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ABSTRACT

Observations show that high-velocity jets stem from deeply embedded young stars, which may still be
experiencing infall from their parent cloud cores. Yet theory predicts that, early in this buildup, any outgoing
wind is trapped by incoming material of low angular momentum. As collapse continues and brings in more
rapidly rotating gas, the wind can eventually break out. Here we model this transition by following the
motion of the shocked shell created by impact of the wind and a rotating, collapsing envelope. We first
demonstrate, both analytically and numerically, that our previous, quasi-static solutions are dynamically
unstable. Our present, fully time-dependent calculations include cases both where the wind is driven back by
infall to the stellar surface and where it erupts as a true outflow. For the latter, we find that the time of
breakout is 5� 104 yr for wind speeds of 200 km s�1. The reason for the delay is that the shocked material,
including the swept-up infall, must be able to climb out of the star’s gravitational potential well. We explore
the critical wind speed necessary for breakout as a function of the mass transport rates in the wind and infall,
as well as the cloud rotation rate �0 and time since the start of infall. Breakout does occur for realistic
parameter choices. The actual breakout times would change if we relaxed the assumption of perfect mixing
between the wind and infall material. Our expanding shells do not exhibit the collimation of observed jets but
continue to expand laterally. To halt this expansion, the density in the envelope must fall off less steeply than
in our model.

Subject headings: circumstellar matter — hydrodynamics — ISM: jets and outflows — shock waves —
stars: mass loss — stars: pre–main-sequence

1. INTRODUCTION

The traditional picture of low-mass star formation in
isolation (Shu, Adams, & Lizano 1987) envisions an early
period of pure accretion, prior to the appearance of any
wind. This expectation is based on simple theoretical con-
siderations. Since the star is building up mass from its
parent cloud, the rate of mass infall exceeds that of any out-
flow. In addition, both theory and observation suggest that
the speeds of infalling and wind gas are comparable. Thus,
the ram pressure from the collapsing envelope should
crush the wind, preventing its escape from the stellar or
inner disk surface. Why is it, then, that the most
embedded stars, including those designated Class 0 (André,
Ward-Thompson, & Barsony 1993), are observed to
produce vigorous winds? How do wind and infall
simultaneously occur in a very young object?

The answer, as has long been appreciated, is that neither
flow is isotropic. Rotation and magnetic fields, in both the
star and cloud, break spherical symmetry and alter the
geometry of the wind and infall. Moreover, rotational dis-
tortion increases as the collapse of the parent cloud pro-
ceeds in an inside-out fashion (Shu 1977). Our goal in this
paper is to examine numerically the interaction between
wind and infall. Since the full situation is complex, it is best
to proceed in stepwise fashion. We concentrate, therefore,
on the effect of infall geometry, positing for simplicity a
spherical wind. We also focus exclusively on the rotational
influence. That is, we neglect any magnetic force on the

infalling gas, under the assumption that decoupling from
the ambient field has already occurred (Li &McKee 1996).

As in our first study of this topic (Wilkin & Stahler 1998,
hereafter Paper I), we follow the dynamics of the thin shell
formed by the colliding wind and infall. Paper I derived an
evolutionary sequence of shells under the simplifying
assumption of quasi-steady flow. That is, we took the
expansion or contraction of the shell to be slow compared
to either the wind or infall speeds. We now study the matter
in more detail, solving the initial value problem of shell
motion in a fully time-dependent manner. Our finding, in
brief, is that the shell can either break out or recollapse to
the star, depending on both the flow parameters and the
epoch during cloud collapse. We derive the time of breakout
as a function of the wind and infall parameters and explain
how to generalize this to the case of an anisotropic driving
wind.

In x 2 we first detail the mathematical formulation of the
problem, obtaining the time-dependent version of the
dynamical equations. After describing our method of solu-
tion in x 3, we show in x 4 that our previous, quasi-steady
shells are in fact dynamically unstable. We set up our initial
conditions and nondimensionalization of the launch prob-
lem in x 5, before presenting an overview of our numerical
results in x 6. We also rederive key findings in a heuristic,
analytical fashion. Finally, x 7 discusses the broader astro-
physical implications of our study. In particular, an obser-
vational signature of the trapped wind phase may be
fluctuations of the accretion luminosity, as an oscillatory
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shock structure is expected to develop prior to breakout of
the wind.

2. FORMULATION OF THE PROBLEM

2.1. Thin-Shell Approximation

The supersonic collision of wind and infall leads to the for-
mation of both an inner and outer shock front. At the wind
speeds appropriate for low-mass stars (typically less than 300
km s�1), the cooling behind these shocks is relatively efficient
(recall the discussion in x 2.2 of Paper I). Hence, we may
describe the intershock region as a cold, thin shell, character-
ized by its radiusRð�; tÞ andmass surface density �ð�; tÞ. Here
h is the polar angle measured from the rotation axis of the
parent cloud. As in Paper I, we assume this shell to be axisym-
metric, i.e., invariant with respect to the azimuthal angle �.

Within the shell, two fluids with very different tempera-
ture and velocity come into contact. The internal shearing
layers are subject to the Kelvin-Helmholtz instability, which
leads quickly to turbulent mixing. We shall assume that the
mixing is so efficient that we may describe the shell as a sin-
gle fluid with a time-averaged velocity at each point ðR; �; tÞ.
This velocity has an azimuthal component arising from
rotation of the infalling envelope. It also has a meridional
component along the shell. Furthermore, we do not neglect,
as in Paper I, the velocity of the shell normal to the surface.

The evolution of the shell is governed by the incident
fluxes of mass and momentum from the wind and infall. It is
also influenced critically by the gravitational attraction of
the star for the shell material. The central difference of the
present study and Paper I is that we no longer assume
the evolution to be quasi-steady; that is, the properties of
the shell are allowed to change over the time required for
material to travel along the surface.

2.2. Description of Infall and Outflow

The infall arises from the gravitational collapse of a dense
cloud core within a larger molecular cloud. To obtain the
resulting accretion flow, we idealize this core as a singular
isothermal sphere rotating rigidly with angular velocity �0.
Our calculation does not address the formation of the core
itself and neglects any turbulence in the initial structure.
Recent theoretical work (e.g., Cho, Lazarian, & Vishniac
2002; Vazquez-Semadeni, Ballesteros-Paredes, & Klessen
2003) suggests how cores might condense out of a turbulent
flow. Nevertheless, observations continue to show that non-
thermal motion in the core itself is relatively small
(Barranco & Goodman 1998). Once the infalling gas
becomes supersonic, the effects of this turbulent component
are expected to be minor. Our adoption of a spherical body,
while clearly an idealization, should be of little consequence
for the flow deep within the core’s center.

In any event, the distributions of infalling density �i and
velocity ui depend on time because the collapsing region
spreads out as a rarefaction wave at the isothermal sound
speed a0, gradually engulfing material of higher specific
angular momentum (Shu 1977). We adopt the infall model
of Cassen & Moosman (1981), which represents the inner
limit of the full collapse. This limit applies to radii that are
small compared to the expansion frontRexp ¼ a0t, where t is
the time since the collapse began.

We may gauge the total rate of infall by examining the
transport of mass across a surface located well inside the

expansion front. According to the inside-out collapse model
of Shu (1977), this transport rate is

_MMi ¼
m0a

3
0

G
; ð1Þ

where m0 ¼ 0:975. The infall itself is characterized by a
time-dependent length scale, the centrifugal radius Rcen.
This is given by

Rcen ¼ 1

16
m3

0a0�
2
0t

3 ;

RcenðAUÞ ¼ a0
0:2 km s�1

�
�0

2� 10�14 s�1

�2�
t

105 yr

�3

:

ð2Þ

Our reference value for �0 is chosen to be consistent with
inferred rotation rates based on velocity gradients in cloud
cores lacking embedded IRAS sources (Jijina, Myers, &
Adams 1999). For an equator-on rotating core, this corre-
sponds to a velocity gradient of 0.6 km s�1 pc�1. In regions
where rdRcen, rotational distortion of the flow is signifi-
cant, and some of the infalling matter strikes the equatorial
plane (� ¼ �=2), forming a circumstellar disk. When
r4Rcen, the infall is nearly spherically symmetric. Equation
(1) gives the sum of the mass per unit time impacting the star
directly and that entering the disk.

