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ABSTRACT
Molecular-line observations of star-forming cloud cores indicate that they are not the Ñattened struc-

tures traditionally considered by theory. Rather, they are elongated, perhaps in the direction of their
internal magnetic Ðeld. We are thus motivated to consider the structure and evolution of axisymmetric,
magnetized clouds that start from a variety of initial states, both Ñattened (oblate) and elongated
(prolate). In this Ðrst contribution, the clouds are of Ðxed mass, and are surrounded by a Ðctitious
medium of zero density and Ðnite pressure. We devise a new technique, dubbed the q-method, that
allows us to construct magnetostatic equilibria of any speciÐed shape. The mass loading of the Ðeld lines
then follows from the self-consistent model solution, just the reverse of the standard procedure. We Ðnd,
in agreement with previous authors, that the Ðeld lines in oblate clouds bend inward. However, those in
prolate clouds bow outward, conÐning the structures through magnetic tension. We next follow the
quasi-static evolution of these clouds via ambipolar di†usion. An oblate cloud either relaxes to a mag-
netically force-free sphere or, if sufficiently massive, Ñattens along its polar axis as its central density runs
away. A prolate cloud always relaxes to a sphere of modest central density. We Ðnally consider the evol-
ution of an initially spherical cloud subject to the tidal gravity of neighboring bodies. Although the
structure constricts equatorially, it also shortens along the pole, so that it ultimately Ñattens on the way
to collapse. In summary, none of our initial states can evolve to the point of collapse while maintaining
an elongated shape. We speculate that this situation will change once we allow the cloud to gain mass
from its environment.
Subject headings : ISM: clouds È ISM: magnetic Ðelds È ISM: structure È MHD È stars : formation

1. INTRODUCTION

After two decades of intense observational e†ort, astron-
omers have learned much about the nature of the dense,
molecular cloud cores that form low-mass stars (see, e.g.,
Myers 1999). A typical core, with a mass of several solar
masses and a diameter of the order of 0.1 pc, has a central
density somewhat in excess of 104 cm~3 and a kinetic tem-
perature of about 10 K. Zeeman measurements, still only
marginally feasible at such densities, suggest magnetic Ðeld
strengths no larger than 30 kG (Crutcher 1999). These
Ðgures refer speciÐcally to dense cores in relatively sparse
environments, such as Taurus-Auriga. Those within regions
such as Orion, that form high-mass stars, appear to be more
massive and warmer, although the measurements here are
generally less precise because of the greater distances
involved (e.g., Jijina, Myers, & Adams 1999).

To see how a dense core evolves to form a star, one must
Ðrst have a physical understanding of its structure. A coreÏs
internal velocity dispersion, as gauged from the line widths
of tracer molecules such as and CS, depends on itsNH3mass. In low-mass cores, the dispersion is typically 0.2È0.4
km s~1, signiÐcantly lower than the background gas. This
range in dispersion matches that expected from the virial
theorem for objects of the appropriate mass and size. The
line proÐles, moreover, show only slight nonthermal
broadening (Myers & Benson 1983). Finally, the internal
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magnetic Ðeld strength is also consistent with the virial
expectation, and with approximate equipartition of thermal
and magnetic energies (Myers & Goodman 1988). These
facts together imply that the typical low-mass core is in
dynamical equilibrium, supported against self-gravity by a
combination of ordinary gas pressure and the Lorentz force
associated with a largely static magnetic Ðeld (McKee et al.
1993).

Theorists have long recognized that such a magnetostatic
structure evolves quasi-statically through ambipolar di†u-
sion, i.e., the relative drift of neutrals and ions (Mestel &
Spitzer 1956). As the conÐguration slips through the
ambient magnetic Ðeld, its central density gradually
increases to the point where rapid, protostellar collapse
begins (Nakano 1979). While this basic picture continues to
provide a framework for our conception of dense core evol-
ution, its quantitative implementation is not without prob-
lems. One important issue, and the focus of this paper,
concerns the three-dimensional shape of the objects.

Radio maps in a number of tracer lines show dense cores
to be distinctly nonspherical, whether they are in loose
associations (Benson & Myers 1989) or massive, turbulent
complexes (Harju, Walmsley, & Wouterloot 1993), and
whether they contain stars or not (Jijina et al. 1999). The
observed distribution of projected axial ratios is well
matched if the cores are intrinsically prolate structures, with
a random orientation of their long axes in the plane of the
sky (Myers et al. 1991 ; Ryden 1996). Theoretical models of
magnetostatic clouds, on the other hand, generally predict
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that they are oblate, Ñattened along the direction of the
background magnetic Ðeld (Mouschovias 1976b ; Tomi-
saka, Ikeuchi, & Nakamura 1988a). Under ambipolar di†u-
sion, the central region Ñattens even more as the central
density climbs (Tomisaka et al. 1990).

A useful step toward reconciling theory and observation
is to broaden the range of models and consider cores with a
variety of intrinsic shapes, including prolate conÐgurations.
This is the Ðrst task of the present study. The essential
reason why previous authors obtained Ñattened structures
is not difficult to see. In solving the equations for force
balance, one customarily speciÐes the amount of mass
loading each magnetic Ñux tube (Mouschovias 1976a).
Lacking any observational indication of this mass-to-Ñux
distribution, theorists have taken it from geometrically
simple reference states, such as uniform spheres or cylinders
threaded by a spatially constant Ðeld. Such conÐgurations,
however, are clearly not in force balance. If allowed to
evolve, they immediately collapse along the Ðeld until
dynamical equilibrium is restored (see, e.g., Fig. 2 of Fiedler
& Mouschovias 1993). The magnetostatic structures
resulting from such collapse are inevitably Ñattened, and
become more so during the subsequent phase of quasi-static
settling via ambipolar di†usion. This qualitative behavior is
unaltered by the presence of isotropic, subsonic turbulence
(see, e.g., the schematic treatment of Lizano & Shu 1989).

To remedy this situation, we break from tradition and
use the core shape itself as input, rather than the unknown
mass-to-Ñux distribution. That is, we solve the magneto-
static equations subject to the constraint that the gas pres-
sure falls to some uniform, ambient value along a speciÐed
boundary. The mass-to-Ñux distribution then results from
the self-consistent numerical solution. We use this tech-
nique, dubbed the ““ q-method,ÏÏ to construct a variety of
equilibria, with shapes ranging from oblate to prolate. We
further distinguish two classes of states, those that are spa-
tially isolated and those that are subject to the tidal gravita-
tional Ðeld of nearby cores. Study of the Ðrst class allows
ready comparison with previous authors, while the tidal
boundary condition approximates the observed situation
within Ðlamentary clouds, where neighboring cores are
typically separated by only 0.5È1.0 pc (e.g., L1495 in
Taurus ; Onishi et al. 1996).

Our next task is to follow the quasi-static evolution of
selected initial states through ambipolar di†usion. In this
paper, we assume each core to be of Ðxed total mass. That
is, we take the ambient pressure to arise from a Ðctitious
medium of negligible mass density and correspondingly
high temperature. Our numerical results Ðrst conÐrm that
isolated, oblate structures undergo signiÐcant central Ñat-
tening as their density rises steeply. Isolated, prolate struc-
tures experience no runaway increase in density, but instead
relax to spheres. Finally, an initially spherical, but tidally
stressed conÐguration does undergo central condensation,
but concurrently shrinks along the polar axis. In summary,
none of our states both evolves to a high central density and
maintains an elongated shape, as the observations seem to
demand.

Section 2 below details our numerical method for con-
structing magnetostatic equilibria with speciÐed shapes. In
° 3, we describe the physical properties of these equilibria.
Section 4 then presents numerical results for the quasi-static
evolution of a few representative models. Finally, ° 5 assess-
es our results in light of previous observational and theo-

retical work. We conclude by emphasizing the potential
value of relaxing the assumption of Ðxed core mass. In a
second paper, we will explore cloud evolution under these
more general circumstances.

2. FORMULATION OF THE PROBLEM

2.1. Governing Equations of Equilibrium
The theory of self-gravitating, magnetized cloud equi-

libria, Ðrst discussed by Mestel (1965) and Strittmatter
(1966), has been extended and reformulated by many
authorsÈnotably Mouschovias (1976a), Nakano (1979,
1984), and Tomisaka et al. (1988a). Here we brieÑy review
the basic equations, before passing on to a discussion of the
features unique to our method.

The governing equations are the condition of force
balance, PoissonÏs equation, and law:AmpèreÏs

[$P[ o$t] 1
c

j Â B \ 0 , (1)

+2t\ 4nGo , (2)

$ Â B \ 4n
c

j , (3)

where the chosen symbols are standard. Our adopted equa-
tion of state is that of an isothermal gas, P\ a2o, where a is
the constant sound speed. The ancillary relation

B \ $ Â A , (4)

where A is the magnetic vector potential, ensures that
$ Æ B \ 0 is satisÐed identically.

