovac

dumpDimensions( ’dim10a.dat’, r, a1, f-.0002, L180, a2, f-.0002, L90, 0., 0., 0. )

dumpDimensions( ’dim10a.dat’, r, a1, f, L180, a2, f, L90, 0., 0., 0. )

dumpDimensions( ’dim10a.dat’, r, a1, f+.0002, L180, a2, f+.0002, L90, 0., 0., 0. )

computeLeakage( ’dim10a.dat’, ’leak10a.dat’ )

# change facet depths for both sections

dumpDimensions( ’dim10b.dat’, r, a1, f, L180, a2-1., f, L90, 0., 0., 0.)

dumpDimensions( ’dim10b.dat’, r, a1, f, L180, a2, f, L90, 0., 0., 0.)

dumpDimensions( ’dim10b.dat’, r, a1, f, L180, a2+1., f, L90, 0., 0., 0.)

computeLeakage( ’dim10b.dat’, ’leak10b.dat’ )
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# change angle between section 1 and section 2

# ---------------------------------------------------------------------------------------------------------- #

# return dimension = (xtarg +/- random error)

# error is gaussian distributed with sigma=xtol, but cannot exceed xtol

# ---------------------------------------------------------------------------------------------------------- #

def dimension( xtarg, xtol ) :

if (xtarg == 0.) : return 0.

x = xtarg + 2.*xtol # enter loop with dummy value guaranteed to be unacceptable

while (abs(x - xtarg) > xtol) :

x = random.gauss( xtarg, xtol )

return x

# ---------------------------------------------------------------------------------------------------------- #

# writes file of polarizer dimensions with truncated Gaussian deviations (one line per polarizer)

# ---------------------------------------------------------------------------------------------------------- #

def gaussdim( ntrials=200, dimfile=’dims.txt’, rtarg=0.0235, rtol=0.0001, ftarg=0.003, ftol=0.0001,

a1targ=15.0, a1tol=0.2, L1targ=0.4718, Ltol=0.001, a2targ=59.5, atol=0.1, L2targ=0.2359,

a3targ=0., L3targ=0. ) :

ofile = open(dimfile, "w")

# --- dump input parameters for future reference --- #

ofile.write("# rtarg = %.6f, rtol = %.6f\n" % (rtarg,rtol) )

ofile.write("# ftarg = %.6f, ftol = %.6f\n" % (ftarg,ftol) )

ofile.write("# a1targ = %.2f, a1tol = %.2f, L1targ= %.6f, L1tol = %.6f \n" % (a1targ,a1tol,L1targ,Ltol) )

ofile.write("# a2targ = %.2f, a2tol = %.2f, L2targ= %.6f, L2tol = %.6f \n" % (a2targ,atol,L2targ,Ltol) )

ofile.write("# a3targ = %.2f, a3tol = %.2f, L3targ= %.6f, L3tol = %.6f \n" % (a3targ,atol,L3targ,Ltol) )

# --- write one line per polarizer --- #

for n in range(ntrials) :

ofile.write(" %6.3f" % (1000.*dimension(rtarg,rtol)) ) # circ waveguide radius in mils

ofile.write(" %7.2f" % dimension(a1targ,a1tol) ) # angle of section 1 relative to input ref axis

ofile.write(" %5.3f" % (1000.*dimension(ftarg,ftol)) ) # facet depth of section 1, mils

ofile.write(" %6.2f" % (1000.*dimension(L1targ,Ltol)) ) # length of section 1, mils

ofile.write(" %7.2f" % dimension(a2targ,atol) ) # angle of section 2 relative to input section 1

ofile.write(" %5.3f" % (1000.*dimension(ftarg,ftol)) ) # facet depth of section 2, mils

ofile.write(" %6.2f" % (1000.*dimension(L2targ,Ltol)) ) # length of section 2, mils

ofile.write(" %7.2f" % dimension(a3targ,atol) ) # angle of section 3 relative to input section 2

ofile.write(" %5.3f" % (1000.*dimension(ftarg,ftol)) ) # facet depth of section 3, mils

ofile.write(" %6.2f" % (1000.*dimension(L3targ,Ltol)) ) # length of section 3, mils

ofile.write("\n")

ofile.close()