In terms of the nondimensional radial variable
� � Rcen=r, the infall velocity components and density are
(Terebey, Shu, & Cassen 1984)

ui;r ¼ � GM�
r

� �1=2

1þ cos �

cos �0

� �1=2

; ð3Þ

ui;� ¼
GM�
r

� �1=2
cos �0 � cos �

sin �

� �
1þ cos �

cos �0

� �1=2

; ð4Þ

ui;� ¼ GM�
r

� �1=2
sin �0
sin �

1� cos �

cos �0

� �1=2

; ð5Þ

�i ¼ �
_MMi

4�r2ui;r
1þ 2�P2 cos �0ð Þ½ ��1 : ð6Þ

The function P2ðcos �0Þ is the Legendre polynomial, where
h0 is a Lagrangian variable that labels the streamlines.
Specifically, h0 is the initial polar angle of each fluid element,
just before it is overtaken by the rarefaction wave. This
angle is given implicitly in terms of the instantaneous
coordinates � and h by the trajectory equation

� ¼ cos �0 � cos �

sin2 �0 cos �0
: ð7Þ

Our goal is to assess the collimating influence of the
anisotropic infall. Accordingly, we idealize the wind to be
spherically symmetric, with an associated mass transport
rate of _MMw. If the star lies at the origin of a spherical coordi-
nate system, then the wind density at a radial distance r is

�w ¼
_MMw

4�r2Vw
: ð8Þ

Here Vw � uw;r is the wind velocity. Note that the compo-
nents uw;� and uw;� are both zero.

We do not investigate the structure of the star, which is
taken simply to be a spherical, gravitating mass. The value
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of this mass is

M� ¼ _MMit : ð9Þ

Thus, we assume that both the matter entering the disk
and that colliding with the infall are efficiently recycled to
the star. How gas within the shocked shell reaches the
disk is, of course, one of our main concerns. On the other
hand, the transport of matter within the disk through
internal torques is beyond the scope of this project. Once
the shell truly moves dynamically, mass accretion onto the
star and disk is halted, and we freeze the stellar mass at
the value corresponding to the launch time of the shell
(see x 4).

2.3. Time-dependent Equations:Mathematical Derivation

As in Paper I, we consider a small, three-dimensional
patch of the shell, whose center is located at (R, h, �) within
a global, spherical coordinate system centered on the star.
We also utilize a global, Cartesian system (x, y, z) (see Fig. 3
of Paper I). To help in following our necessarily abbreviated
derivation of the equations, we advise the reader to consult
x 2.3 of Paper I.

Figure 1, a slightly modified version of Figure 4 of Paper
I, shows the representative patch in more detail. We let �
denote the surface tilt, i.e., the angle between the patch nor-
mal n̂n and the radial direction from the star r̂r. The upper and
lower faces, i.e., those depicted with the largest areas, coin-
cide with the inner and outer shock fronts. The narrow faces
to the left and right of the upper one trace loci of constant
polar angle h, while the remaining two have fixed �. Note
that the length Ds is a small increment of the global coordi-
nate s measuring distance along the shell from the pole to
the equatorial plane. Inspection of Figure 1 shows that
Ds ¼ R sec �D� and that the patch width is Dw ¼ R sin �D�.
The surface area of either the upper or lower face is

DsDw ¼ AD�D�, and the total patch volume is
DsDwDn ¼ AD�D�Dn. Here Dn (called Dh in Paper I) is the
patch thickness. The factorA is given by

A ¼ R2 sin � sec � : ð10Þ

For a mathematical description of the shell evolution, we
letR ¼ Rð�; �; tÞ be a dependent variable. Then the tilt angle
� is given by tan � ¼ �R0=R, whereR0 � @R=@�. During the
evolution, we want the sides of our patch to retain fixed
angular positions in h and �. On the other hand, we allow
the upper and lower surfaces to move in and out radially, in
order to follow expansion or contraction of the shell. Let us
denote by (ur, uh, u�) the velocity of matter within the shell.
(Note the lack of additional subscripts, which we use to
denote wind or infall.) The velocity component of this fluid
pointing along the patch normal is

un ¼ ur cos � þ u� sin � : ð11Þ

Now shell expansion gives the patch itself a normal velocity

vn ¼
@R

@t
cos � : ð12Þ

Our kinematical constraint on the patch motion is simply
un ¼ vn. Combining equations (11) and (12), we find

@R

@t
¼ ur þ u� tan � : ð13Þ

Proceeding to the dynamical equations, we first derive an
expression for D _QQ, the rate of change of any physical quan-
tity within the patch. Let q denote the volume density of this
quantity. This density may change with time, as may the
patch volume.We thus have

D _QQ ¼ @

@t
qDnDsDwð Þ ¼ @

@t
AqDnð ÞD�D� ; ð14Þ

where the partial derivative is at fixed h and �.
The change in our quantity comes in part from advection

into and out of the patch. The rate here depends on both the
wind and infall velocities, as well as those within the patch
itself. Note that the relevant wind and infall velocities are
the normal components relative to the patch, since the latter
has the normal velocity un. Let qw and qi be the density of the
quantity in the wind and infall, respectively. Then these
flows make an external contribution to D _QQ:

D _QQext ¼ uw;n � un
� �

qw � ui;n � un
� �

qi
� �

DsDw

¼ A u0w;nqw � u0i;nqi
� �

D�D� ; ð15Þ

where we have used primes for the relative normal
velocities.

We must also account for the internal contribution to
advection, i.e., the effect of flow within the shell. Part of this
flow is due to motion in the h-direction. Noting that the
radial thickness of the shell is Dr ¼ ðDnÞ sec �, Figure 1
shows that

D _QQint;� ¼ u�qDrDwð Þ��D�=2� u�qDrDwð Þ�þD�=2

¼ � @

@�
A

u�qDn

R

� �
D�D� : ð16Þ

The final contribution to advection stems from the

Fig. 1.—Element of the shell, with normal and tangential directions
shown. The angle � is measured clockwise from the radial to the normal
direction. The shell thickness is Dn, while the arc length at constant
azimuthal angle is Ds. The azimuthal width of the patch is Dw ¼ R sin �D�.
The length of the chord slicing the shell at constant (h, �) is Dr ¼ Dn sec �.
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�-velocity. Here we find

D _QQint;� ¼ u�qDsDn
� �

��D�=2
� u�qDsDn
� �

�þD�=2

¼ �u�R sec �
@q

@�
DnD�D� : ð17Þ

Apart from notation, this equation is identical to equation
(18) of Paper I.

We now sum all the advective terms to form D _QQadv.
Combining equations (15)–(17), we have

D _QQadv ¼
�
� @

@�
A

u�
R
qDn

� 	

þA u0w;nqw � u0i;nqi �
u�
$

@

@�
ðqDnÞ


 ��
D�D� ; ð18Þ

where$ � R sin � is the cylindrical radius.
In order to express mass conservation, we let q be the

mass density �. Note that this quantity, like the others we
shall be considering, is formally infinite in the limit Dn ! 0,
whereas �Dn is the finite surface density �. Since there are no
sources or sinks of mass, we demand that D _QQ ¼ D _QQadv. We
find

@

@t
A�ð Þ þ @

@�
A

�u�
R

� 	
¼ A �wu

0
w;n � �iu

0
i;n

� �
: ð19Þ

Turning to momentum, we first note that the magni-
tude of the gravitational force on the patch is DFg ¼
GM��AD�D�=R2. This force would increase the momen-
tum within the patch even if there were no advection.
Suppose we choose our patch to be located at � ¼ 0 in
the global, spherical coordinate system. Then the
Cartesian components of the gravitational force become
DFg;x ¼ �DFg sin �, DFg;y ¼ 0, and DFg;z ¼ �DFg cos �.
The physical conservation law is most directly expressed
in terms of Cartesian coordinates. In the x-momentum
equation, we let q ¼ �ux in equations (14) and (18) and
demand that D _QQ ¼ D _QQadv þ DFg;x. For the patch
centered on � ¼ 0, ux � u$ and @ux=@� � �u�. Here u$
is the cylindrical radial component of velocity. We
obtain

@

@t
A�u$ð Þ þ @

@�
A

�u�u$
R

� 	

¼ A

�
�wu

0
w;nuw;$ � �iu

0
i;nui;$ þ

�u2�
$

� GM��
R2

sin �

�
: ð20Þ

The y-component of momentum conservation is simpler
since DFg;y ¼ 0. We now let q ¼ �uy and use uy � u�
and @uy=@� � u$ to find

@

@t
A�u�
� �

þ @

@�
A

�u�u�
R

� 	

¼ A �wu
0
w;nuw;� � �iu

0
i;nui;� �

�u�u$
$

� 	
: ð21Þ

We may obtain a simpler form of this �-force equation
by instead writing it in terms of the z-component of
angular momentum. First note that using equation (13),
we have the relation @$=@tþ ðu�=RÞ@$=@� ¼ u$. Multi-
plying this equation by A�u� and adding it to $ times

equation (21), we obtain

@

@t
A$�u�
� �

þ @

@�
$A

�u�u�
R

� 	

¼ A$ �wu
0
w;nuw;� � �iu

0
i;nui;�

� �
: ð22Þ

Similarly, the z-force equation is obtained using q ¼ uz:

@

@t
A�uzð Þ þ @

@�
A

�u�uz
R

� 	

¼ A

�
�wu

0
w;nuw;z � �iu

0
i;nui;z �

GM��
R2

cos �

�
: ð23Þ

We have seen that beginning with Cartesian components
of velocity, the azimuthal symmetry of the problem leads
naturally to equations in terms of the cylindrical compo-
nents of velocity. However, for a radial driving wind, it will
be most useful to use spherical components. By taking linear
combinations of equations (20) and (23) and substituting
u$ ¼ ur sin �þ u� cos � and uz ¼ ur cos �� u� sin �, we may
recast them in terms of the velocities ur and uh:

@

@t
A�urð Þ þ @

@�
A

�u�ur
R

� 	

¼ A

�
�wu

0
w;nuw;r � �iu

0
i;nui;r þ

�u2�
R

� GM��
R2

�
; ð24Þ

@

@t
A�u�ð Þ þ @

@�
A

�u�u�
R

� 	

¼ A

�
�wu

0
w;nuw;� � �iu

0
i;nui;� þ

�u2� cot �

R

�
: ð25Þ

Previously, Giuliani (1982) derived an equivalent set of
equations, including magnetic fields, but without
accounting for gravity or rotation.

2.4. Time-dependent Equations: Lagrangian Form

In practice, it is simplest to solve the evolutionary equa-
tions by recasting them in Lagrangian form. Consider first
the comoving derivative of any quantity Q within the shell.
In the Eulerian description we have used until now, Q is a
function of t, h, and �. It also depends implicitly on radius,
since, at fixed h and �, the radius R varies with time. The
comoving derivative is therefore

DQ

Dt
¼ @Q

@t
þ u�

R

@Q

@�
þ u�
R sin �

@Q

@�
: ð26Þ

We now letQ be, in turn, the radial and angular positions of
amoving fluid element that constitutes part of the shell. This
element is no longer constrained in h and �, as was our
patch. Retaining the old notation for these coordinates,
now serving as dependent variables, we substitute into
equation (26) to find

DR

Dt
¼ ur ; ð27Þ

D�

Dt
¼ u�

R
; ð28Þ

D�

Dt
¼ u�

R sin �
: ð29Þ

In deriving equation (27), we have used both equation (13)
and the definition of � in terms of R0. Equations (27)–(29)
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describe both the expansion of the shell and tangential
motion along its surface. We next substitute for Q in equa-
tion (26) the quantity A�. After utilizing equation (19), we
arrive at the Lagrangian expression for mass conservation,
which we may write as

D ln A�ð Þ½ �
Dt

¼
�wu

0
w;n � �iu

0
i;n

�
� @

@�

�
u�
R

�
: ð30Þ

To obtain the r- and h-components of the force equation, as
well as the expression for angular momentum conservation,
we substitute for Q the quantities ur, uh, and $u�, respec-
tively. We then use our Eulerian conservation laws and
equation (30) in each case to find

Dur
Dt

¼
�wu0w;nu0w;r � �iu

0
i;nu

0
i;r

�
þ
u2�
R

þ l2 sin �

$3
� GM�

R2
; ð31Þ

Du�
Dt

¼
�wu0w;nu

0
w;� � �iu

0
i;nu

0
i;�

�
� uru�

R
þ l2 cos �

$3
; ð32Þ

Dl

Dt
¼

�wu0w;nl0w � �iu
0
i;nl

0
i

�
: ð33Þ

Here we have let l � $u� be the z-component of specific
angular momentum and have further defined

l0w � $ uw;� � u�
� �

; ð34Þ
l0i � $ ui;� � u�

� �
: ð35Þ

Equations (27)–(29) and (31)–(33) may be summarized in
vector form as

DR

Dt
¼ u ; ð36Þ

Du

Dt
¼

�wu
0
w;nu

0
w � �iu

0
i;nu

0
i

�
� GM�

R2
r̂r : ð37Þ

As expected, the acceleration of the fluid element depends
on both the radial force of gravity and the input of momen-
tum from wind and infall. Note finally that the mass conser-
vation equation (30) contains an Eulerian derivative on the
right-hand side, so that our equations are not in purely
Lagrangian form. Indeed, the normal components of wind
and infall speed that enter equations (30)–(33) also require,
through the angle �, the Eulerian derivative @R=@�. In prac-
tice, this mixed character of the equations and the fact that h
acts as both a dependent and independent variable present
no special difficulty for integration.

3. METHOD OF SOLUTION

Equations (27)–(33) fully describe the motion of a fluid
element within the shell. Because the latter is axisym-
metric, there is no need to track the �-coordinate, and
we may ignore equation (29). We treat the others effec-
tively as ordinary differential equations in time and use
them to follow a collection of 50 discrete points that rep-
resents our shell. We evaluate the cross derivatives @R=@�
and @ðu�=RÞ=@�, by numerically differencing R and uh/R.
This method has been employed previously for the simi-
lar problem of steady state, nonaxisymmetric bow shocks
and expanding supershells (Mac Low & McCray 1988;
Bandiera 1993) and works well provided that the spacing
between adjacent trajectories is fine enough to determine
numerical derivatives.

For each of the 50 points, we integrated the equations in
time using a fifth-order Runge-Kutta scheme. Cross deriva-
tives were obtained at each point by using the two nearest
neighbors and were thus second-order accurate. Since the
points move in a manner dictated by the local fluid velocity,
they are unevenly spaced in angle. In practice, we approxi-
mated the shell segment by fitting a circular arc through
each triad of points. The cross derivatives at the middle
point were then obtained analytically from this curve.

As the shell evolved in time, some of its representative
points inevitably drifted toward the equatorial plane. In
addition, points could move so close together that there was
little variation in the intervening space. In either circum-
stance, we removed a point from the original set. We imme-
diately replaced it with another, which we introduced at the
part of the shell that was most sparsely covered. We always
retained one point on the symmetry axis, where the boun-
dary conditions R0 ¼ u� ¼ u� ¼ 0 were applied. Here the
mass equation was written in modified form to account for
the vanishing of the sin � factor withinA.

We tested our code on three problems with known,
analytic solutions. They include (1) an expanding, spheri-
cal shell driven by an isotropic wind, (2) a shell driven by
an angle-dependent wind within an r�2 density distribu-
tion (Shu et al. 1991), and (3) the bow shock created by
the wind from a star that is moving into a uniform
medium. The first two tests confirmed the code to better
than 1% accuracy in a nonsteady situation. For the last
problem, Wilkin (1996) found analytic solutions for the
steady state shell configuration, including the surface den-
sity and flow velocity along the shell. Figure 2 shows the
expansion of our time-dependent bow shock as it
approaches the steady state endpoint. We have checked

Fig. 2.—Approach of the shell to the steady state bow shock solution. In
the frame of the star, located at the origin, the ambient mediummoves with
velocity �V�ẑz. The initially spherical shell began at 3Rsun, much smaller
than the standoff radius R0 ¼ 2:45� 1017 cm. Solutions are shown for
elapsed time increasing by a factor of 2 from 1/32 to 4 times the crossing
time R0/V*. Triangles denote grid points, while the analytic, steady state
solution is given by the solid curve.
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that the approach to equilibrium agrees with the
calculations of Giuliani (1982).

Figure 3 compares a number of quantities in the analytic
solution with our numerical results, at a time when equili-
brium has been reached. The fractional errors are between
10�2 and 10�4, except close to the pole. Judging from the
three tests, we believe that our code is capable of tracking all
variables in the time-dependent shell to within an accuracy
of 1%–2%.

4. INSTABILITY OF THE QUASI-STEADY SOLUTION

Before displaying our fully time-dependent results, we
first discuss the quasi-steady solutions obtained in Paper I.1

These shells are in dynamical equilibrium, with gravity and
the infall ram pressure opposing the outward ram pressure
from the wind. Because gravity plays a dominant role, we
suspected that the shells might be dynamically unstable (see
x 4 of Paper I). We now demonstrate this fact both
analytically and numerically.

4.1. Analytical Argument

We first examine the stability in the region of the polar
axis. This approach extracts the basic physics while bypass-
ing a full modal analysis, such as that done for wind bow
shocks by Dgani, Van Buren, & Noriega-Crespo (1996).
The total radial force per unit area acting on the shell near

the axis is

Fr ¼ �wV
2
w � �iu

2
i;r �

GM��
R2

: ð38Þ

Note that we have omitted centrifugal terms, which are
vanishingly small near the pole.