We adopt a cylindrical coordinate system (r, /, z) whose
origin lies at the cloud center ; see Figure 1. We assume axial
symmetry about the z-axis, and reÑection symmetry about
the plane z\ 0. Hence, only the quadrant r º 0, zº 0
needs to be considered explicitly. We assume that B is poloi-
dal, and hence A toroidal. We thus take A \ A(r, z)eü Õ.Alternatively, where ' is the scalarB \ [r~1eü Õ Â $',

FIG. 1.ÈComputational volume, forming the upper right quadrant of a
right circular cylinder of radius R, half-height Z. The cloud is an axisym-
metric structure with boundary centered on the origin, and embed-Zcl(r),ded in a region of zero density but Ðnite pressure. Magnetic Ðeld lines in
this Ðgure are indicated by solid lines.
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function deÐned by

'(r, z)4 rA(r, z) .

The quantity ' is invariant along each magnetic surface :
B Æ $'\ 0. Since it is proportional to the usual magnetic
Ñux i.e., we refer to ' loosely as the'

B
, '\'

B
/2n,

““ magnetic Ñux,ÏÏ and use it to label Ðeld lines.
It is convenient to resolve the forces in equation (1) both

along and across Ðeld lines. Following Dungey (1953) and
Mouschovias (1976a), we introduce the scalar function

q 4 P exp (t/a2)\ a2o exp (t/a2) . (5)

Equation (1) can be rewritten in terms of ' and q as

j$'\ cr exp ([t/a2)$q , (6)

where we have noted that While q depends on bothj \ jeü Õ.r and z, its real utility comes from the fact that it is a
function of ' alone. That is, it follows from equation (6) and
B Æ $'\ 0 that B Æ $q \ 0. This property represents force
balance in the direction parallel to B. Since q \ q('), we can
use equation (6) to express force balance perpendicular to
the Ðeld as

j
cr

exp (t/a2)\ dq(')
d'

. (7)

Using equations (4) and (7), equation (3) becomes

L
Lr
C1
r

L
Lr

(rA)
D

] L2A
Lz2 \

4
5
6

0
0
[4nr exp

A
[

t
a2
B dq(')

d'
interior ,

0 exterior ,
(8)

where the terms ““ interior ÏÏ and ““ exterior ÏÏ refer to the
regions inside and outside the cloud, respectively. As in
previous studies, the cloud exterior is assumed to be com-
posed of a hot and tenuous gas that has no dynamical e†ect
except to exert a Ðnite pressure, on the cloud boundary.P0,The exterior region is itself bounded by a cylinder of radius
R and half-height Z (see Fig. 1). It is on this cylindrical
surface that we apply our boundary conditions (see ° 2.2).

Equation (8) is to be solved throughout the entire
volume, simultaneously with PoissonÏs equation (2),

1

r
L
Lr
A
r

Lt
Lr
B

]
L2t
Lz2

\
4
5
6

0
0

4nG
a2

q(') exp
A
[

t
a2
B

interior ,

0 exterior ,
(9)

where we have made use of equation (5) on the right-hand
side of the interior equation. Solving the equations in this
form guarantees that the relevant continuity conditions for
the gravitational and magnetic Ðelds across the cloud
surface are satisÐed (Mouschovias 1976a).

2.2. Boundary Conditions
The boundary conditions are applied along the cylin-

drical surface bounding the exterior zero-density region.
The boundary condition on A is that the magnetic Ðeld
approach a uniform background value, at theB\ B=,
boundary. That is,

A\

4

5

6

0
0

B= r
2

at z\ Z ,

B= R
2

at r \ R .
(10)

We consider two types of boundary condition on the poten-
tial t, reÑecting di†erent assumptions regarding the exter-
nal medium.

1. Point-Mass, or ““ Isolated,ÏÏ Boundary Condition.ÈThis
boundary condition has been adopted in most previous
studies. It asserts that t in the exterior region far from the
cloud is indistinguishable from that of a point particle of the
same mass :

t(r, z) \ [GM
(r2] z2)1@2 at r \ R and/or z\ Z , (11)

where M is the mass of the cloud. In practice, we have used
and when applying this boundary condi-R\ 2R0 Z\ 2Z0tion. Here and are, respectively, the radial and verti-R0 Z0cal extent of the cloud. Calculations employing larger

cylinders give essentially identical results.
2. Periodic, or ““ T idal,ÏÏ Boundary Condition.ÈThis

boundary condition dictates that the gravitational force
vanish along some surface at a Ðnite distance from the
cloud, as is appropriate when surrounding matter is present.
We take these surfaces to be the top and bottom of our
cylindrical outer boundary (e.g., Fiedler & Mouschovias
1992). The conditions on the potential then become

Lt
Lz

\ 0 at z\ Z ,

t\ const at r \ R . (12)

Note that the Ðrst condition holds if the cloud of interest is
one of an inÐnite chain, with a spacing of 2Z. The constancy
of the potential at r \ R simulates the presence of a larger
background Ðlament.2

Finally, the assumed reÑection symmetry about z\ 0
implies that

Lt
Lz

\ 0 ,
LA
Lz

\ 0 at z\ 0 ,

while the vanishing of the radial gravitational force and the
lack of magnetic sources along the z-axis imply

Lt
Lr

\ 0 , A(0, z) \ 0 at r \ 0 .

2.3. Construction of Initial States : T he q-Method
Consider a single magnetic Ñux tube penetrating the

cloud, containing mass dm and Ñux d'. The former is given

2 Our periodic boundary condition di†ers from that used by Lizano &
Shu (1989), in that the latter authors took the gravitational potential to be
constant on a speciÐed locus corresponding to a chain of point masses.
Moreover, they forced B to equal a uniform background value on that
surface.
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by (Mouschovias 1976a)

dm(')\ 2
P
0

Zcl(r)
dz
P
r(',z)

r('`d',z)
2nro(r, z)dr ,

where describes the boundary shape (Fig. 1). Chang-Zcl(r)ing variables from r to ', we have dr \ d'(Lr/L'), so that a
trivial integration over ' yields the cloudÏs mass-to-Ñux
distribution,

dm
d'

\ 4n
a2 q(')

P
0

Zcl(')
r(', z)

Lr(', z)
L'

exp
C
[ t(', z)

a2
D
dz ,

(13)

where we have substituted for o from equation (5). Here
m(') is the total mass contained within a given
(axisymmetric) surface of constant magnetic Ñux ' :

m(')\
P
0

' dm(')
d'

d' . (14)

Denoting the total Ñux enclosed in the cloud by '04
the total mass is then'(R0), M 4m('0).The customary procedure for obtaining magnetostatic

equilibria is to solve equation (13) for q, obtaining

q(')\ (a2/4n)[dm(')/d']
/0Zcl(') r(', z)(Lr/L') exp M[[t(', z)]/a2Ndz

. (15)

This expression is then used in the right-hand sides of equa-
tions (8) and (9). Note that all quantities on the right-hand
side of equation (15) are determined iteratively in a numeri-
cal scheme, except dm/d', which is speciÐed a priori (° 1).

As noted in ° 1, we invert the customary procedure when
constructing our initial states. We do not specify a priori
dm/d' within the cloud ; instead, the latter is a result of the
magnetostatic calculation. Our method is to specify the
shape of the cloud boundary, On the boundary, theZcl(r).pressure is a known constant, while the potential,P0 t04

is obtained through concurrent solution oft[Zcl(r)],PoissonÏs equation. From the deÐnition of q, equation (5),
this quantity is therefore determined everywhere within the
cloud by

q(')\ P0 exp ([t0/a2) , (16)

where is known along each Ñux tube. With successivet0iterations, estimates of q, t, and A improve, until con-
vergence is achieved. (For convergence criteria and other
numerical details, see the Appendix.) Hereafter, we refer to
this technique as the ““ q-method.ÏÏ We revert to the custom-
ary, or ““ free-boundary,ÏÏ method when constructing equi-
libria that have evolved from the initial state.

2.4. Quasi-static Evolution
At typical molecular densities of 103È105 cm~3, the cloud

can remain in equilibrium with a frozen Ðeld for roughly
106 yr. Over longer periods, however, self-gravity causes the
neutral species to drift inward relative to the ions, which are
tied to the magnetic Ðeld lines (Mestel & Spitzer 1956). The
drift velocity of neutrals with respect to ions, (no¿

d
4 ¿ [ ¿

isubscript indicating neutrals), depends both on the cloudÏs
level of ionization and on the amount of collisional drag
between neutrals and ions. At the low density contrasts
characterizing our equilibria so that the oo ¿ o> a, D¿/Dt
term normally appearing on the right-hand side of the
equation of motion (eq. [1]) can safely be ignored. We are
thus describing the ““ quasi-static ÏÏ phase of evolution

(Nakano 1984), during which the cloud slowly progresses
along a sequence of exact, magnetostatic equilibria. As the
cloud evolves, it becomes more centrally condensed, and
gravity becomes relatively more important than magnetic
forces near the cloud center. Once the neutral velocities
there approach the sound speed, the quasi-static approx-
imation breaks down, and the cloud undergoes essentially
hydrodynamic collapse (e.g., Fiedler & Mouschovias 1993).
In this paper, we follow the quasi-static phase only, while
also keeping track of the neutral velocities during the evolu-
tion.