# ---------------------------------------------------------------------------------------------------------- #

# leakages of polarizers with fabrication tolerances

# ---------------------------------------------------------------------------------------------------------- #

def fig11() :

r = .0235

f = 0.003

L90 = length( r=r, f=f, dphi0=90., fGHz=230. )

L180 = 2. * L90

a1 = 15.

a2 = 59.5

gaussdim( ntrials=200, dimfile=’dim11a.dat’, rtarg=r, rtol=0.00010, ftarg=f, ftol=0.00010,

a1targ=a1, a1tol=0.2, L1targ=L180, Ltol=0.001, a2targ=a2, atol=0.2, L2targ=L90 )

gaussdim( ntrials=200, dimfile=’dim11b.dat’, rtarg=r, rtol=0.00015, ftarg=f, ftol=0.00015,

a1targ=a1, a1tol=0.2, L1targ=L180, Ltol=0.001, a2targ=a2, atol=0.2, L2targ=L90 )

gaussdim( ntrials=200, dimfile=’dim11c.dat’, rtarg=r, rtol=0.00020, ftarg=f, ftol=0.00020,
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a1targ=a1, a1tol=0.2, L1targ=L180, Ltol=0.001, a2targ=a2, atol=0.2, L2targ=L90 )

computeLeakage( ’dim11a.dat’, ’leak11a.dat’ )

computeLeakage( ’dim11b.dat’, ’leak11b.dat’ )

computeLeakage( ’dim11c.dat’, ’leak11c.dat’ )

f = 0.006

L90 = length( r=r, f=f, dphi0=90., fGHz=230. )

L180 = 2. * L90

gaussdim( ntrials=200, dimfile=’dim11d.dat’, rtarg=r, rtol=0.00010, ftarg=f, ftol=0.00010,

a1targ=a1, a1tol=0.2, L1targ=L180, Ltol=0.001, a2targ=a2, atol=0.2, L2targ=L90 )

gaussdim( ntrials=200, dimfile=’dim11e.dat’, rtarg=r, rtol=0.00015, ftarg=f, ftol=0.00015,

a1targ=a1, a1tol=0.2, L1targ=L180, Ltol=0.001, a2targ=a2, atol=0.2, L2targ=L90 )

gaussdim( ntrials=200, dimfile=’dim11f.dat’, rtarg=r, rtol=0.00020, ftarg=f, ftol=0.00020,

a1targ=a1, a1tol=0.2, L1targ=L180, Ltol=0.001, a2targ=a2, atol=0.2, L2targ=L90 )

computeLeakage( ’dim11d.dat’, ’leak11d.dat’ )

computeLeakage( ’dim11e.dat’, ’leak11e.dat’ ) # also used for fig 12a

computeLeakage( ’dim11f.dat’, ’leak11f.dat’ )

def fig12b() :

r = .0235

f = 0.006

L90 = length( r=r, f=f, dphi0=90., fGHz=230. )

L180 = 2. * L90

gaussdim( ntrials=200, dimfile=’dim12b.dat’, rtarg=r, rtol=0.00015, ftarg=f, ftol=0.00015,

a1targ=6.50, a1tol=0.2, L1targ=L180, Ltol=0.001, a2targ=28.07, atol=0.2, L2targ=L180,

a3targ=66.57, L3targ=L90)

computeLeakage( ’dim12b.dat’, ’leak12b.dat’ )

