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1 Opening Comment

Displaced by the rise of quantum mechanics, hydrodynamics has all but
disappeared from the curricula of physics departments. In recent years, the
study of deterministic chaotic phenomena has allowed the subject to make a
bit of a comeback. But most physicists receive little or no training in fluid
processes.

This is a pity. From a strictly mathematical point of view, the equations
in hydrodynamics are often very similar to field equations encountered in
many domains of physics. It is easier to form a mental picture of a fluid
than it is to imagine an abstract field. Indeed, nineteenth century physicists
of the stature of Maxwell and Kelvin based their physical intuitions upon
hydrodynamical analogues. This allowed them to envision the potential and
solenoidal fields (as well as the wave phenomena) that emerge from studies
of electrodynamics. Today, for those studying hydrodynamics, the problem
is often reversed: students encountering potential fluid flow for the first time
are told not to worry, it is just like electrostatics...and a vortex is just the
magnetic field of a wire!

But “helpful analogy” is not the best reason for studying the physics
of fluids. The best reason is that it is a rich, fascinating subject entirely
in its own right. It is also, incidentally, extremely important: the prob-
lem of understanding fluid turbulence, still a very distant goal, is perhaps
the only fundamental problem of modern physics which, if solved, would
have immediate practical benefits. But even the problems that are reason-
ably well-understood are breathtaking in their scope. In this course, among
other topics we will talk about the weather, kitchen sinks, airplanes, sound
waves, oceanic layer mixing, tsunamis, boats, tea cups, tornados, hot lava,
fish swimming, Norwegian fjords, planets, and spermatozoa. Surely, there
must something of interest for just about anyone somewhere in this list. As
Heraclitus aptly stated: “Ever-newer water flows on those who step into the
same rivers.” It is our turn to step into the river. Alors, commençons.

2 Fundamentals

Although the fundamental objects of interest are the atomic particles that
comprise our gas or liquid, we shall work in the limit in which the matter
is regarded as a nearly continuous fluid. (We shall always use the term
“fluid” to mean either a gas or a liquid.) The fact that this is not exactly a
continuous fluid manifests itself in many ways. In a gas, the finite distance
between atomic collisions makes itself felt as a form of dissipation; in a liquid,
more complex small-scale interactions give rise to similar behavior. For many
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applications, however, such dissipation may be ignored, in which case we are
treating the fluid as though it were ideal. We shall discuss both dissipative
and ideal flow in this course.

We start with three fundamental physical principles: mass is conserved,
F = ma, and the first law of thermodynamics (energy is conserved). We
can’t go wrong with these!

2.1 Mass Conservation

Let the mass density of our gaseous fluid be given by ρ, which is a function
of position vector r and time t. Consider an arbitrary volume in the fluid V .
The total mass in V is

M =
∫

V
ρ dV (1)

The principle of mass conservation is that the mass can’t change except by
a net flux of material flowing through the boundary S of the volume:

dM

dt
≡
∫

V

∂ρ

∂t
dV = −

∫

S
ρv · dS. (2)

The divergence theorem gives

∫

S
ρv · dS =

∫

V
∇·(ρv) dV (3)

Since V is arbitrary, the integrands of the volume integrals must be the same,
and

∂ρ

∂t
+ ∇·(ρv) = 0, (4)

the differential form of the statement of mass conservation.

We can already do our first problem in hydrodynamics.

Example 1.1 Look at the water coming out of your faucet in the kitchen or
bathroom. If the spray is not too hard, you should notice that the emerging
stream is gently tapered, growing more narrow as it descends. What is the
shape of the cross section of the stream as a function of the distance from
the faucet?

The water emerging faucet is in free-fall, affected only by gravity. Let the
gravitational acceleration be g, and the cross section area, a function of the
distance downward from the faucet z, be A(z). The flow is independent of
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time, and density of water is very nearly constant. The velocity of the water
is

v(z)2 = v2
0 + 2gz (5)

where v0 is the emergent velocity, which follows from the conservation of
energy in the constant gravitational field (or just elementary kinematics).
Our time-steady equation for mass conservation is

∫

S
ρv · dA = ρ[v0A0 − v(z)A(z)] = 0 (6)

where A0 is the cross sectional area of the faucet. We thus find

A(z) =
A0

√

1 + 2gz/v2
0

(7)

The tapering is more pronounced when the emergent velocity v0 is small. For
a long stream, the diameter therefore contracts by a factor ∼ z−1/4.