The drift speed is given by

¿
d
4 ¿ [ ¿

i
\ [ q

i
o
i
($ Â B) Â B (17)

\ [(cC)~1o~3@2 dq
d'

exp
A
[ t

a2
B
$' , (18)

where we have chosen the opposite sign convention to
Nakano (1979), who gave an equivalent expression for the
magnetic Ðeld (or ion) drift. Here is the dampingq

i
\ (co)~1

time of ions relative to neutrals, is the mass density of theo
iions, and c\ 4.28] 1013 cm3 g~1 s~1 is the frictional drag

coefficient (Nakano 1979). In the second step, we have made
use of equations (3) and (7), and have assumed o

i
\Co1@2,

where C\ 4.46] 10~16 g1@2 cm~3@2 (Nakano 1979 ;
Elmegreen 1979). This expression for assumes that ion-o

iization from cosmic rays balances recombination. We
ignore negatively charged grains, since their e†ect is small
for the typical neutral gas densities we consider in this paper
(n > 107 cm~3). For a poloidal magnetic Ðeld that decreases
outward in the cloud, both dq/d' and L'/Lr are positive, so

indicating inward drift of the neutrals (note thatv
d,r \ 0,

during most of the quasi-static phase). Theo v
d,z o> o v

d,r oneutral velocity, is calculated using the prescription of¿,
Lizano & Shu (1989).3 The qualitative behavior of both ¿

dand is shown in Figure 2.¿
Neutral-ion drift leads to a redistribution of mass with

magnetic Ñux in the cloud. More precisely, the time rate of
change of the mass contained within a given (axisymmetric)
surface of constant magnetic Ñux ' is

Lm(', t)
Lt

\ [
P
'
o¿

d
Æ dS , (19)

where the surface integration is performed along the entire
Ñux tube '\ const (Fig. 2), and where the deÐnition (eq.
[14]) of the mass function has been extended to the quasi-
static case, i.e., m\ m(', t). Since dS points outward by
deÐnition, generally opposite to the direction of Lm/Lt is¿

d
,

usually positive for all It then follows that is'\'0. '0usually a decreasing function of time, i.e., the cloud as a
whole loses Ñux. In the present coordinates, equations (18)
and (19) combine to give

L
Lt

[m(', t)]\ 4n
cC

dq
d'
P
0

Zcl(')
o~1@2 exp

A
[ t

a2
B

]r
L'
Lr
C
1 ]

ALr
Lz
B
'

2D
dz . (20)

3 Note, however, that Lizano & Shu (1989) used values of c and C that
result in drift velocities 80% larger than those found in Tomisaka et al.
(1990) and the present paper. Their evolutionary timescales are corre-
spondingly shorter.
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FIG. 2.ÈPhysics of ambipolar di†usion. A portion of the cloud, of mass
*m, is enclosed between two Ñux tubes, as shown. Over time, the neutral
particles drift inward relative to the Ðeld with a velocity This drift¿

d
.

velocity di†ers from that of the neutrals in an inertial reference frame.¿,

The quantity Lm/Lt vanishes at both '\ 0 and At'\'0.each time step *t, one can adjust the mass-to-Ñux distribu-
tion as

Lm
L'

(', t ] *t)\ Lm
L'

(', t)] *t
L

L'
CLm

Lt
(', t)

D
. (21)

Given dm/d' at the next time step, q(', t ] *t) can be cal-
culated from equation (15). Recall that is known(dm/d')

t/0from the initial state, constructed via the q-method (eq.
[13]). During the subsequent evolution the boundary shape
is allowed to vary, with the solution at all times obeying the
same boundary conditions as in the magnetostatic case.
Equation (15) is therefore used to calculate q(') during the
quasi-static phase of the calculation, and the new equi-
librium is constructed via the free-boundary method. Here,
the boundary location is calculated by Ðnding theZcl(')
locus of points where o(', z)\o0 \P0/a2.

2.5. Nondimensionalization and Free Parameters
2.5.1. Magnetostatic Equations

We nondimensionalize our equations with respect to the
sound speed a, cloud boundary density and backgroundo0,magnetic Ðeld From these, we construct the followingB=.
dimensionless quantities for the remaining variables :

r@ \ r(4nGo0)1@2/a , z@ \ z(4nGo0)1@2/a ,

t@\ t/a2 , A@ \ A(4nGo0)1@2/aB= ,

'@\ '(4nGo0)/a2B= , q@\ q/a2o0 ,

M@\ M(4nGo0)3@2/a3o0 , t@\ t(4nGo0)1@2 .

Observations suggest that the typical cloud core tem-
perature is T ^ 10 K (Jijina et al. 1999), while a typical
number density outside cores is cm~3nH2

D 103
(Nercessian et al. 1988). Using witha \ (kB T /k)1@2 k \

one then Ðnds that r@\ 1 corresponds to a dimen-2.33mH,

sional length of pc. Similarly, M@\ 1 corre-L 0\ 0.11
sponds to and t@\ 1 to yr.M0\ 0.070 M

_
, t0\ 5.5] 105

With these deÐnitions, the dimensionless forms of the
fundamental equations (8) and (9) are

L
Lr@
C1

r@
L
Lr@

(r@A@)
D
]

L2A@
Lz@2

\
4
5
6

0
0
[

r@
2a

exp ([t@)
dq@
d'@

interior ,

0 exterior ,
(22)

1

r@
L
Lr@
A
r@

Lt@
Lr@
B
]

L2t@
Lz@2

\4
5
6
0
0
q@ exp ([t@) interior ,
0 exterior .

(23)

The dimensionless parameter a appearing on the right-hand
side of equation (22) is deÐned in terms of Ðducial quantities
by

a 4
B=2 /8n
a2o0

.

That is, a is the ratio of magnetic pressure far from the cloud
to gas pressure at the cloud surface.

2.5.2. Quasi-static Evolution Equations

The dimensionless forms of equations (18) and (20) are

¿
d
@ \ [C1 o@~3@2 dq@

d'@
exp ([t@)($')@ (24)

and

Lm@
Lt@

\ C2
dq@
d'@

P
0

Zcl@
('@)o@~1@2

]exp ([t@)r@
L'@
Lr@
C
1 ]

ALr@
Lz@
B
'{

2 D
dz@ , (25)

where the numerical coefficients on the right-hand sides of
equations (24) and (25) are deÐned in terms of dimensional
quantities by andC14 (4nG)1@2/cC\ 0.0480 C24 4nC1\
0.603, respectively.

The point-mass boundary condition (eq. [11]), in dimen-
sionless form, becomes

t@ \ [M@
4n(r@2] z@2)1@2 at r@\ R@ and/or z@ \ Z@ . (26)

The remaining boundary conditions are just the primed
forms of those in ° 2.2, upon making the replacement
B=\ 1.

2.5.3. Free Parameters and Functions

To construct equilibria under the point-mass boundary
condition, we need to specify one parameter, a, and one
function, the cloud shape, Measurements of magneticZcl(r).Ðeld strengths in low-mass star-forming regions (mostly
upper limits) suggest a mean of roughly 20 kG (Crutcher
1999), corresponding to a \ 11. Given the uncertainty in
the Ðeld measurements, we have performed calculations for
a \ 1 and a \ 10.

We constructed both spherical clouds and oblate/prolate
ellipsoidal clouds with shapes given by

Zcl@ (r@) \Z0@
R0@

(R0@2[ r@2)1@2 , (27)

where and are the principal axes of the ellip-R0@ Z0@ \ Zcl@ (0)
soid. In the oblate and prolate cases, the cloudÏs axial ratio
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was Ðxed at 1/2 and 2, respectively. These Ðgures areZ0@ /R0@in accord with the most likely intrinsic mean value derived
from observations (Myers et al. 1991 ; Ryden 1996). As we
describe below in ° 3, equilibrium sequences were con-
structed by considering a range of sizes R0@ .Finally, under the periodic boundary condition, we need
to specify the additional parameter 2Z, the intercore
spacing. For the typical spacings in Taurus discussed in ° 1,
i.e., pc, we have We adopt0.50[ 2Z[ 1.0 2.3[Z@[ 4.5.
the value Z@\ 2.9, corresponding to a dimensional spacing
of 2Z\ 0.65 pc. We also Ðx the extent of the computational
volume in the r-direction at R@ \ 2R0@ .

3. INITIAL STATES

In this section, we present the entire set of equilibria
obtained using the q-method (° 2.3). We refer to them as
““ initial ÏÏ states, since we are later concerned with their
quasi-static evolution via ambipolar di†usion.