# ---------------------------------------------------------------------------------------------------------- #

# Fresnel formulae, transmission and reflection amplitude coeff, 1.5.2, eqn 20,21 (p. 40); for 1 surface

# ---------------------------------------------------------------------------------------------------------- #

def fresnel( n1, thetaI, n2, thetaT ) :

tpar = 2. * n1 * cos(thetaI) / (n2 * cos(thetaI) + n1 * cos(thetaT))

tperp = 2. * n1 * cos(thetaI) / (n1 * cos(thetaI) + n2 * cos(thetaT))

rpar = (n2 * cos(thetaI) - n1 * cos(thetaT)) / (n2 * cos(thetaI) + n1 * cos(thetaT))

rperp = (n1 * cos(thetaI) - n2 * cos(thetaT)) / (n1 * cos(thetaI) + n2 * cos(thetaT))

return [tpar, tperp, rpar, rperp]

# ---------------------------------------------------------------------------------------------------------- #

# compute transmission through beamsplitter ("pellicle") of thickness tpel (inches)

# angI is the angle of incidence (degrees), nn is the refractive index of the beamsplitter material

# default nn=1.83 is appropriate for PETP = Mylar (Lamb 1996, Int. J. IR MM Waves, 17, pp. 1997-2034)

# returns [tpar,tperp,Rpar,Rperp]

# tpar and tperp are the AMPLITUDE TRANSMISSION coefficients (complex numbers)

# Rpar and Rperp are the POWER REFLECTION coefficients (real numbers)

# equations referenced to Born & Wolf 1970, Principles of Optics, Fourth Ed. (Oxford: Pergamon Press).

# ---------------------------------------------------------------------------------------------------------- #

def pellicle( tpel=.001, angI=45, nn=1.83, fGHz=230. ) :

if (tpel == 0.00) : return [1.,1.,0.,0.]

thetaI = math.pi * angI / 180. # convert to radians

thetaT = math.asin((sin(thetaI))/nn) # Snell’s law, eqn 8 (p. 38)

[tpar,tperp,rpar,rperp] = fresnel( 1., thetaI, nn, thetaT ) # entering dielectric

[tprimepar,tprimeperp,rprimepar,rprimeperp] = fresnel( nn, thetaT, 1., thetaI ) # leaving dielectric

delta = 4. * math.pi * 2.54 * tpel * nn * cos(thetaT) / (clight/fGHz)

# phase shift of signal propagating once through the pellicle; eqn (1), p. 324

result = []

result.append(tpar*tprimepar/(1.-rpar*rpar*cmath.exp(1.j * delta)))

result.append(tperp*tprimeperp/(1.-rperp*rperp*cmath.exp(1.j * delta)))
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# amplitude transmission coefficient, eqn (11), p. 325

Fpar = 4.*rpar*rpar/pow((1. - rpar*rpar),2.)

Fperp = 4.*rperp*rperp/pow((1.-rperp*rperp),2.)

sinsq = pow( sin(delta/2.), 2. )

result.append( Fpar * sinsq/(1. + Fpar * sinsq) )

result.append( Fperp * sinsq/(1. + Fperp * sinsq) )

# power reflection coefficients, eqn (15,16) p. 327

return result

# --- beamsplitter reflectivity --- #

def fig18( outfile=’pelR.dat’ ) :

ofile = open( outfile, "w" )

ofile.write("# tpel Rpar35 Rperp35 Rpar45 Rperp45\n")

for tpel in arange(0.00002,.00202,.00002) :

[tpar,tperp,Rpar,Rperp] = pellicle( tpel=tpel, angI=35, fGHz=230.)

ofile.write("%7.5f %10.4f %10.4f" % (tpel, 10.*math.log10(Rpar), 10.*math.log10(Rperp)))

[tpar,tperp,Rpar,Rperp] = pellicle( tpel=tpel, angI=45, fGHz=230.)

ofile.write(" %10.4f %10.4f\n" % (10.*math.log10(Rpar), 10.*math.log10(Rperp)))

# --- leakages including degradation by beamsplitter --- #

def fig19() :

r = .0235

f = 0.006

L90 = length( r=r, f=f, dphi0=90., fGHz=230. )