The condition of normal force balance is that FrðR0Þ ¼ 0,
where R0 is the shell’s equilibrium polar radius. We now
imagine perturbing the shell and examine the resulting
change in Fr. For this purpose, we consider the lowest order
oscillation mode of the shell, i.e., its breathing mode. We
find the altered wind density �w from equation (8) and the
infall density �i and velocity ui;r from equations (6) and (3),
respectively. For the latter two quantities, we specialize to
the pole by setting �0 ¼ � ¼ 0. To obtain the perturbed
value of the mass density �, we ignore any additional mass
swept up by the shell during its oscillation. Thus, to
conserve mass, we write � ¼ �0R

2
0=R

2, where �0 is the
equilibrium value. Equation (38) then becomes

Fr ¼
_MMwVw

4�R2
�

_MMi

4�R2

2GM�
R

� �1=2 1

1þ 2�
�
GM��0R

2
0

R4
;

ð39Þ

where � � Rcen=R. Note that we have also neglected altera-
tions to the surface density due to the perturbation in the
tangential motion. We showed in Paper I that such motion
is generally small compared to the wind and infall speeds.

We next nondimensionalize equation (39) by dividing
through by _MMwVw=4�R

2
0. Again employing subscripts for

equilibrium values, we have

Fr ¼
R

R0

� ��2

�fi
R

R0

� ��5=2
1þ 2�0
1þ 2�

� fg
R

R0

� ��4

: ð40Þ

The constants fi and fg are the nondimensional (fractional)
contributions of the infall and gravitational forces, respec-
tively, at the equilibrium position. These are given by

fi ¼
_MMi

_MMw

2GM�
V 2

wR0

� �1=2 1

1þ 2�0
; ð41Þ

fg ¼
4�GM��0

_MMwVw

: ð42Þ

The requirement that R0 be an equilibrium radius means
that fg ¼ 1� fi. Thus, we may eliminate fg from equation
(40). Writing R=R0 ¼ 1þ � and recalling that � / 1=R, we
linearize in � to find the small radial force due to the
oscillation:

Fr � 2� fi
3þ 10�0
2 1þ 2�0ð Þ


 �
� : ð43Þ

We see that there is a critical value for fi:

fi;crit ¼
4 1þ 2�0ð Þ
3þ 10�0

: ð44Þ

If the actual fi in the equilibrium solution exceeds fi;crit, then
the radial force is directed opposite to the displacement; i.e.,
the shell is stable (or overstable). Conversely, fi < fi;crit
implies dynamic instability. Theminimum value of fi;crit, that
for infinite �0, is 0.8; that is, at least 80% of the confining

1 We draw the reader’s attention to two typographical errors in Paper I.
Equation (70) should have an overall minus sign on the right-hand side,
and equation (72) should read 	 � 
 sin �� ��2

m=R�t cos �.

Fig. 3.—Fractional errors for the bow shock test case after reaching
near-equilibrium. Because the normal velocity vanishes in steady state, the
quantity un/ut refers to the normal velocity of the grid points divided by
the analytic solution for the tangential velocity.
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force must come from the infall ram pressure, rather than
gravity, to ensure stability.

We now return to the exact results of Paper I. There
we found fi to be

fi ¼ 1þ 3

4

1þ 2�0ð Þ 1þ 
 1þ 2�0ð Þ½ �2

�0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�20 þ 3�0=8

q
8><
>:

9>=
>;

�1

; ð45Þ

where 
 � _MMw= _MMi is the ratio of wind to infall mass
transfer rates. This result is taken from equation (60) of
Paper I, where the three terms of that equation corre-
spond, from left to right, to the normal force due to
wind, infall, and gravity, respectively. For a fixed value
of �0, decreasing 
 increases fi. Thus, we consider the
limit 
 ! 0, to obtain the largest possible value of fi. If
we set 
 ¼ 0 in equation (45), then fi monotonically
increases with �0. The maximum of fi occurs in the limit
�0 ! 1, 
 ! 0, in which case fi ¼ 4

7. Since this is sub-
stantially less than the minimum value of fi necessary for
stability, we conclude that there are no combinations of

 and �0 such that the shell is stable. While this analysis
is based on conditions near the symmetry axis, the small
contribution of centrifugal effects at larger angles (x 3.3
of Paper I) suggests that the same result should hold
throughout the shell. One might argue that the steady
state solution might nevertheless be achieved in some
average sense. While this has been found to be true for
isothermal bow shocks (Blondin & Koerwer 1998; Raga
et al. 1997), the calculations we next describe indicate
that this is not the case in our problem.

4.2. Numerical Demonstration

We next use our time-dependent code to evolve shells
starting near the steady state conditions derived in Paper
I. The latter calculation gives us the run of R, �, ut, u�
for a grid of h-values. We first verified the validity of the
steady state solutions, checking that the net normal force
on a fluid element is equal to the normal component of
the centrifugal force it experiences. Despite this balance,
the shells do not stay in their initial configuration but
evolve quickly. Shells begun at a size slightly larger than
equilibrium expand, while those of slightly smaller size
collapse, as expected by the analytical argument. A repre-
sentative example is shown in Figure 4. The innermost
two curves are polar radii for shells distorted slightly
inward from equilibrium, while the outermost two curves
represent shells begun slightly beyond the equilibrium
radius. All other quantities in the shell, such as the run
of surface density with polar angle, were initially the
same as for steady state. The equilibrium solution shown
is that of the critical (innermost) model for 
 ¼ 0:1
shown in Figure 9 of Paper I. The slightly shrunken, col-
lapsing shell quickly accelerates to free-fall speed, while
the expanding structure eventually decelerates at large
radius as a momentum-conserving snowplow. The ana-
lytic argument of the preceding section, together with
these and similar numerical experiments, shows con-
vincingly that the quasi-steady shells are dynamically
unstable. This basic result motivates our current study,
where we consider the shell evolution as an explicitly
time-dependent, initial value problem.

5. TIME-DEPENDENT EVOLUTION:
BASIC CONSIDERATIONS

5.1. Initial Conditions

We now wish to follow the motion of the shell from its
launch near the protostellar surface. Our shell is initially
spherical and massless, with radius equal to that of the
protostar, R*. As the structure evolves, it receives mass
from both the wind and infall. Thus, even at launch,
there are well-defined values for all the physical quanti-
ties of interest. Note, however, that the momentum equa-
tion (37) is singular if � vanishes. The initial velocity is
found by setting the corresponding numerator to zero:

�wu
0
w;n uw � u0ð Þ � �iu

0
i;n ui � u0ð Þ ¼ 0 : ð46Þ

Here we have explicitly written the vector velocity differ-
ences. We define � � ��iu

0
i;n=�wu

0
w;n, which is the ratio of

mass fluxes from the wind and infall onto the shell. Then
equation (46) becomes

u0 ¼
uw þ �ui
1þ �

: ð47Þ

To find � explicitly, we take the normal component of
equation (46), obtaining �wu02w;n ¼ �iu

02
i;n. Defining


 � �i=�w and taking the square root of both sides, we
have

ðuw;n � u0;nÞ ¼ 
1=2ðu0;n � ui;nÞ : ð48Þ

In obtaining equation (48), we have accounted for the
fact that ui;n < u0;n < uw;n. Equation (48) implies

� ¼ 
1=2 ; ð49Þ

Elapsed Time (s)

0
0

Fig. 4.—Instability of an initial steady state solution: polar radius vs.
time for shells starting close to the steady state solution of Paper I. Shells
begun at slightly smaller radius collapse, while shells begun at slightly larger
radius expand indefinitely. The equilibrium radius is shown (boldface) for
the solution corresponding to 
 ¼ 0:1, �0 ¼ 2:45.
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which yields the final result

u0 ¼
uw þ 
1=2ui
1þ 
1=2

: ð50Þ

In equation (50), both ui and 
 depend on h. The normal
component of this equation represents the balance of
wind and infall ram pressures in the frame of the shell.
This result is a generalization of the well-known formula
for the speed of the planar bow shock driven by a steady
jet (e.g., Blandford, Begelman, & Rees 1984). In our case,
however, the ‘‘ ambient ’’ matter is in nonuniform motion
with velocity ui. For a dense wind 
5 1, the shell tends
to the wind speed, while for a rarefied wind with 
41,
the shell collapses at the infall speed.

To derive the initial rate at which mass is being swept up,
we use equation (30):

D�

Dt
� @�

@t
� _��0

¼ �wu
0
w;n � �iu

0
i;n ; ð51Þ

where we have dropped terms from equation (30) that van-
ish with �. The right-hand side of equation (51) is to be eval-
uated using equation (50) for the shell’s initial velocity.