3.1. Calculation of Equilibrium Sequences
For a given cloud shape and boundary condition (point-

mass or periodic), a sequence of states is obtained, each
member of which is uniquely speciÐed by its center-to-
surface density contrast (Hereafter we use only non-o

c
.

dimensional quantities, omitting the primes, unless other-
wise speciÐed.) As increases, and M Ðrst rise too

c
R0maximum values, and respectively. BothR0,max Mmax,quantities then decline. For much larger than covered ino

cthis study, and M should undergo damped, oscillatoryR0behavior, as found in the sequence of isothermal spheres
(Chandrasekhar 1939).

For the portion of each sequence, we used thelow-o
cradius as an input parameter for the models. That is, weR0speciÐed the cloud shape and then used the q-method to

Ðnd both and the internal structure of each model. Ato
cthis stage, convergence was not overly sensitive to the initial

guesses for the gravitational and magnetic Ðelds. In prac-
tice, t(r, z)\ 0 and A(r, z)\ r/2 proved satisfactory initial
guesses, where the latter corresponds to a uniform magnetic
Ðeld set to the background value.

In each sequence, the equatorial and polar radius always
peaked well before the cloud mass. This feature is familiar
from the sequence of isothermal, nonmagnetic (Bonnor-
Ebert) spheres, for which andR0,max\ 1.822 Mmax4in our units. In general, one cannot proceed toMBE \ 52.66
models with higher than that with by specifyingo

c
R0,maxthe cloud shape. This is because along this portion of the

sequence, each radius may correspond to moreR0\ R0,maxthan one and internal structure. We thereforeo
c
-value

modiÐed the procedure, with the technique depending on
the particular sequence (see below). Proceeding in the
appropriate manner to larger one eventually surpasseso

c
,

the mass peak of the sequence, Since this peak sig-Mmax.niÐes, at least roughly, the transition to dynamically
unstable clouds (° 3.4), we halted the search for equilibria
soon thereafter.

3.2. Isolated Clouds
3.2.1. Force-Free States

In the absence of a magnetic Ðeld and under the point-
mass boundary condition, all equilibria are perfect spheres.
Such isolated conÐgurations bounded by a constant
surface pressure were Ðrst studied by Ebert (1955)
and Bonnor (1956). The addition of a magnetic Ðeld

satisfying our prescribed boundary conditions (eq. [10])
does not change this situation ; i.e., each sphere is still an
exact, equilibrium state. This is because a uniform, parallel
Ðeld at the background value exerts no internal forces.
Thus, isolated, spherical clouds should be magnetically
force-free states.

As a Ðrst test of the q-method, we used it to construct the
spherical sequence. For initial guesses of t(r,R0\R0,max,z) \ 0, A(r, z) \ r/2 led quickly to convergence. For the
higher models beyond the radius peak, we again choseo

cA(r, z) \ r/2 and used the exact, nonmagnetic solutions
with higher as initial guesses for t. Members of theo

cresulting sequence all contained uniform Ðelds. For
example, we found that 0) o never di†ered frac-B

c
4o B(0,

tionally from unity (i.e., the background value) by more
than 2 ] 10~2. We also checked that the density proÐle of
each conÐguration matched that of its nonmagnetic, iso-
thermal counterpart having the same central density o

c
.

Thus, spherical clouds under the point-mass boundary con-
dition are indeed members of the Bonnor-Ebert sequence.

3.2.2. Oblate Equilibria

More general, nonspherical conÐgurations with shapes
given by equation (27) require magnetic support. To o†set
the weight of the extra mass in the equatorial region, an
oblate cloud has a Ðeld that rises inward, i.e., forLB

z
/Lr \ 0

all r and z. We used the q-method to construct a number of
states with axial ratio Our purpose wasZ0/R0\ 1/2.
mainly to compare results with those of previous authors
who employed the point-mass boundary condition
(Mouschovias 1976a, 1976b ; Tomisaka et al. 1988a, 1988b).

Figure 3a shows a representative equilibrium with
a \ 10. As expected, the Ðeld lines have a modest inward
bending toward the polar axis. The horizontal arrows in the
Ðgure represent the drift velocities in this initial state, and
show the instantaneous pattern of mass redistribution in
the cloud. All of these velocities point inward. The peak
drift speed, occurs at the cloud equator (i.e.,v

d,max \ 0.033,
z\ 0), where the magnitude of the current also hasr \R0,a maximum.

Figure 3b displays the mass-to-Ñux distribution dm/d' as
a function of the magnetic Ñux '. Because the density rises
substantially toward the center, dm/d' peaks toward the
axis ('\ 0). We note again that previous authors speciÐed
this function ab initio. For example, Tomisaka et al. (1988a)
used the dm/d' from a uniform-density sphere threaded by
a constant magnetic Ðeld. This dm/d' also rises inward, but
lacks the sharp central peak seen in our model. The
resulting cloud is oblate, but more ““ boxy ÏÏ in appearance
than ours. (See Fig. 2d of Tomisaka et al. 1988a.)

In constructing the entire sequence of oblate equilibria, it
is necessary to include states with higher central density
than that at the radius peak (° 3.1). To Ðnd theseR0,maxhigher states, we proceeded as follows. Taking a pre-o

cviously converged state with we Ðrst increasedR0\ R0,max,dm/d' by a small, Ðxed amount at every '. This altered
dm/d' was then used in the free-boundary method (° 2.3) to
converge a new state. The resulting equilibrium, which was
only roughly ellipsoidal, had the same total Ñux as the'0original cloud, but a slightly larger mass and central
density. Now, using this state as an initial guess, its dm/d'
was increased again, resulting in a cloud of still higher mass
and central density. The exercise was repeated several times,
until signiÐcantly exceeded that of the last state con-o

c
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FIG. 3.È(a) Oblate initial state with a \ 10. Solid curves are isodensity contours and dotted curves are magnetic Ðeld lines. The heavy solid curve is the
cloud boundary, which has an axial ratio of 1/2. Arrows indicate drift velocities, The dimensions of the computational volume areZ0/R0 ¿

d
\¿[ ¿

i
.

R\ 5.52, Z\ 2.76. (b) Mass-to-Ñux distribution as a function of magnetic Ñux ' for the same cloud.

verged via the q-method. This high-density, roughly ellip-
soidal model then served as an initial guess for the
construction, now via the q-method, of a truly ellipsoidal
state lying well past the radius peak. In a typical case, the
highest density guesses constructed in this manner sufficed
to converge equilibria that lie not only beyond butR0,max,beyond as well.MmaxFigure 4 displays the masses of our oblate clouds as a
function of their central density, for a-values of 1 and 10.
Note that in these and all subsequent equilibrium

FIG. 4.ÈMass as a function of density contrast (solid curves) for iso-
lated, 2 :1 oblate equilibria. Results for both values of a are displayed. The
corresponding force-free sequence of spherical (Bonnor-Ebert) equilibria is
also shown (dotted curve).

sequences, the total Ñux threading the cloud is not Ðxed a
priori, but varies continuously along the sequence. The
dotted curve shows, for comparison, the equivalent plot for
the spherical, force-free states. It is evident that the mass of
any oblate conÐguration is signiÐcantly greater than that of
a force-free state with the same central density. For
example, the a \ 10 sequence has a peak mass of M \ 93.3,
attained at This mass is 1.77 times the corre-o

c
\ 10.6.

sponding spherical value, which occurs at Noteo
c
\ 14.0.

that while the central density corresponding to the peak
mass is certainly smaller than in the spherical case, the
broadness of the peak and Ðnite sampling of the numerical
calculations prevent an accurate determination of by theo

cpresent method ; our estimate may be in error by as much as
5%È10%.

The increased mass of oblate conÐgurations has been
noted by other authors (beginning with Mouschovias
1976b), and is readily understood. As Figure 3a indicates,
the actual bending of the magnetic Ðeld is relatively slight in
all our models. Hence, force balance in the vertical direction
involves mainly gravity and thermal pressure. Suppose now
that we envision building up an oblate cloud by adding
mass equatorially to an initially spherical conÐguration.
Then which is largely determined by the weight of theo

c
,

central column, rises only slightly even for signiÐcant mass
addition. By the same token, it is clear that conÐgurations
even more oblate than ours will have correspondingly
higher masses at any central density.4

One feature of the oblate models that may appear some-
what surprising is that their masses are insensitive to the
background magnetic Ðeld strength, as parameterized by a.
This is again a consequence of the relatively minor role
played by the magnetic Ðeld in the vertical equilibrium.

4 Any extra mechanical support beyond thermal pressure will allow
higher cloud masses. For the mass increase due to rotation, see Figure 9 of
Stahler (1983) and Figure 9 of Kiguchi et al. (1987).
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FIG. 5.ÈTop : Polar radius vs. density contrast for the oblate 2 :1
sequence (solid curves). The corresponding force-free sequence is also
shown (dotted curve). Bottom : Central magnetic Ðeld vs. density contrast,
along the same sequences.