L180 = 2. * L90

a1 = 15.

a2 = 59.5

dumpDimensions( ’nominal.dat’, r, a1, f, L180, a2, f, L90, 0., 0., 0. )

computeLeakage( ’nominal.dat’, ’bs-none.dat’, apel=0., tpel=0.000, aIpel=45. )

computeLeakage( ’nominal.dat’, ’bs-0-45-1mil.dat’, apel=0., tpel=0.001, aIpel=45. )

computeLeakage( ’nominal.dat’, ’bs-45-45-1mil.dat’, apel=45., tpel=0.001, aIpel=45. )

computeLeakage( ’nominal.dat’, ’bs-90-45-1mil.dat’, apel=90., tpel=0.001, aIpel=45. )

computeLeakage( ’dim11e.dat’, ’leak11e-0-45-1mil.dat’, apel=0., tpel=0.001, aIpel=45. )

computeLeakage( ’dim11e.dat’, ’leak11e-45-45-1mil.dat’, apel=45., tpel=0.001, aIpel=45. )

computeLeakage( ’dim11e.dat’, ’leak11e-90-45-1mil.dat’, apel=90., tpel=0.001, aIpel=45. )

# ---------------------------------------------------------------------------------------------------------- #

# compute leakage from HFSS simulation results

# normally the HFSS calculation launches an X-polarized signal, returns S21(X,Y)

# each infile line: f_GHz, S21(X:X)amp_dB, S21(X:X)phs_degr, S21(X:Y)amp_dB, S21(X:Y)phs_degr

# ---------------------------------------------------------------------------------------------------------- #

def HFSSleak( infile, leakfile ) :

infile = open( infile, "r" )

ofile = open( leakfile, "w")

for line in infile:

if line.startswith("#"):

ofile.write( line )

else:

a = line.split() # split line into string tokens

fGHz = float(a[0]) # frequency

ampX = math.sqrt(pow(10.,float(a[1])/10.)) # convert amp to VOLTAGE

phsX = math.pi * float(a[2]) / 180. # convert phs to RADIANS

ampY = math.sqrt(pow(10.,float(a[3])/10.))

phsY = math.pi * float(a[4]) / 180.

vec = array( [ (ampX*math.cos(phsX) + 1j*ampX*math.sin(phsX)),

(ampY*math.cos(phsY) + 1j*ampY*math.sin(phsY)) ] )

print vec, dot(vec,R), dot(vec,L)

Rleak = abs(dot(vec, R)) # amplitude of single complex number
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Lleak = abs(dot(vec, L))

ofile.write("%8.3f %8.3f %8.3f %8.3f %8.3f %10.5f %10.5f\n" %

(fGHz, ampX, float(a[2]), ampY, float(a[4]), Rleak, Lleak))

ofile.close()

# ---------------------------------------------------------------------------------------------------------- #

# analytic simulation of full polarizer including curved transitions

# ---------------------------------------------------------------------------------------------------------- #

def fig16( outfile=’fullsim1.dat’ ) :

ofile = open( outfile, "w")

for freq in arange(200.,271.,1.) :

v1 = Y

v2 = Jrot( v1, -15. )

[dx, ph] = dphitaper2 ( r=0.0235, f=0.006, Rc=0.125, fGHz=freq, nsteps=1000 )

phshift = 2.*ph + dphi( r=0.0235, f=0.006, L=0.1058, fGHz=freq )

v3 = Jdelay( v2, phshift )

v2 = Jrot( v3, -59.5 )

phshift = 2.*ph + dphi( r=0.0235, f=0.006, L=0.0302, fGHz=freq )

v3 = Jdelay( v2, phshift )

v2 = Jrot( v3, 74.5 )

vout = v2

Rleak = abs(dot(vout, R)) # amplitude of single complex number

Lleak = abs(dot(vout, L))

ofile.write("%6.1f %8.5f %8.5f\n" % (freq, Rleak, Lleak ) )

ofile.close()