Question: Have we made an approximation here for the velocity field? If
so, what was it?

Exercise. Hold on a moment! In the example we just completed, the
density was held constant, and the flow was independent of time. Doesn’t
that mean ∂v/∂z = 0 from mass conservation? Now I’m completely confused,
and you have to help. Hint: Go back and think hard about the question that
was posed.

2.2 Newtonian Dynamics

2.2.1 The Lagrangian Derivative

Our second fundamental equation is a statement of Newton’s second law
of motion, that applied forces cause acceleration in a fluid. To make this
quantitative, we introduce the idea of a fluid element. It is important to
understand that this is not an atom! It is an intermediate quantity large
enough to contain a very large number of atoms. This is a region of the fluid
with all of its gross physical properties, but so small that all the macroscopic
variables—density, velocity, pressure and so on—may be regarded as each
having a unique value over the tiny dimensions of the element. The fluid
element remains coherent enough that we may in principle follow its path
through the fluid, the so-called fluid streamline.

The volume of the element dV moves with the element, and the mass
of the element ρ dV remains fixed as the element moves. Assume that the
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element instantaneously at position r has velocity v(r, t). Its acceleration a
is NOT

∂v

∂t
(8)

which instead would be a measure of how the velocity of the flow is changing
with time at fixed r. The acceleration must take into account the fact that
the element is moving, and that the time derivative follows this motion and
registers the changes of the element’s properties. Therefore,

a =
∂v

∂t
+ (

dr

dt
·∇)v, (9)

where of course dr/dt is just the velocity v of the element itself. (This is
no different from the usual definition for the acceleration of, say, a planet in
orbit.) We define the so-called Lagrangian derivative as so

D

Dt
≡ ∂

∂t
+ v·∇, (10)

which will prove to be a very useful operator. Hence, Newton’s second law
applied to our element is then

ρdV
Dv

Dt
= ρdV

[

∂v

∂t
+ (v·∇)v

]

= F (11)

where the right side is the sum of the forces on the fluid element.

2.2.2 Forces acting on a fluid

The most fundamental internal force acting on a fluid is the pressure. If the
fluid is a gas, the pressure is given by the ideal gas equation of state

P =
ρkT

m
≡ ρc2 (12)

where T is the temperature in Kelvins, k is the Boltzmann constant 1.38 ×
10−23 J K−1, m is the mass per particle, and c is (for reasons we shall see
later in the course) the speed of sound in an isothermal gas. The pressure is
due, therefore, to the kinetic energy of the gas particles themselves.

For a liquid, matters are more simple. The density is simply a given
constant, and P is solved directly as part of the problem itself, like any other
flow variable.
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Pressure exerts a force only if it is not spatially uniform. For example,
the pressure force in the x direction on a slab of thickness dx and area dy dz
is

[P (x− dx/2, y, z, t) − P (x+ dx/2, y, z, t)]dy dz = −∂P
∂x

dV (13)

There is nothing special about the x direction, so the force vector from the
pressure is simply −∇P dV .

Other forces can be added on as needed. We shall restrict ourselves for
the moment to just one other force, of great importance in both terrestrial
as well as astrophysical applications: gravity. The Newtonian gravitational
acceleration g on the earth’s surface is of course just a constant vector point-
ing (by definition) downwards. More generally, the gravitational field may
be derived from a potential function

g = −∇Φ. (14)

If the field is from an external mass distribution, then Φ is a given function
of r and t; otherwise Φ must be computed along with the evolution of the
fluid itself. In this course, we will restrict ourselves to problems in which
the gravitational potential is external, independent of the fluid properties.
Combining the results of this section, we may now write down the dynamical
equation of motion for a fluid subject to pressure and gravitational forces,
we obtain:

ρ
∂v

∂t
+ (ρv·∇)v = −∇P − ρ∇Φ (15)

Note that the awkward volume dV has divided out, leaving us with a nice,
well-posed differential equation.

2.3 Energy Equation for a Gas

The thermal energy behavior of the gas is described by the internal energy
loss equation, which is most conveniently expressed in terms of the entropy
per particle. Recall from thermodynamics that (up to an additive constant)
this is given by

S =
k

γ − 1
lnPρ−γ (16)

where γ is the adiabatic index. At the thermodynamic level, γ is CP/CV ,
the ratio of specific heats at constant pressure and constant volume. Using
methods of statistical mechanics, this can be shown to be 1 + 2/f , where
f is the number of degrees of freedom of a particle. For a monatomic gas,
γ = 5/3; for a diatomic gas in which rotational degrees of freedom may be
excited, γ = 7/5.
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Exercise. Using simple arguments, verify that γ = (f + 2)/f .