Our calculation requires values for the stellar radius R*,
wind speed Vw � uwj j, and mass-loss rate _MMw. The distribu-
tion of infalling matter is specified by t, the time since the
start of collapse, together with the sound speed a0 and rota-
tion rate �0 of the parent dense core. Thus, there are six
dimensional parameters. In principle, the protostellar
radius is not independent of the others but should be
obtained from stellar evolution theory (e.g., Stahler 1988).
However, we will simply adopt a characteristic protostellar
radius and show how the results scale with this and other
choices of the dimensional parameters.

5.2. Nondimensional Parameters and Equations

To reduce the number of runs needed to explore parame-
ter space, we cast the equations in nondimensional form.
There are two timescales of interest: an evolutionary and a
dynamical one. The first is the time over which the infall
itself changes appreciably. In terms of the dimensional
parameters listed previously, we define

tev �
R�
a0�2

0

� �1=3

: ð52Þ

According to equation (10) of Stahler et al. (1994), tev is, to
within a factor of order unity, the time after start of collapse
when the centrifugal radius associated with infall attains the
valueR*.

We find the dynamical time by first assigning units of
length and velocity. The first is R*, and the second is
the Keplerian speed at the stellar surface. Since the
characteristic stellar mass is _MMitev, we have

V� �
a
4=3
0

R
1=3
� �

1=3
0

; ð53Þ

where we have left out the factor ofm0 entering equation (1)

for _MMi. The dynamical time is now defined asR*/V*, or

tdyn �
R

4=3
� �

1=3
0

a
4=3
0

: ð54Þ

Note finally that the mass of the shell, after a dynamical
time, is of magnitude _MMitdyn. We formally define our mass
unit as

Mdyn �
a30

4�G�0

R��0

a0

� �4=3

: ð55Þ

Here again we have left out the factor of m0 and have
introduced a factor of 4� for later convenience.

All physical variables can be written as dimensionless fac-
tors times appropriate combinations of R*, tdyn, and Mdyn.
Additionally, certain nondimensional ratios enter the final
equations. One involves the mass transport rates in the wind
and infall:


 �
_MMw

_MMi

: ð56Þ

In this study, we only consider values of 
 less than unity. A
second ratio is the wind speed divided by our dynamical unit
of velocity:

� � Vw

V�
: ð57Þ

Assigning canonical values of the dimensional parameters
a0 ¼ 0:2 km s�1,�0 ¼ 2� 10�14 s�1, andR� ¼ 3R�, as well
as a reference wind speed of 200 km s�1, the reader may
verify that � is of order unity. The third key nondimensional
ratio is the initial launch time of the shell in terms of tev:

�0 �
tinit
tev

: ð58Þ

For �05 1, the centrifugal radius has not yet reached the
protostellar radius, and the infall conditions are those of
nearly spherically symmetric free fall. For �041, the initial
launch is within the inner, anisotropic region of the infall. In
order to compute the evolution of the shocked shell in
dimensionless units, only the three nondimensional ratios 
,
�, and �0 need to be specified.

Another obvious ratio is that of the dynamical and
evolutionary timescales:

	 � tdyn
tev

¼ R��0

a0
: ð59Þ

This quantity is of order 10�7. Since our calculations span
only dynamical times, 	 does not appear explicitly in the
final, nondimensional equations (see below). Note that our
previous physical units can be written as

V� ¼ 	�1=3a0 ; ð60aÞ
tdyn ¼ 	4=3��1

0 ; ð60bÞ

Mdyn ¼ 	4=3
a30

4�G�0
: ð60cÞ
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The nondimensional equations include various quantities
related to the infall. These, in turn, depend on the time t
since the start of collapse. Since our basic temporal unit is
tdyn, we may write

t ¼ 	�1�tdyn : ð61Þ

Here � is the nondimensional evolutionary time, written in
terms of tev. In practice, the difference between � and �0 is
exceedingly small. Even if we were to evolve the shell for 104

dynamical times, � would only change fractionally by order
10�3. Thus, in the dynamical equations we treat � as a
constant and drop the unnecessary subscript on �0.

To complete our description of the nondimensional prob-
lem, we give the dimensionless forms of the remaining infall
and wind quantities. We write the infall vector velocity in
terms of the Keplerian speed as ui ¼ uKf , where
uK �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM�=R

p
, and the components of f may be deduced

from equations (3)–(5). Letting tildes denote nondimen-
sional quantities (e.g., ~RR � R=R�) and using GM� ¼ m0a

3
0t,

we obtain

~uuK ¼ m
1=2
0

�
~RR

� �1=2

: ð62Þ

Similarly, the quantity � is given by

� ¼ m3
0

�3

16~RR
: ð63Þ

When the centrifugal radius equals the stellar radius, � ¼ 1
at the surface of the star. From the above equation, the cor-
responding nondimensional time � is 2.54. The infall and
wind densities in nondimensional form are

~��i ¼
~SSi

~RR2~uuK
; ð64Þ

~��w ¼ 

~RR2�

; ð65Þ

where the infall density shape function is

~SS�1
i � �fr 1þ 2�P2 cos �0ð Þ½ � : ð66Þ

Dropping the tilde notation, the dimensionless form of
the dynamical equations is

DR

Dt
¼ u ; ð67Þ

D ln A�ð Þ½ �
Dt

¼ 1

R2�

 cos � � un

�

� 	
� Si fn �

un
uK

� �
 �

� @

@�

�
u�
R

�
; ð68Þ

Du

Dt
¼ 1

R2�



�
cos � � un

�

�
u0w � Si fn �

un
uK

� �
u0i


 �
�m0

� r̂r

R2
:

ð69Þ

Note again that only three parameters, the dimensionless
ratios 
, � , and �, enter the final equations.

In order to launch a shell, the driving wind speed must be
sufficient to yield a shell velocity ur > 0, which in turn
implies that the wind ram pressure exceed the infall ram

pressure at the stellar surface. In terms of our chosen units,
we require � > �ram, where

�ram ¼ �esc


ð1þm3
0�

3=8Þ
ð70Þ

is the value of � that balances ram pressures at the stellar
pole, and �esc ¼ ð2m0�Þ1=2 (see eq. [62]) is the escape speed at
the stellar surface.

6. NUMERICAL RESULTS

6.1. Breakout versus Recollapse

Before discussing the details of our numerical results, we
note that the mass of the shell typically will be dominated by
the swept-up infall. In the limit of a stationary, spherical
shell, the ratio of wind to infall contributions is 
 (<1), but
outward motion of the shell further increases the fractional
contribution of infall to the shell mass. Although our calcu-
lations conserve the z angular momentum of the incident,
infalling gas, the centrifugal support of the shell is modest.
The primary effect of infall angular momentum is to estab-
lish an asymmetric flow, which is then swept up by the
expanding shell.

A sample evolutionary sequence is shown in Figures 5–7
for a typical choice of nondimensional parameters (
 ¼ 1

3,
� ¼ 4, � ¼ 4:7). Here the results are displayed both non-
dimensionally and in physical units. For the latter, we
assumed standard values of the dimensional quantities:
R� ¼ 3 R�, �0 ¼ 2� 10�14 s�1, a0 ¼ 0:2 km s�1. These
choices imply an accretion rate of 1:85� 10�6 M� yr�1, a
time since protostar formation of 38,000 yr, and a wind
speed of 159 km s�1. The shell first elongates as it expands

Nondimensional cylindrical radius
0 2 4 6 8 10 12

0

2

4

6

8

10

12

0
0

Cylindrical radius, cm

Fig. 5.—Time evolution of an escaping shell (early evolution),
corresponding to 
 ¼ 1

3, � ¼ 4:7, and � ¼ 4:0. The protostellar age since
core formation is 3:8� 104 yr. The shapes correspond to equal time
intervals of 0.016 yr. The subsequent evolution of this shell is shown in the
next two figures on a larger scale. The scale of the centrifugal radius is indi-
cated by the disk. Lengths are in cm on the left and bottom axes, and in
units of the stellar radius on the top and right axes.
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up to and beyond the disk radius, indicated in Figure 5. This
outward motion never ceases, as the wind is able to drive
back the infalling envelope in all directions. We refer to such
an outcome as breakout. While at intermediate times (see

Fig. 6) the shell is quite elongated and a bipolar geometry is
obtained, at late times (Fig. 7) the shell takes on a more
spherical appearance. In this spatial regime, well beyond
the disk radius, the ambient density is also spherically
symmetric.