When the vertical magnetic force is small, the polar radius is
set almost entirely by as can be seen in the top panel ofo

c
,

Figure 5. This property, coupled with the fact that the cloud
shapes are constrained to be identical, means that two
clouds of the same must have nearly identical masses,o

cwhatever their values of a.
The above results imply that it is the shape of a cloud, not

the strength of the magnetic Ðeld threading it, that deter-
mines the maximum equilibrium mass. However, the degree

of Ðeld line bending in a particular state does depend on the
background Ðeld, as well as on the cloud shape. We
remarked earlier that the extra equatorial mass in oblate
clouds creates an additional gravitational force in the radial
direction. In response, the magnetic Ðeld bends inward,
until the associated tension helps o†set this force. The
bottom panel of Figure 5 quantiÐes the situation by plot-
ting the central Ðeld value as a function of For a \ 1,B

c
o
c
.

rises substantially, reÑecting the increased Ðeld lineB
cbending in higher mass clouds. This rise is much less for

a \ 10, where the stronger Ðeld resists the equatorial
gravity more e†ectively.

3.2.3. Prolate Equilibria

We next consider clouds that are prolate ellipsoids, with
their long axes parallel to the background magnetic Ðeld.
Imagine creating such an object by shaving o† equatorial
mass from an initially spherical conÐguration. By our pre-
vious reasoning, this change would only marginally a†ect
the central density. Thus, a prolate cloud is less massive
than a spherical one with the same In addition, theo

c
.

pressure gradient is higher in the radial direction than along
the pole. Since the equatorial gravity is now insufficient to
o†set this extra force, the magnetic Ðeld bends outward,
creating inward tension. The central Ðeld is reduced fromB

cthe background value, and is positive. In this sense,LB
z
/Lr

isolated, prolate clouds are magnetically conÐned.
Using the q-method, we constructed sequences of prolate

clouds with axial ratio A representative stateZ0/R0\ 2.
from the a \ 1.5 sequence is shown in Figure 6a. The
outward bowing of the Ðeld lines is evident, and is particu-
larly strong near the center. Here the Ðeld attains its
minimum value, less than 10% of the background. The
Ðgure also shows the drift velocities associated with ambi-
polar di†usion. These now point outward, reÑecting the new
Ðeld curvature. The maximum drift speed, here equal to 0.3,
occurs at the cloud equator. We were not able to obtain

FIG. 6.È(a) Isolated, 2 :1 prolate equilibrium cloud with a \ 1.5. The magnetic Ðeld strength at the origin, is about 10% of its asymptotic value. Here,B
c
,

the drift speeds point outward at all points in the cloud. The maximum drift speed, is 30% of the sound speed. The dimensions of the computationalv
d,max,volume are R\ 2.24, Z\ 4.47. (b) Mass-to-Ñux function of the cloud in (a).
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equilibria with lower values of a, most likely due to the very
large gradient of B at the origin as approaches zero.B

cNote that because is a signiÐcant fraction of thev
d,maxsound speed in these low-a states, our basic assumption of

quasi-static equilibrium begins to fail. We revisit this issue
in ° 4, when we attempt to follow explicitly the temporal
evolution of prolate conÐgurations.

Figure 6b shows the mass-to-Ñux distribution in the
cloud discussed above. Comparing with the analogous
Figure 3b for an oblate state, we see Ðrst that the maximum
Ñux is considerably smaller. This reduction is a conse-'0quence of the prolate cloudÏs smaller cross section in the
equatorial plane. We also see that dm/d' climbs much more
steeply toward the central axis, a result of both the
increased column of gas near the pole and the reduced Ñux
in that region.

We display the cloud mass M as a function of for theo
ca \ 1.5 and a \ 10 sequences in Figure 7. As in the oblate

case, the curves are rather insensitive to a. However, the
deÐcit in equatorial mass now implies that M is signiÐcantly
less than the force-free value at every SpeciÐcally, theo

c
.

mass is always below the Bonnor-Ebert value. The a\10
curve has the usual broad peak, now centered at M \ 37.8,

This mass is 0.72 times the correspondingo
c
\ 14.9.

maximum in the spherical sequence. For a \ 1.5, however,
the central Ðeld becomes so small that we were unable to
construct models for beyond 15.5. Prolate clouds thuso

chave a maximum mass set by the background Ðeld strength,
if the latter is sufficiently low.

The top panel in Figure 8 shows the polar radii of all our
conÐgurations, again as a function of The insensitivityo

c
.

with respect to a is apparent, and demonstrates once more
the minor role of the magnetic Ðeld in vertical force balance.
The polar radii are now uniformly greater than their force-
free counterparts. Finally, the bottom panel of Figure 8
shows in detail how the central Ðeld diminishes as the Ðeld
lines bow outward. This curvature, and hence the drop in

FIG. 7.ÈSame as Fig. 4, but for the sequence of 2 :1 prolate equilibria
(solid curve). The dotted curve shows the sequence of force-free (spherical)
equilibria.

FIG. 8.ÈTop : Polar radius vs. density contrast for the prolate 2 :1
sequence (solid curves). The corresponding force-free sequence is also
shown (dotted curve). Bottom : Central magnetic Ðeld vs. density contrast,
along the same sequences.

is relatively small for a \ 10. On the other hand,B
c
, B

crapidly falls toward zero in the a \ 1.5 case, where the cur-
vature is much more pronounced.

3.3. T idally Stressed Clouds
3.3.1. Force-Free States

Under the periodic boundary condition, magnetically
force-free conÐgurations are no longer spherical. Our stipu-
lation that Lt/Lz vanish at z\ ^Z accounts for the gravi-
tational inÑuence of an external mass distribution located
above and below the cloud of interest. The corresponding
tidal force distorts the cloud vertically, i.e., in the direction
of the uniform magnetic Ðeld. The resulting equilibria are
mildly prolate, although not perfectly ellipsoidal. At Ðxed Z
and R (the dimensions of the bounding cylindrical surface),
there is a unique sequence parametrized again by Theo

c
.

cloud axial ratio now varies along this sequence.
Figure 9 shows isodensity contours for three equilibria in

a representative sequence. Here we have chosen Z\ 2.9
and R\ 10, following the discussion of ° 2.5.3. The clouds
are nearly spherical at low as shown in the Ðrst panel.o

c
,

They become maximally distorted when the cloudÏs polar
axis peaks. The central panel of Figure 9 shows thisZ0pivotal conÐguration, at which has reached 2.39,Z0and At higher central density, theZ0/R0\ 1.43, o

c
\ 3.9.

polar axis shrinks and the cloud becomes more spherical
again. The third panel is an example of such a high-density
state.

If we view the cloud as one in a periodic chain, then the
value of Z represents half of the intercloud spacing. It is
hardly surprising, then, that the character of our force-free
sequences is sensitive to Z. The choice of Z\ 2.9, as we
have seen, results in a sequence for which the maximum Z0is close to Z itself. For larger Z, the clouds are less tidally
distorted. For and sufficiently large the upperZ[ 2.8 o

c
,

and lower boundaries of the cloud penetrate the cylindrical
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FIG. 9.ÈForce-free equilibria under the tidal boundary condition. The dimensions of the computational volume are R\ 10.0, Z\ 2.9. (a) Low-density
cloud with (b) Maximally distorted cloud with (c) High-density cloud witho

c
\ 1.5. o

c
\ 3.9. o

c
\ 100.

boundary, i.e., the individual clouds in the chain partially
coalesce. Note that our results are much less sensitive to the
value of R, at least beyond some minimum. For the Z\ 2.9
case, for example, we found that raising R to 20 had a
negligible e†ect on our models. Interestingly, the masses of
the clouds in the force-free, tidal sequence do not di†er
signiÐcantly from their counterparts of the same central
density in the Bonnor-Ebert sequence ; the agreement is
better than 1% throughout the range of examined.o

c
3.3.2. Spherical Equilibria

The properties of tidally stressed clouds of various shapes
can be deduced from their relation to the force-free states.
Thus, consider a true prolate ellipsoid with a higher aspect
ratio than the mildly elongated, force-free state of theZ0/R0

same The ellipsoidal conÐguration experiences lesso
c
.

gravitational force toward its axis, and so has an internal
magnetic Ðeld that bows outward. Its structure will be qual-
itatively similar to that of the prolate clouds studied in
° 3.2.3. By analogy, a highly oblate cloud has Ðeld lines that
bow inward, again like its isolated counterpart.

An interesting di†erence arises, however, when we study
spherical clouds. These are no longer force-free. In fact, their
aspect ratio is less than that of the corresponding force-free
states. Their Ðeld lines thus bend inward, and LB

z
/Lr \ 0.

During ambipolar di†usion, the drift velocities point
toward the symmetry axis, leading to states of higher
central density. We are thus motivated to study these
objects further. Historically, various authors have con-
sidered spherical, magnetized clouds as a convenient ideal-
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FIG. 10.È(a) Tidally stressed, spherical equilibrium cloud with a \ 10. The dimensions of the computational volume are R\ 10.0, Z\ 2.9. (b) Mass-to-
Ñux function of the cloud in (a).

ization (Mestel 1965 ; Strittmatter 1966). However, these
studies ignored the detailed Ðeld topology, as did the more
recent evolutionary calculations of SaÐer, McKee, &
Stahler (1997) and Li (1998).