The entropy of a fluid element is conserved unless there are explicit losses
or heat sources. These could arise from radiative processes, or internal energy
dissipation. If n is the number of particles per unit volume, then

nT
DS

Dt
=

P

γ − 1

D lnPρ−γ

Dt
= net volume heating rate ≡ Q̇ (17)

It is sometimes helpful to have an expression relating the pressure and energy
densities of an ideal gas. Each degreee of freedom associated with a particle
has an energy kT/2 in thermal equilibrium, so the energy per unit volume is
E = (f/2)nkT . Hence,

E =
P

γ − 1
. (18)

If there are no gains, losses, or dissipation in the gas, the fluid is said to
be adiabatic and the entropy of a fluid element is strictly conserved. In this
case, the pressure and density are very simply related:

D(Pρ−γ)

Dt
= 0. (19)

While the adiabatic approximation is often extremely useful, gas energetics
can in general be very complicated. Each problem needs to be carefully
formulated.

Exercise. Show that the combination of entropy and mass conversation
implies

ρ

γ − 1

Dc2

Dt
= −P∇·v.

This is a statement of the first law of thermodynamics. Why?

2.4 Adiabatic Equations of Motion

We gather here, for ease of reference, the fundamental equations of motion
for a liquid (constant density) or an adiabatic gas.

∂ρ

∂t
+ ∇·(ρv) = 0 (Mass Conservation.) (20)

∂v

∂t
+ (v·∇)v = −1

ρ
∇P − ∇Φ (Equation of Motion.) (21)
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(

∂

∂t
+ v·∇

)

lnPρ−γ = 0 (Energy Equation.) (22)

For liquids, we use the γ → ∞ limit of the energy equation, Dρ/Dt = 0.
Often, this is just ρ = constant.

It is often useful to have alternative forms of the energy equation. A
mechanical energy equation is obtained by taking the dot product of v with
the equation of motion. The result is

ρ

2

∂v2

∂t
+ (ρv·∇)

v2

2
= −v·∇P − ρv·∇Φ (23)

The left hand side of this equation may be written

∂

∂t

(

ρv2

2

)

+ ∇·

(

ρv2

2
v

)

(24)

since the terms that make up the difference between equations (23) and (24)
cancel by mass conservation. On the right side of (23), use

v·∇P = ∇·(Pv) − P∇·v, (25)

and
ρv·∇Φ = ∇·(Φρv) − Φ∇·(ρv) (26)

But ∇·(ρv) = −∂ρ/∂t, and if Φ is a given function of position (as we shall
assume in this course), then

ρv·∇Φ = ∇·(Φρv) +
∂(ρΦ)

∂t
(27)

Putting all of these results together gives us the energy conservation equation
for a nondissipative fluid:

∂

∂t

[(

ρ
v2

2
+ ρΦ

)]

+ ∇·

[(

ρv2

2
+ ρΦ + P

)

v

]

= P∇·v (28)

This equation applies both to liquids, in which case the right side is zero,
or to adiabatic gases. In the first case, we have strict energy conservation: the
time derivative of an energy density plus the divergence of the corresponding
flux vanishes. For a compressible fluid, on the other hand, P∇·v represents
the expansion work done by the gas. In the exercise at the end of section
2.3, you showed that this is directly related to changes in the internal energy
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of the gas. Using the internal equation that you found, you should be able
to show that a statement of total energy conservation follows:

∂E
∂t

+ ∇·FE = 0 (29)

where the energy density E is

E = ρ

(

v2

2
+ Φ

)

+
P

γ − 1
(30)

and the associated flux is

FE = v

(

ρv2

2
+ ρΦ +

γP

γ − 1

)

(31)

In general, neither mechanical nor thermal energy is separately conserved,
but their sum is conserved. Though we have not shown it, this must be true
even if the gas is viscous, since dissipation does not constitute an external
heat source. Rather, it converts mechanical into thermal energy. Only if this
thermal energy is radiated away or otherwise transported across the surface
of the fluid (say, by thermal conduction) is it truly lost.

3 Mathematical Matters

The study of fluids involves vector calculus manipulations that require some
practice to get used to. Here we study some examples and techniques that
will prove useful.