Figure 8 shows that dramatically different results are
obtained with very similar input parameters (
 ¼ 1

3, � ¼ 4,
� ¼ 4:4). Dimensionally, the wind speed has now been low-
ered to 148 km s�1. The shell initially rises as before, but it
stalls and falls back to the star at nearly free-fall speed. As
the shell plummets to the stellar surface, initial ripples are
amplified; higher numerical resolution would be needed to
follow this apparent instability. We will not be interested in
such details, but only in whether or not the shell succeeds in
driving back the infall. Shells that break out are typically
quite smooth and regular. Even for those that recollapse,
the structure is smooth up to the point of turnaround. Note
that recollapse is caused primarily by gravity acting on the
heavy shell, rather than infall ram pressure. Turning off
gravity in the code, breakout is achieved for a wind speed
less than half of that in Figure 8.

For those shells that do achieve breakout and have
traveled far relative to the initial stellar radius, all quantities
follow a power law determined by the slope in the infall den-
sity law. For Rcen5 r5 a0t, �i / r�3=2, so the swept-up mass
varies as r3/2, while the shell’s momentum grows linearly
with time. The resulting momentum-driven snowplow has
R / t4=5 andVr / t�1=5.

6.2. Critical Solutions

We have mapped the parameter space of solutions as a
function of 
, � , and �. For a given value of 
, the �-� plane
is divided into three regions: one in which shells cannot even

Nondimensional cylindrical radius
0 50 100 150

0

50

100

150

0
0
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Fig. 6.—Time evolution of an escaping shell (further evolution),
corresponding to the same parameters as Fig. 5, but for increasing times
steps and on a larger scale. The innermost curve of this figure is the same as
the outermost of that figure. However, the elapsed time increases by a
factor of 2 with each curve: 4, 8, 16, 32, and 64 time units. The dashed
curves represent an ‘‘ equivalent ’’ model driven by an asymmetric wind
(see x 6.3).

Nondimensional cylindrical radius
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0
0
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Fig. 7.—Time evolution of an escaping shell (late time), corresponding
to the same parameters as Figs. 5 and 6. Here the shell has gone well beyond
the centrifugal radius of the infall and is in the increasingly spherically sym-
metric infall region. Hence, the shell becomes more spherical as it sweeps up
this material. The elapsed time doubles with each successive curve. The
innermost here corresponds to 128 time units of Fig. 5, while the outermost
is greater by a factor of 64 (8192 time units), which corresponds to 134 yr
since launch.
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Fig. 8.—Time evolution of a recollapsing shell corresponding to 
 ¼ 1
3,

� ¼ 4:4, and � ¼ 4:0. The critical wind speed for these parameters is
�crit ¼ 4:48. Solid curves show the rising phase, while dotted curves display
the subsequent recollapse. Shown for equal time intervals of 1

4 is the time to
reach the highest point along the z-axis, which is the same interval as the
unit used in Fig. 5.
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advance beyond the stellar surface, one in which the shell
may initially rise but is pulled back, and one in which the
shell breaks out. These solution regimes will be called the
crushed wind, the trapped wind, and the escaping wind,
respectively. In the �-� plane, the boundary between the
crushed wind and the trapped wind is the locus �ramð
; �Þ
given by equation (70), where infall and wind ram pressures
balance at the stellar surface. We similarly denote by �crit
the minimum nondimensional wind speed necessary for
breakout. Figure 9 plots this quantity as a function of time,
for three representative values of 
. Again, we display the
results both nondimensionally and in physical units,
employing our fiducial input parameters. Table 1 also lists
values of �crit at selected times. Returning to the figure, we
see that, at very early times, �crit increases as �

1/2 and is also
inversely proportional to 
. At intermediate times such that

Rcen � R�, the centrifugal deflection of infalling gas lowers
the infall density, and �crit consequently falls. Once again,
�crit at any time during this epoch is proportional to 
�1.
Throughout early and intermediate times, whether or not
the shell breaks out is determined by the product 
�, that is,
on the momentum-loss rate of the wind. Finally, �crit again
rises at late times. In this case, the critical wind speed is
independent of 
 and increases as �1/2.

Let us see in more detail how these results arise. The wind
must combat the infall ram pressure and the gravitational
force on the shell. At early times, we may neglect centrifugal
distortion of the infall and consider only the spherically
symmetric problem. In this case, the infall ram pressure at
fixed radius varies as �1/2 (recall eq. [39]). The gravitational
force per unit shell mass rises as �1. To determine the force
per area, we first note that the infall density �i falls as �

�1/2,
a consequence of the rising free-fall velocity. For a light
wind, �w5 �i, we may neglect the mass contribution of the
wind. Since most of the mass of the shell is swept up,
� / �i / ��1=2 (see eqs. [62] and [64]), so the gravitational
force per unit area on the shell �V also behaves as �1/2.
Comparing the wind ram pressure (proportional to 
�) to
the sum of infall ram pressure and gravity, we obtain
�crit / �1=2=
.

The downturn in �crit at � � 1 occurs because the star is
now interior to the centrifugal radius. The decrease in the
infall density along the z-axis relative to spherical accretion
implies that breakout becomes easier. Because the shell’s
mass is dominated by the infall contribution, the decrease in
the infall density along the axis decreases both the infall ram
pressure and the gravitational force on the shell. At late
times, the centrifugal radius has grown so large that the pri-
mary source of mass input to the shell is the wind. In this
regime, the wind speed necessary for breakout is propor-
tional to the stellar escape velocity, which in turn varies as
�1/2.

We compare these numerical results for �crit with three
analytical approximations in Figure 10. A hypothetical
wind of speed � ¼ �esc (diagonal dot-dashed line) would be
fast enough to break out if we neglect the mass and momen-
tum fluxes to the shell from infall. We see that except for late
times (� 	 10), the wind must be considerably faster than
the escape speed to drive a swept-up shell that will break
out. At late times, our constant-speed wind can break out
with � < �esc because we have neglected gravitational decel-
eration of the preshock wind.2 The second approximation is
that of � ¼ �ram, shown by the dashed line, yielding ram
pressure balance of wind and infall at the stellar surface.
This approximation underestimates the necessary wind
speed for breakout by a factor of 1.9 at early times, when
the infall is spherically symmetric, but it underestimates the
critical speed by a much larger factor once the infall
becomes significantly aspherical.

The two foregoing analytical approximations give a poor
agreement with �crit because the first neglects the infall ram

2 Using modified wind conditions of such a coasting, decelerating wind
of constant specific energy e ¼ V2

w=2� GM�=r and numerically determin-
ing the corresponding critical speed for breakout with our code (Fig. 10,
filled triangles), we see that the late-time critical curves are shifted vertically
and converge to the escape speed. At early times, since breakout speeds
were already much larger than the escape speed, the difference between a
constant speed and a decelerating wind is negligible, and the critical curves
are unchanged. Because no observed winds actually decelerate, we consider
the constant-velocity curves to bemore applicable.

Fig. 9.—Minimum breakout wind speed vs. evolutionary time. The three
loci (solid curves) correspond to three ratios, 
, of the wind mass loss to
infall accretion rate. For a given 
, the region above the curve corresponds
to breakout, while that below the curve corresponds to recollapse. An
analytic fit to the numerical solutions is shown as dashed curves.

TABLE 1

Critical Wind Speed �crit




� 1/3 1/10 1/30

0.25 .............. 4.19 12.7 37.1

0.50 .............. 5.90 17.9 52.0

1.00 .............. 7.67 23.1 67.0

2.00 .............. 7.34 21.0 59.8

4.00 .............. 4.48 11.6 32.2

8.00 .............. 2.81 5.80 16.1

16.0 .............. 2.89 3.33 8.06

32.0 .............. 3.71 3.87 4.18

64.0 .............. 5.10 5.16 5.29

128. .............. 7.14 7.18 7.23

256. .............. 10.1 10.1 10.1
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pressure, while the second neglects the gravitational force
on the shell. To include in an analytic fashion the effect of
both infall ram pressure and gravity on the shocked gas
within the shell, we specify the condition that the initial post-
shock gas be rising at the escape speed. According to
equation (50), in order to have u0;r ¼ Vesc, we obtain the
necessary condition

� ¼ �escð1þ 2
1=2Þ : ð71Þ

We cannot immediately apply this equation because

 ¼ �i=�w itself depends on the wind speed. The density
ratio is found from equations (64)–(66), where for � ¼ 0 we
have fr ¼ �

ffiffiffi
2

p
and P2ðcos �0Þ ¼ 1, which yields


 ¼ b2
�

�esc
; ð72Þ

where we have defined for brevity

b � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

 1þ 2�0ð Þ

p : ð73Þ

The solution �0 to equations (71) and (72) is found as the
root of a quadratic equation, giving

�0 ¼ f �esc bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 1

p� 	2

; ð74Þ

which for f ¼ 1 is the value of � required to give the post-
shock, mixed gas escape speed at the stellar surface. The ad
hoc factor f allows us to consider the wind to be some frac-
tion f of the speed required to give the shell escape speed at
launch. The corresponding curve for 
 ¼ 0:1 and f ¼ 1 is

shown in Figure 10 (dotted curve). If we neglect changes in
the infall momentum flux per unit solid angle once the shell
is launched, �0 is expected to be an estimate of the necessary
wind speed to launch a shell that will break out. In practice,
as the shell advances, the forces on the shell change, and typ-
ically the wind weakens less quickly than the infall, so the
above condition overestimates the required wind speed.
Except for the vertical offset, however, the curve follows
closely the shape of the numerically derived critical curve,
suggesting f � const throughout the evolution. By choosing
f ¼ 0:45, so as to fit the late-time behavior, an approximate
fit to the critical curves is shown in Figure 9.