To construct the spherical sequence we again utilized the
q-method, now with the tidal boundary condition, equation
(12). As always, the procedure was straightforward up to the
radius peak. In converging states beyond this point, we used
Bonnor-Ebert solutions of similar to supply an initialo

cguess for t. We guessed A by Ðrst constructing a slightly
oblate cloud of nearly the same under the same tidalo

c
,

boundary condition. Such a state has an inwardly bent
magnetic Ðeld, similar to the tidally stressed sphere of inter-
est. As we moved to higher spherical states, the amounto

cof Ðeld-line bending increased. Hence, we needed to use
progressively more oblate clouds to supply the guess for A.

Figure 10a shows the isodensity contours and Ðeld lines
for a cloud from the a \ 10 sequence. The degree of Ðeld-
line bending and enhancement of are only slight for thisB

crelatively high a-value. As expected, the drift velocities point
inward, with the largest velocity occurring at the equator.
Both the Ðeld topology and the pattern of drift speeds
resemble those for the isolated, oblate cloud of Figure 3,
which has nearly the same central density. The mass-to-Ñux
distribution in the sphere, shown in Figure 10b, is also qual-
itatively similar.

Figure 11 displays the mass of our spherical clouds as a
function of central density, for a \ 1 and 10. The outer
cylindrical boundary was again held Ðxed at Z\ 2.9,
R\ 10. The force-free sequence is represented by the dotted
curve. For a given the magnetically supported states areo

c
,

evidently more massive than both force-free, tidally stressed
clouds and Bonnor-Ebert spheres. In the Ðrst case, the
greater mass is a consequence of the objectsÏ larger equato-
rial extent, while the tidal boundary condition is responsible
in the second. More speciÐcally, the vanishing potential gra-
dient at z\ ^Z e†ectively weakens self-gravity every-
where, so that a higher equilibrium mass is required at a

given than for the point-mass boundary condition. Theo
cmaximum mass of 60.1 in the tidally stressed, spherical

sequence exceeds the force-free and Bonnor-Ebert values by
13%. Note Ðnally that the mass in our sequence peaks
earlier than in either the force-free or(o

c
\ 9.9) (o

c
\ 15.6)

Bonnor-Ebert cases.(o
c
\ 14.1)

The top panel of Figure 12 shows the variation in radius
along the a \ 10 sequence. Note that the radii are interme-
diate between the force-free polar and equatorial values,
shown by the dashed and dotted curves, respectively. The
radius curve for the a \ 1 sequence is nearly identical to the

FIG. 11.ÈSame as Fig. 4, but for the sequence of spherical equilibria
under the tidal boundary condition (solid curve). The dashed curve shows
the sequence of force-free (prolate) equilibria.
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FIG. 12.ÈTop : Radius vs. density contrast for spheres under the tidal
boundary condition with a \ 10 (solid curves). The results are nearly iden-
tical for a \ 1. The equatorial and polar radii of the force-free sequence are
also shown. Bottom : Central magnetic Ðeld vs. density contrast, along the
a \ 1 and 10 sequences.

a \ 10 result, and so is not displayed. Both curves lie slight-
ly above the radii of Bonnor-Ebert spheres (compare Fig. 5).
In the lower panel of the Ðgure, we display the variation in
the central magnetic Ðeld value. The two sequences are now
clearly distinguishable, with the a \ 1 curve having greater
Ðeld bending and thus a higher B

c
.

3.4. Remarks on Dynamical Stability
Figures 4, 7, and 11 all show the cloud mass reaching a

maximum value and then declining as increases. Sucho
cbehavior is well known in other contexts, where the mass

extrema demarcate a stability transition within the funda-
mental mode of oscillation, and thus the onset of dynamical
instability (Tassoul 1978). In addition to its stellar applica-
tions, this ““ static method ÏÏ for diagnosing instability has
also been used for rotating clouds (Stahler 1983 ; Kiguchi et
al. 1987).

The situation is more subtle for magnetostatic conÐgu-
rations. The physical basis of the static method is that two
equal-mass equilibria on either side of an extremum can be
considered end states in a normal mode of zero frequency.
For this interpretation to hold, however, the two conÐgu-
rations must have identical distributions of all quantities
that are conserved during such an oscillation. For example,
two rotating, axisymmetric states must have the same varia-
tion of speciÐc angular momentum, since the oscillation
exerts no internal torques.

In the case of magnetized clouds, we can assume that Ñux
freezing holds during the dynamical oscillation (even one of
zero frequency). Thus, application of the static method
requires that the mass-to-Ñux distribution not change along
the sequence. This is the case for magnetostatic models con-
structed via the free-boundary method, i.e., with a speciÐed
functional form of dm/d' (° 2.3). In our models, on the other
hand, dm/d' varies continuously along the sequence, so the

static method is not applicable. While clouds of sufficiently
high central density are certainly unstable, the actual tran-
sition must be displaced somewhat from the extremum.

Another consideration comes into play for the prolate
states. We have stressed that these equilibria, especially
those of low a and high are magnetically conÐned, witho

c
,

the Ðeld bowing outward in the central region (recall Fig. 6).
In laboratory plasmas, such a Ðeld curvature tends to be
dynamically unstable. If one interchanges two adjacent Ñux
tubes, the energy of the system decreases. (For an elemen-
tary demonstration, see ° 8.3 of Nicholson 1983.) A normal
mode analysis shows that the unstable perturbations have
short wavelengths perpendicular to the magnetic Ðeld, and
long wavelengths parallel to it (Freidberg 1987, p. 267). Self-
gravity, neglected in the plasma context, should not materi-
ally a†ect the properties of such a mode. Thus, we expect
that our prolate states, while not subject to gravitational
instability, will nonetheless rapidly transform themselves
into lower energy conÐgurations (see ° 4.2).

4. TIME EVOLUTION

The presence of a nonzero drift velocity in the states
constructed in the previous section indicates that they will
evolve in time via ambipolar di†usion. Thus, we next con-
sider the quasi-static evolution of these clouds, as outlined
in ° 2.4. We chose as initial conÐgurations the oblate,
prolate, and spherical clouds depicted in Figs. 3, 6, and 10,
respectively. The calculations in this stage employed the
free-boundary method, rather than the q-method (°° 2.3 and
2.4). As soon as the cloud was allowed to evolve, its shape
immediately began to depart from a perfect ellipsoid. In
those cases where the central concentration increased with
time, the calculation terminated when the large density gra-
dient near the cloud center made convergence difficult on
our uniformly spaced grid. This typically occurred when the
maximum neutral velocity was 0.2È0.5 times the sound
speed. Hence, the termination roughly coincided with the
breakdown of the quasi-static approximation and the
beginning of dynamical collapse.

4.1. Oblate Initial States
We begin with the oblate cloud shown in Figure 3, which

has an axial ratio of Using the evolution equa-Z0/R0 \ 1/2.
tion (25), this state was evolved in time steps of magnitude
*t \ 0.05, until the central density reached 115, at t \o

cBeyond this point, we could Ðnd no more equi-tfin \ 11.23.
libria. We determined the endpoint accurately by reducing
the time step to *t \ 0.01 after t \ 10. The Ðnal time corre-
sponds to 6.2 Myr, using the Ðducial parameter values of
° 2.5.1.

Figure 13 shows the cloud at the Ðnal converged time,
Note the pronounced dip in the cloud boundary neartfin.the pole, a feature seen in previous oblate, magnetized

models (see, e.g., Fig. 1 of Tomisaka et al. 1990). This is a
result of the increasing self-gravity in the central region,
where gravity is unopposed by magnetic forces along the
Ðeld lines. The neutral velocity increases toward the center,
and the vectors become more radial. The maximum value of

is 0.45, and occurs near the midplane at (r, z)\ (0.41,o ¿ o
0.07).

The increase of the cloudÏs central density and mass-to-
Ñux ratio with time is shown in Figure 14. As matter drifts
into the central region, rises steadily, increasing by(dm/d')

c73% in the course of the evolution. Simultaneously, the
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FIG. 13.ÈFinal converged state of the isolated, 2 :1 oblate cloud shown
in Fig. 3. Arrows indicate neutral velocities, The dashed curve shows the¿.
initial cloud boundary.

central Ðeld lines squeeze together, causing the value of B
cto more than double by Since the total Ñux decreases,tfin.the global distribution of dm/d' is becoming both narrower

and more sharply peaked. The rapid increase of alongo
c
,

with the large value of near the center, both indicateo ¿ o
that the quasi-static stage of evolution is ending.

Finally, consider the evolution of the density proÐles. At
all times, the proÐles exhibit a turnover, leading to an
envelope with nearly power-law density. Initially, the power
law along both the midplane and the pole is slightly

FIG. 14.ÈTime evolution of the central density (solid curve) and central
mass-to-Ñux (dashed curve) for the oblate initial state of Fig. 3.

shallower than r~2 ; at late times, it is slightly steeper. The
radius of the turnover, i.e., of the inner core region, shrinks
with time, while the proÐle in the envelope steepens. These
results are in accord with earlier studies (e.g., Mouschovias
1991).

4.2. Prolate Initial States
The unique feature of prolate structures is that they are

magnetically conÐned. That is, the Ðeld lines bow outward
from the central axis, creating the tension needed to oppose
the larger pressure gradient in the radial direction. Since the
drift velocities also point outward, we expect the evolution
through ambipolar di†usion to di†er qualitatively from the
oblate case.

We attempted to evolve the prolate initial state with
a \ 1.5 shown in Figure 6a, but did not succeed. As dis-
cussed in ° 3.2.3, this state possesses a steep gradient of B at
the origin, which makes convergence difficult using the free-
boundary method. Since this gradient is not as extreme for
larger values of a, we followed instead the evolution of a 2:1
prolate cloud with a \ 10. Figure 15 shows the results. The
upper left panel displays the initial state. At early times, the
outward neutral velocity causes the equatorial region to
expand. By the time t \ 5 (2.8 Myr with our Ðducial param-
eters), the central density has dropped to 11.2 and the
maximum neutral velocity has decreased to less than half its
initial value (see Fig. 15b). During the same interval, the
magnetic Ðeld has begun to straighten ; its central value has
increased slightly, from 0.89 to 0.90.

By the next time displayed in Figure 15c, t \ 20 (11 Myr),
the equator has moved out still farther, while the pole has
shrunk noticeably from its initial position. The cloud is
clearly becoming less prolate, and now has an axial ratio of

The trends noted above in andZ0/R0\ 1.3. o
c
, B

c
, vmaxcontinue. Because the Ðeld is straightening, ambipolar di†u-

sion begins to slow down. By t \ 50 (28 Myr ; Fig. 15d),
where we stopped the calculation, the cloud is approaching
a spherical shape albeit slowly, since the(Z0/R0 \ 1.07),
maximum neutral velocity is only 0.5% of the sound speed.
The central density has decreased to one-quarter of its start-
ing value, so that the density proÐle is now much Ñatter
than the initial one (see below). Over most of the cloud, the
neutral velocities are oriented perpendicular to the Ðeld
lines, and still point outward. Taken together, these devel-
opments indicate that the conÐguration will never reach the
point of dynamical collapse.

Instead, our calculation suggests that the end state of a
prolate, magnetized cloud is a sphere threaded by a uniform
magnetic Ðeld. Since a uniform Ðeld exerts no forces, the
sphere would be indistinguishable from a nonmagnetic,
pressure-bounded conÐguration of the same mass as the
initial prolate cloud. To test this idea, we constructed a
sphere having the same central density as the(o

c
\ 3.82)

prolate Ðnal state. The corresponding mass of this non-
magnetic state is (in our units) M \ 41.0, which is only 5%
larger than that of the state shown in Figure 15d. Given that
the axial ratio of this ““ Ðnal ÏÏ prolate state is still 7% greater
than unity, this di†erence is understandable. Finally, we
compare the mean of the equatorial and polar radii,

with the radius of an equilibrium sphere of the(R
p
R

e
2)1@3,

same We Ðnd that the two quantities di†er by only 2%.o
c
.

The evolution of the prolate cloudÏs central density and
mass-to-Ñux ratio are shown in Figure 16. The central
density decreases smoothly from its initial value, asymp-
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FIG. 15.ÈTime evolution of an isolated, 2 :1 prolate cloud with a \ 10. Panel a shows the density contours (solid curves) and magnetic Ðeld lines (dotted
curves) in the initial state. Panels b, c, and d show the cloud at the times t \ 5, 20, and 50, respectively. Arrows indicate drift velocities in panel a, and neutral
velocities in panels b, c, and d.

totically approaching the spherical, force-free value of o
c
\

3.8 at large t. The central mass-to-Ñux ratio also decreases
steadily with time. Once the Ðnal state is reached, (dm/d')

chas decreased to one-third of its original value. Comparison
of Figures 14 and 16 shows how the oblate and prolate
clouds evolve in essentially opposite directions. Figure 17
displays the equatorial and polar density proÐles of the
initial, prolate state, and the same proÐles in the Ðnal con-
Ðguration. We also show the proÐle of a nonmagnetic
sphere with a central density of 3.8. In contrast to the oblate
case, the core region expands with time, with the envelope
gradient becoming signiÐcantly shallower by t \ 50.

4.3. Spherical Initial States
An isolated spherical cloud, i.e., one in which the gravita-

tional potential obeys the point-mass boundary condition,
is actually a member of the Bonnor-Ebert sequence (° 3.2.1).
Since the internal magnetic Ðeld is uniform and force-free,
the drift velocity should be identically zero, and the cloud
should not evolve under ambipolar di†usion. We checked
that this was the case. Thus, a cloud with an initial of 14.0o

c

increased its central density by only 2% over a period of 10
Myr. Its central magnetic Ðeld changed by 0.3% during this
time, remaining very close to unity, while the maximum
neutral velocity never exceeded 0.012. Finally, the equato-
rial and polar radii never di†ered from the Bonnor-Ebert
value by more than 2%.

The more interesting case is a spherical cloud constructed
with the tidal boundary condition. Here, the magnetic Ðeld
bows inward, leading to drift velocities that point toward
the central axis. Starting with the conÐguration shown in
Figure 10, we found that the central density rose monotoni-
cally. We were able to follow the evolution until t \ 20.15,
corresponding to 11.2 Myr in our Ðducial units. By this
time, had increased from its initial value of 11.7 to 111.o

cNote that a comparable rise in for the isolated, oblateo
ccloud took about half the time, since the drift velocities were

roughly twice as large.
Imposition of the tidal boundary condition e†ectively

weakens the gravitational force in the vertical direction.
Nevertheless, the climb in central density causes the polar
region to compress, just as in the isolated, oblate case.
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FIG. 16.ÈTime evolution of the central density (solid curve) and central
mass-to-Ñux (dashed curve) for the initially prolate state of Fig. 15.

The pronounced polar dip can be seen in Figure 18, which
shows the density contours and magnetic Ðeld lines at
t \ 20.15. The pattern of drift velocities is also similar to the
oblate case.

Figure 19 displays the evolution of the cloudÏs central
density and mass-to-Ñux distribution. By the time the Ðnal
state has been reached, has increased by almost an ordero

cof magnitude, has nearly doubled, and the central mass-B
c

FIG. 17.ÈDensity proÐles of the prolate cloud in its initial and Ðnal
states. Solid curves show the density along the midplane (z\ 0), dashed
curves that along the pole (r \ 0). The density proÐle of an isolated, spher-
ical cloud with the same central density is shown by a dotted curve.

FIG. 18.ÈFinal converged state of the tidally stressed, spherical cloud
shown in Fig. 10. Arrows indicate neutral velocities, The dashed curve¿.
shows the initial cloud boundary.

to-Ñux value has increased by 74%. Once again, is under-o
cgoing a very sharp increase, a sign that the dynamical phase

of evolution is close at hand. The largest neutral speed,
which occurs near the cloud center at (r, z) ^ (0.33, 0.07),
has the value of 0.16. The density proÐles of the evolving
conÐguration exhibit the same qualitative features as in the
oblate cloud evolution, i.e., a shrinking core region and a
steepening envelope gradient.

FIG. 19.ÈTime evolution of the central density (solid curve) and central
mass-to-Ñux (dashed curve) for the spherical cloud of Fig. 10.
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5. DISCUSSION

In this paper, we have taken the novel approach of
specifying the cloud shape, rather than the mass-to-Ñux dis-
tribution, in order to construct equilibrium models. One of
our signiÐcant Ðndings is that these structures can be either
oblate or prolate. Furthermore, we did not encounter, in
our admittedly limited parameter survey, any restrictions
on the aspect ratio in either case. This result contrasts
sharply with the traditional view, inherited from Mouscho-
vias (1976b), that magnetostatic equilibria are necessarily
Ñattened along the direction of the ambient Ðeld. We now
see that this conclusion arose from the method of construc-
ting models. SpeciÐcally, mass-to-Ñux distributions that
plateau toward the cloud center yield Ñattened equilibria,
while more centrally peaked distributions result in elon-
gated clouds.5

We are not the Ðrst, however, to construct elongated
equilibria. Tomisaka (1991) added a toroidal Ðeld com-
ponent to the purely poloidal models of Tomisaka et al.
(1988a, 1988b), and thereby obtained moderately prolate
conÐgurations. In these models, the toroidal Ðeld exerts a
radial pinch that aids gravity in squeezing gas toward the
central axis. Fiege & Pudritz (2000) have recently explored a
large number of such models. Their clouds, which span a
wide range of aspect ratios, are all of low mass and density
contrast where is the maximum(M [ 0.8MBE, o

c
[ 11, MBEmass of the force-free spherical sequence). Interestingly, a

subset of their equilibria exhibit bowed-out Ðeld lines
similar to those in our own prolate models (see, e.g., their
Figs. 2 and 7). In their case, however, the bowing is most
pronounced near the cloud boundary, and only occurs
when the toroidal Ðeld strength is comparable to, or
exceeds, the poloidal one. Because these twisted-Ðeld solu-
tions have a nonzero toroidal component at inÐnity, the
elongation of the clouds depends in part on the magnetic
Ðeld conÐguration throughout the larger, parent body. In
our solutions, the prolate shape arises solely from the local
mass-to-Ñux distribution.