6.3. Generalization to AnisotropicWind

The previously described calculations may be extended to
anisotropic winds by defining angular dependences of the
wind mass and momentum fluxes according to

�wVw ¼
_MMw

4�r2
fwð�Þ ; ð75Þ

�wV
2
w ¼

_MMw
�VVw

4�r2
gwð�Þ ; ð76Þ

where �VVw is the streamline-averaged wind speed and the
functions fw and gw are normalized to have unit average
value over 4� sr. Although a diversity of shell shapes may be
generated in this fashion, we focus only on the behavior at
the symmetry axis, where breakout is easiest. If the proper-
ties of the wind are smooth near the pole, i.e.,
f 0wð0Þ ¼ g0wð0Þ ¼ 0, the shell has R0ð0Þ ¼ 0 and looks locally
as though it is driven by an isotropic wind.

Figure 6 shows a numerical example. Here the dashed
curves represent a shell driven by an anisotropic wind
specifically chosen to have the same mass and momentum
fluxes toward � ¼ 0 as the isotropic wind (solid curves).
We have chosen the asymmetric driving wind to have

 ¼ 1

6 and a density �w / fw ¼ gw ¼ 1
2 ð1þ 3 cos2 �Þ, with

Vw independent of h, while the values of � and � are
unchanged from the spherical wind case. This angular
dependence represents the lowest order expansion that is
axisymmetric and of even parity and has been chosen
arbitrarily to give a pole-to-equator density contrast of 4.
Because the derived polar behavior R0(t) of a shell driven
by an anisotropic wind follows that of a spherical wind
having the same polar mass and momentum fluxes, the
critical wind speed �crit for breakout of an anisotropic
wind may be determined from our numerical curves.
Defining � � �VVw=V�, the equivalent spherical wind corre-
sponds to 
sph ¼ 
fwð0Þ and �sph ¼ �gwð0Þ=fwð0Þ. A wind
that is focused preferentially toward the poles mimics a
spherical wind corresponding to a higher value of 
 and
a reduced value of �crit, breaking out at an earlier time
(see below). In our example, the 
 ¼ 1

6 wind has 
sph ¼ 1
3

and the shell propagates along the axis like a bubble
from an isotropic wind of higher 
-value.

6.4. The Breakout Time

Given the curves for the critical wind speed for breakout
(Fig. 9), we now wish to estimate the time at which breakout
occurs. We first note that a wind whose speed is independent
of � would experience no trapped phase, since the curves for
�crit decrease as � ! 0. Although we are not offering a gen-
eral theoretical account of protostellar winds, we note that a

Fig. 10.—Minimum breakout wind speed vs. evolutionary time,
compared with analytical arguments. All curves correspond to 
 ¼ 0:1. At
bottom left (dashed curve) is the ram pressure balance condition at the
launch point. At bottom right (diagonal dot-dashed line) is the condition of
initial wind speed equal to the escape speed. The curve labeled �crit gives
numerical results for the critical wind speed. The top dotted curve gives the
condition that the shocked shell initially moves at the escape speed. Filled
triangles represent the critical condition for a decelerating wind (see text).
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constant wind speed is unlikely on purely empirical
grounds. Stars of all masses and ages tend to have Vw values
roughly equal to the appropriate surface escape speed
(Lamers & Cassinelli 1999). We therefore recast Figure 9 as
a plot of Vw=Vesc ¼ �=�esc versus � (Fig. 11). For compari-
son, we have also plotted �ram/�esc, to delimit the end of the
crushed wind phase, using equation (70) for �ram. Suppose,
then, that �/�esc were strictly a constant, equal to unity.
Taking the case 
 ¼ 1

3 in Figure 11, we see that the wind
would first be able to advance from the stellar surface at
t � 25; 000 yr, but breakout would be achieved at
t � 54; 000 yr. For the 
 ¼ 1=10 model, these times increase
to 41,000 and 98,000 yr, respectively. Our numbers rely on a
relatively modest value of �0 ¼ 2� 10�14 s�1. Based on
equation (52), increasing �0 by a factor of 2 would decrease
the above breakout times by a factor of 0.63. Thus, the
trapped outflow phase may be a significant fraction (�60%)
of the time prior to breakout.

For the example we have shown, the breakout of the shell
occurs at essentially all angles. However, this is not the case
for all runs and is not true in general. Thus, our breakout
time is to be interpreted as the time at which the wind first
breaks out along the z-axis. At larger angles, the wind may
be unable to break out until a later evolutionary time,
resulting in simultaneous outflow and infall.

Usually, however, the wind escapes globally, as shown in
Figures 5–7. The shell aspect ratio then begins and ends as
unity, either at the stellar surface or far from the star. The
maximum distortion, which is still modest, is attained at
intermediate times, when the shell is a few AU from the
stellar surface.

7. DISCUSSION

7.1. Behavior during the TrappedWind Phase

Our recollapsing shells generally become unstable during
the trapped wind phase. Portions that are initially inside
neighboring regions fall faster, increasing any perturbation
of an initially smooth surface. While our calculations do
find this strong dynamical effect, we cannot detect the non-
linear instability of Vishniac (1994), which relies on a finite
shell thickness. Our results make it clear, in any case, that
the true behavior during the trapped wind phase is exceed-
ingly complex. After a portion of the shell collapses to the
stellar and disk surfaces, a new shock is immediately driven
outward by the steady wind. Thus, there will simultaneously
be contracting and expanding patches at different angles.
Portions of the wind may escape temporarily between recol-
lapsing fragments before falling back. While the details of
this process cannot be followed by our computational
method, we believe our calculated breakout times should
still be reasonably accurate. In any event, this time cannot
decrease by more than about a factor of 2, since the infall
crushes the wind entirely at an earlier epoch.

One observational signature of the trapped wind phase
would be fluctuations in luminosity due to the rising and
recollapse of the shell. This luminosity arises from both the
shocking of the wind and ambient gas. When a portion of
the shell is rising, the corresponding wind component of
luminosity decreases because of the lowered shock velocity.
The infall component of the luminosity may either increase
(because the shock velocity is raised) or decrease (because
uij j ¼ uesc decreases at larger radius). All luminosity fluctua-
tions should increase in both period and amplitude with
evolutionary time because as breakout is approached, the
shell rises higher before recollapse. Further study is needed
to determine the observed magnitude of these fluctuations,
as well as the transport of radiation through the infalling
gas.

As indicated earlier, the wind may also break out along
the axis, while portions of the shell at larger angles continue
oscillatory behavior. In this case, one would observe a
bipolar jet accompanied by quasi-periodic fluctuations in
luminosity.

7.2. Comments on Collimation

Figures 5–7 show that the lobelike appearance of our
shells is a transient phenomenon created by anisotropy in
the infalling gas. In particular, this elongated morphology
cannot be identified with the collimation seen in Herbig-
Haro jets. Our assumed mixing of shocked wind and infall
is, in fact, an agent for decollimation. A fluid element of the
wind, initially moving radially outward, acquires a positive
h-velocity. Thus, there is a tendency for gas to move toward
the disk plane, despite the (temporary) elongation of the
shell.

Our mixing assumption was made purely for computa-
tional simplicity. In reality, there must be considerable shear
between the two shocks. This shear may have several impor-
tant consequences. First, shocked wind may be refracted
along the shell’s inner surface toward the polar axis, result-
ing in a more jetlike flow. Such a geometry would resemble
the early outflowmodel of Cantó (1980), although the latter
pictured a shell in pressure balance with a static, external
medium. A second effect is that shocked, ambient gas will

Fig. 11.—Critical wind speed for breakout (solid curves), in units of the
free-fall (escape) speed, as a function of evolutionary time. The correspond-
ing
-values are shown, as well as the wind speed necessary for ram pressure
balance at the stellar surface (dashed curves). Assuming wind launch condi-
tions �w=�esc ¼ 1 (i.e., following the horizontal line in this figure), evolution
begins at the left edge of the plot with the wind unable to advance beyond
the stellar surface until the line intersects the appropriate dashed curve.
Then the trappedwind phase lasts until the line intersects the corresponding
solid curve for breakout.
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move tangentially toward the equator. The overall result will
be a shell of lower mass that is less confined by stellar grav-
ity. The duration of the trapped wind phase will therefore be
reduced, resulting in earlier breakout. However, we note
that even in the limit of no mixing, the wind must still be
crushed by infall at a sufficiently early epoch. In future
calculations, we hope to explore quantitatively the
consequences of relaxing the mixing assumption.