Our second major result is that the fate of a cloud under
ambipolar di†usion is determined both by its density con-
trast and by its shape. Figure 20 summarizes this Ðnding for
the case of isolated clouds. Here we have reproduced, from
Figures 4 and 7, the mass curves for oblate, prolate, and
spherical (force-free) conÐgurations, where the Ðrst two
have a \ 10. The three open circles represent initial states
whose evolution we followed numerically.

Consider Ðrst the two oblate conÐgurations. The initial
state of higher density contrast has a mass larger than MBESince its Ðeld lines bend inward,(M \ 1.3MBE ; o

c
\ 2.95).

the cloudÏs central density increases as it evolves, and the
representative point moves toward the right. Note that the
contraction rate for this cloud is much slower than for the
example in ° 4.1, which was at the mass peak of the oblate
sequence. Initially, the equatorial region shrinks rapidly

5 Both our models and all previous ones assume that the cloud is
axisymmetric about the background Ðeld direction. Ward-Thompson et al.
(2000) have recently published the Ðrst observations of magnetic Ðelds in
starless dense cores, using submillimeter polarimetry. In their three exam-
ples, the projected Ðeld direction appears to be at an oblique angle with
respect to the coresÏ long axes. This result, if conÐrmed by future studies,
may indicate that the assumption of axisymmetry requires modiÐcation
(Basu 2000).

FIG. 20.ÈMass as a function of density contrast for isolated equilibria
considered in this paper (solid curves). Results are displayed for a \ 10
only. Initial states are represented by open circles, Ðnal states by Ðlled
circles.

enough that the aspect ratio actually increases, fromZ0/R00.50 at t \ 0 to 0.74 at t \ 80. Eventually, however, the
polar dip becomes so pronounced that falls, reachingZ0/R00.55 at our last computed model (t \ 119). At this time, the
central density is and is climbing rapidly. Thus, allo

c
\ 110

oblate equilibria ultimately Ñatten before they collapse.
By contrast, the initially oblate cloud of lower density

contrast shown in Figure 20 has a mass below (M \MBEAlthough still increases with time,0.86MBE, o
c
\ 2.00). o

cthe conÐguration does not collapse, but reaches the force-
free, spherical state marked by the Ðlled circle. By t \ 100,
the central density is 3.58, within 25% of the predicted Ðnal
value of 4.80, and the aspect ratio is veryZ0/R0\ 0.94,
close to 1. Thus, the cloud becomes less oblate and more
spherical, while the Ðeld lines straighten out.

Finally, we turn to the prolate sequence, also shown in
Figure 20. Since the mass curve now lies wholly below the
spherical one, no initial state will lead to dynamical col-
lapse. The example shown by an open circle corresponds
exactly to the state discussed previously in ° 4.2. There it
was demonstrated that the central density falls as the con-
Ðguration becomes more spherical, and that the cloud does
not collapse. To summarize, all states move toward the
force-free curve in the diagram, but only those with M \

can actually reach the curve and so avoid collapse. AnMBEanalogous situation holds for our spherical, tidally stressed
equilibria. Referring again to Figure 11, we see that the
initial state with lies above the force-free curve,o

c
\ 11.7

and so inevitably collapses.
Our third, and last, major result is that none of our initial

equilibria, whether isolated or tidally stressed, evolves in a
manner consistent with observed star-forming clouds. As
we reviewed in ° 1, the radio maps of dense cores are best
explained as an ensemble of elongated, three-dimensional
objects projected onto the plane of the sky. There is no
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appreciable di†erence between the shapes of cores with or
without internal stars (Jijina et al. 1999). Thus, a correct
theoretical account should start with an elongated conÐgu-
ration and have it remain elongated through the onset of
dynamical collapse.

The fault may lie in our neglect of external matter. In this
study, we have followed the conventional route of sur-
rounding the cloud by a Ðctitious, zero-density medium of
Ðnite pressure. Real dense cores, however, are embedded
within larger Ðlamentary structures. This fact alone hints
why the initial states are elongated. During ambipolar di†u-
sion, matter from the external reservoir can Ñow down mag-
netic Ðeld lines, piling up until it is halted by the internal

pressure gradient. Thus, the polar Ñattening we obtained
may be alleviated or even avoided entirely. It will be inter-
esting to see how cloud evolution proceeds under these very
di†erent conditions.
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research is supported in part by a NASA grant to the
Center for Star Formation Studies. The research of C. C.
was supported in part by an NSERC Postdoctoral Fellow-
ship, while that of S. S. was funded by NSF grant AST
99-87266.

APPENDIX

NUMERICAL TECHNIQUES

To implement the q-method, equations (22) and (23) were solved simultaneously on a uniform grid covering the upper right
quadrant of the large cylinder ; i.e., 0 ¹ r ¹ R, 0 ¹ z¹ Z. We begin with an initial guess A(0), t(0), and a Ðxed cloud boundary

The function q(') is then given by equation (16), which we rewrite asZcl(r).

q(0)(') \ P0 exp [[t0(0)/a2] , (A1)

with the superscript indicating the zeroth iteration. Recall that the subscript zero on t and P denotes their boundary values.
As mentioned in ° 2, the speciÐcation of q(') is sufficient to calculate the right-hand side source terms of equations (22) and
(23). At each subsequent iteration, solutions for A and t subject to the boundary conditions given in equations (10) and (11)
(point mass) or equation (12) (tidal) were obtained to within an accuracy of 10~5. These were used as provisional iterates A

*
(1)

and in generating subsequent guesses, as explained below. At each step, the updated t was then used in equation (A1) tot
*
(1)

generate a new q.
The number of grid points in the radial and vertical directions, and for the di†erent cloud shapes adopted in ° 3N

R
N

Z
,

were :

Oblate : N
R

\ 81, N
Z
\ 41 ,

Prolate : N
R

\ 41, N
Z
\ 81 ,

Spherical : N
R

\ 61, N
Z
\ 41 .

The number of Ðeld lines, was chosen equal to To ensure accurate '-derivatives near the cloud center, the Ñux valueN
B
, N

R
.

of the ith Ðeld line was chosen as i\ 1,2, . . . , In practice, it was necessary to switch back and forth between two'
i
\ r

i
2/2, N

B
.

interwoven meshes : one Ðxed spatially (r, z), and another deÐned by the current Ðeld-line positions (', z) (Mouschovias
1976a).

The sequence of iterates was chosen according to the scheme

A(n`1)\ h
A

A(n)] (1[ h
A
)A

*
(n`1) and t(n`1)\ htt(n)] (1[ ht)t*

(n`1) ,

where and are constant relaxation parameters, taken to be between 0.5 and 1 in most of our calculations. A solution wash
A

htdeemed acceptable if the conditions

K A
*
(n`1)[A(n)

A
*
(n`1)

K
\ v and

K t
*
(n`1)[ t(n)

t
*
(n`1)

K
\ v (A2)

were satisÐed simultaneously, with v\ 5 ] 10~3.
We typically found solutions within 50 iterations or less, using an initial guess t(0)(r, z) \ 0, A(0)(r, z) \ r/2. We checked

that the solutions were relatively insensitive to : (1) increasing the number of grid points in either direction, (2) increasing the
values of R and Z, and (3) allowing the program to continue for up to twice the number of iterations required to satisfy the
conditions of equation (A2). None of these resulted in a change of more than 5% in t or A at any grid point, or of more than
8% in the central density.

The numerical implementation of the free-boundary method was discussed by Mouschovias (1976a). In applying the
method, we imposed an additional convergence criterion on the location of the cloud boundary,

oZcl *(n`1)[ Zcl(n) o \ v
z

, (A3)
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where Thus, at each time step, convergence was achieved when the conditions of equations (A2) and (A3) werev
z
\ *z/2.

simultaneously satisÐed.
In order to evolve the cloud over the hundreds of time steps typical of our calculations in ° 4, it was essential that the

mass-to-Ñux distribution given by equation (21) remain smooth throughout the evolution. To ensure that this was the case, we
approximated the function q(') at each time step by a least-squares polynomial. Thus, dq/d' was also a polynomial, lending
an additional degree of smoothness to equations (20) and (21).
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