In a series of numerical simulations carried out through
the 1990s, A. Frank and colleagues found that the interac-
tion of a spherical wind and infall produces very strong col-
limation. However, these studies (beginning with Frank &
Noriega-Crespo 1994) modified the equations for infall,
thus obtaining a much larger density anisotropy than
adopted here. For example, Frank & Mellema (1996) used
an equator-to-pole density contrast of 50–70, while
Delamarter, Frank, & Hartmann (2000) allow this ratio to
exceed 103. For comparison, the density contrast in our out-
flow exceeds 50 only for 0:96dR=Rcend1:08. Our escaping
shell spends relatively little time within this region, sweeping
up a small amount of mass. We conclude that a spherical or
modestly anisotropic wind undergoes little collimation
through interaction with a physically realistic infall, unless
it is through the shear effect described above.

Our finding of an early, trapped wind phase is a similarly
robust result, although it was missed in previous simula-
tions. Frank & Mellema (1996) adopt such a large wind
velocity (Vw 	 500 km s�1) that the infall ram pressure is
overwhelmed. Mellema & Frank (1997) did find oscillating
shells that, under some conditions, collapsed. However, the
driver of their oscillations was a variable wind, so that col-
lapse always coincided with the weakest outflow phase.
More recently, Delamarter et al. (2000) utilized as an infal-
ling background the flattened, rotating cloud of Hartmann,
Calvet, & Boss (1996). Although they claim that especially
weak winds may be stifled entirely by infall, their numerical
results always show the wind escaping through at least a
narrow solid angle through the symmetry axis.

We maintain, based on the arguments presented above,
that early wind crushing and eventual breakout are inescap-
able features within a realistic account of the wind-infall
interaction. In contrast, a strong, untrapped wind that is
present ab initio, as in previous simulations, would have
already modified substantially the background infall,
rendering subsequent results of dubious validity. Our own
calculations of breakout can provide useful starting condi-
tions for future investigators who wish to follow the wind
evolution well beyond this critical, early phase.

7.3. Further Observational Considerations

We have seen that, for canonical values of our parame-
ters, the wind is trapped for a period of roughly 50,000 yr.
Although the evolutionary status of the most embedded
sources is by no means secure, those designated as Class 0
(André et al. 1993) are generally considered to be the
youngest. They are detectable only at far-infrared and sub-
millimeter wavelengths and have spectral energy distribu-
tions corresponding to dust temperatures of roughly 30 K.
An additional argument for their extreme youth is their
relatively low population. In a submillimeter survey of �
Ophiuchi, Motte, André, & Neri (1998) found that Class I
sources outnumber those of Class 0 by a factor of 10. Since
the former have traditionally been assigned ages of order

105 yr (Kenyon et al. 1990), Class 0 stars could be as young
as 104 yr, if the population is forming in steady state fashion.
Visser, Richer, & Chandler (2002), in their recent SCUBA
survey of Lynds dark clouds, have challenged these figures.
They find nearly equal numbers of Class 0 and I sources and
conclude that the former also have ages of roughly 105 yr.

Regardless of the outcome of this controversy, both sur-
veys, as well as other studies, have found that essentially all
stars with massive, dusty envelopes produce winds, as evi-
denced by associated CO outflows. Where, then, is the
trapped phase? We see two possible answers to this ques-
tion. The first, and less likely, is that our choice of input
parameters requires adjustment. However, the necessary
changes would be severe. For fixed 
, �, and � , tbreak
scales asR

1=3
� a

�1=3
0 ��2=3. It strains credibility to suppose, for

example, that the cloud sonic speed a0 is so high that tbreak is
reduced by an order of magnitude. In addition to this
change of scale, we may change nondimensional solutions,
by assuming a faster wind (greater �). As seen in Figure 11,
the breakout time is relatively insensitive to � until a value is
reached where the trapped wind disappears entirely (where
the dashed curves are horizontal). This option, however,
would imply very high wind speeds (Vw � 3Vesc for 
 ¼ 1

3,
or Vw � 10Vesc for 
 ¼ 1=10). As noted in x 6.3, making the
wind more anisotropic effectively raises 
 and also leads to
earlier breakout. Winds launched via the magnetocentrifu-
gal mechanism, however, typically have modest anisotropy
until they propagate a considerable distance (see, e.g.,
Najita & Shu 1994).

A second, and more plausible, answer is that we are
already witnessing at least partially trapped winds. Follow-
ing the arguments in x 7.1, it may be that simultaneous infall
and outflow occur well before our idealized model indicates
the onset of breakout. It would be extremely interesting, in
this regard, to monitor the temporal variability of outflows
fromClass 0 sources.

8. CONCLUSIONS

We have presented a detailed numerical calculation of the
interaction between a spherical, protostellar wind and an
anisotropic, infalling envelope. The anisotropy in our model
is derived from the rotation of the star’s parent cloud core.
Collapse is assumed to proceed in inside-out fashon from a
singular, isothermal sphere, in the absence of magnetic
forces. We have idealized the double-shock interaction
region as a thin shell that is well mixed internally. After
demonstrating that our previous, quasi-steady solutions are
dynamically unstable, we have followed the shell dynamics
in a fully time-dependent manner.

At very early times, the wind is crushed by ram pressure
associated with infalling matter. Wind breakout is delayed
by the gravitational force exerted on the shocked material.
The shell must not only be supported by wind ram pressure
but must have sufficient kinetic energy to escape the star’s
potential well, even while gathering additional mass from
the envelope. Breakout would occur earlier if either the
wind or infall were more anisotropic, or if we were to
include the internal shear between the shock surfaces.

Bearing in mind the observations of jets and outflows
from embedded stars, we acknowledge two important limi-
tations of our model. First, our assumption of complete,
early trapping may be incorrect because of shell fragmenta-
tion. Second, the observed collimation of stellar jets over
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long distances is not approached asymptotically in our cal-
culation. Instead, our shells, while they are temporarily
elongated, eventually become spherical. Jet collimation may
be a consequence of magnetic pinching in the wind itself or
of a cloud background that is very different from the one we
assume here. An initially more anisotropic cloud core will,
of course, yield an altered pattern of infall. Alternatively, a
shallower falloff in the background density will give rise to
crossing shocks in the interaction region (see, e.g., Cantó,

Raga, & Binette 1989). These shocks further aid in wind
collimation.
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André, P., Ward-Thompson, D., & Barsony,M. 1993, ApJ, 406, 122
Bandiera, R. 1993, A&A, 276, 648
Barranco, J. A., &Goodman, A. A. 1998, ApJ, 504, 207
Blandford, R. D., Begelman, M. C., & Rees, M. J. 1984, Rev. Mod. Phys.,
56, 255

Blondin, J.M., &Koerwer, J. F. 1998, NewA, 3, 571
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Mellema, G., & Lundqvist, P. 1997, Rev.Mexicana Astron. Astrofis., 33,
79

Shu, F. H. 1977, ApJ, 214, 488
Shu, F. H., Adams, F. C., & Lizano, S. 1987, ARA&A, 25, 23
Shu, F. H., Lada, C., Ruden, S. V., & Lizano, S. 1991, ApJ, 370, L31
Stahler, S.W. 1988, ApJ, 332, 804
Stahler, S. W., Korycansky, D. G., Brothers, M. J., & Touma, J. 1994, ApJ,
431, 341

Terebey, S., Shu, F. H., & Cassen, P. 1984, ApJ, 286, 529
Vazquez-Semadeni, E., Ballesteros-Paredes, J., & Klessen, R. K. 2003,
ApJ, 585, L131

Vishniac, E. T. 1994, ApJ, 428, 186
Visser, A. E., Richer, J. S., & Chandler, C. J. 2002, AJ, 124, 2756
Wilkin, F. P. 1996, ApJ, 459, L31
Wilkin, F. P., & Stahler, S.W. 1998, ApJ, 502, 661 (Paper I)

No. 2, 2003 TRAPPED PROTOSTELLAR WINDS AND THEIR BREAKOUT 931