3.1 The vector “v dot grad v”

The vector (v·∇)v is more complicated than it might appear. In Cartesian
coordinates, matters are simple: the x component is just (v·∇)vx, and simi-
larly for y, z. But in cylindrical coordinates, say, the radial R component of
this vector is NOT (v·∇)vR. Rather, we must take care to write

(v·∇)v = v·∇(vReR + vφeφ + vzez) (32)

where the e’s are unit vectors in their respective directions. In Cartesian
coordinates these unit vectors are constant, but in any other coordinate sys-
tem they generally change with position. Hence, the gradient must operate
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Figure 1: Spherical (r, θ, φ) and cylindrical coordinates (R, φ, z).

on the unit vectors as well as the individual velocity components themselves.
With the help of the table that follows, your should be able to show that the
radial component of (v·∇)v is

v·∇vR − v2
φ

R
, (33)

while the azimuthal component is

v·∇vφ +
vRvφ

R
(34)

The extra terms are clearly related to centripetal and Coriolis forces, though
more work is needed to extract the latter...a piece of this force still remains
inside the gradient term, and emerges only when one transfers into a rotating
frame.

For ease of reference, we include a table of unit vectors in cylindrical and
spherical coordinates.
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Table of Unit Vectors and Their Derivatives.

Cylindrical unit vectors:

eR = (cosφ, sinφ, 0)

eφ = (− sin φ, cosφ, 0)

ez = (0, 0, 1)

Spherical unit vectors:

er = (sin θ cos φ, sin θ sin φ, cos θ) = sin θeR + cos θez

eθ = (cos θ cosφ, cos θ sin φ,− sin θ) = cos θeR − sin θez

eφ = (− sin φ, cosφ, 0)

Nonvanishing derivatives of cylindrical unit vectors:

∂eR

∂φ
= eφ

∂eφ

∂φ
= −eR

Nonvanishing derivatives of spherical unit vectors:

∂er

∂θ
= eθ

∂er

∂φ
= sin θeφ

∂eθ

∂θ
= −er

∂eθ

∂φ
= cos θeφ

∂eφ

∂φ
= −(sin θer + cos θeθ) = −eR
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3.2 Rotating Frames

It is often useful to work in a frame rotating at a constant angular velocity
Ω—perhaps the frame in which an orbiting planet or a rotating fluid appears
at rest. The same rule that applies to ordinary point mechanics applies here
as well: add

−2Ω × v +RΩ2eR (35)

to the applied force (per unit mass) operating on a fluid element. As written,
these rotational terms should appear on the right side of the equation of
motion, with −(1/ρ)∇P . The first term is the Coriolis force, the second
is the centrifugal force, Ω is taken to be in the vertical direction, and all
velocities are measured relative to the rotating frame of reference.

Consider the following interesting case. Suppose that in a rotating frame
the fluid velocity v is much less than RΩ. Suppose further that the pressure
term (∇P )/ρ is a pure gradient, either because ρ is constant, or because
P = P (ρ). Then the sum of the pressure, gravity, and centrifugal terms is
expressible as a gradient, say ∇H . The steady-state fluid equation is simply

2Ω × v = ∇H, (36)

since we may neglect the nonlinear (v·∇)v term in comparison with the
Coriolis term. Now, since Ω lies along the z axis, the left hand side of
equation (36) has no z component, and therefore neither does the right hand
side. That means that H is independent of z. But then the radial and
azimuthal velocity components are also independent of z; that is, they are
constant on cylinders! In the case of constant density, the mass conservation
equation is ∇·v = 0, so that vz is at most a linear function of z times a
function of x, y, t. This function generally must vanish however, since vz does
not grow without bound at large z, and it goes smoothly to zero at a finite
z boundary. Hence vz is also z independent. The fact that small motions
in rotating systems are independent of height is called the Taylor-Proudman
theorem, and you will often hear people talk about “Taylor Columns” in fluid
mechanics seminars. Now you know where they come from.

Another interesting application of rotating frames arises in astrophysical
gas disks bound to a central mass M . The early solar system is thought to
have past through such a stage. Place the origin on the central mass. We
allow the disk to have a finite vertical thickness, so we pick a spot in the
z = 0 midplane of the disk at cylindrical radius RK . At this point, the gas
orbits at the Keplerian velocity

v2
K =

GM

RK

, Ω2
K =

GM

R3
K

(37)

(The radial pressure gradient is assumed to be very small for these undis-
turbed orbits.)
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We now go into a frame rotating at angular velocity ΩK , and consider
a small (x, y, z) neighborhood about midplane radius RK : x = R − RK ,
y = Rφ − ΩKt, and x, y, z ≪ R. (φ is the azimuthal angle in cylindrical
coordinates.) The sum of the radial gravitational and centrifugal forces in
this neighborhood is:

− GM

(RK + x)2 + y2 + z2
+ (RK + x)Ω2

K ≃ 3x
GM

R3
K

(38)

where only the leading order term (linear in x/R) has been retained. This
residual x force is the tidal forcing from the central mass. For finite z, there
is also a vertical gravitational force of −GMz/R3

K , again to leading linear
order in z. Assuming that external forces and pressure gradients induce only
small changes in the velocity of the Keplerian orbits (generally a very good
approximation), the local equation of motion for gas in a Keplerian disk is:

Dv

Dt
+ 2Ω × v = −1

ρ
∇P + 3Ω2xex − Ω2zez + F ext (39)

where we have dropped the K subscript from Ω, ex and ez are unit vectors
in the radial and axial directions, and F ext represents any external forces.
This equation is the starting point for understanding how the planets in the
solar system interact with disk. With pressure ignored, it also used to study
purely gravitational orbits. This is sometimes referred to as the Hill equation,
after the astronomer who developed this approach to study the moon’s orbit
about the earth in the presence of the tidal field of the sun. In this case, the
tidal force is due to the sun, Ω is the angular velocity to the earth’s orbit,
and the external force is the gravitational acceleration of the earth on the
moon. Using these equations, numerical integration shows that if the moon
were only a little farther away from the earth, the solar tidal force would have
produced a highly noncircular, self-intersecting lunar orbit (as seen from the
earth)! What the historical development of gravitation theory would have
been under those circumstances is anybody’s guess.

Another type of local approximation in a rotating frame can be used on
the spherical surface of a planet or star. We use this technique in section 5.6,
in which Rossby waves are discussed.

3.3 Manipulating the Fluid Equations

For a particular problem, working in cylindrical or spherical coordinates is
often very convenient, but for proving general theorems or vector identities,
Cartesian coordinates are usually the simplest to use. There is a formalism
that allows one to work very efficiently with Cartesian fluid equations.
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The index i, j, or k will each represent any of the Cartesian component
x, y, or z. Hence vi means the ith component of v, which may be any of the
three (x, y, or z), depending upon which particular value of i is chosen. So
vi is really just a way to write v. The gradient operator ∇ is written ∂i, in
a way that should be self-explanatory.

Next, we use the convention that if an index appears twice, it is under-
stood that it is to be summed over all three values x, y, and z. Hence

A · B = AiBi, (40)

and
(v·∇)v = (vi∂i)vj . (41)

In these examples, i is a “dummy index”; in the second example the vector
component of v is represented by the index j. The dynamical equation of
motion in this notation is

ρ[∂t + (vi∂i)]vj = −∂jP − ρ∂jΦ. (42)

Using mass conservation ∂tρ+ ∂i(ρvi) = 0, this can also be written

∂t(ρvj) + ∂i(Pδij + ρvivj) = −ρ∂jΦ, (43)

where δij is the Kronecker delta function (equal to unity when i = j, zero
otherwise). The quantity

(Pδij + ρvivj) (44)

is known as the momentum flux, and in the absence of an external force, it
is a conserved quantity.

Sometimes the “rot” (or “curl”) operator is needed. For this, we intoduce
the Levi-Civita symbol ǫijk. It is defined as follows:

• If any of the i, j, or k are equal to one another, then ǫijk = 0.

• If ijk = 123, 231, or 312, the so-called even permutations of 123, then
ǫijk = +1.

• If ijk = 132, 213, or 321, the so-called odd permutations of 123, then
ǫijk = −1.

The reader can easily check that

∇ × A = ǫijk∂iAj (45)
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Here, the vector component is represented by the index k. (Don’t forget to
sum over i and j!) ǫijk is of course used in the ordinary cross product as well:

A × B = ǫijkAiBj (46)

Notice that
A · (B × C) = ǫijkAkBiCj (47)

which proves that any even permutation of the vectors on the left side of
the equation must give the same value, and an odd rearrangement gives the
same value with the opposite sign.

A double cross product looks complicated:

A × (B × C) = ǫlkmAl(ǫ
ijkBiCj) = ǫmlkǫijkAlBiCj. (48)

The last equality follows because mlk is an even permutation of lkm. This
looks very unpleasant, but fortunately there is an identity that saves us:

ǫmlkǫijk = δmiδlj − δmjδli. (49)

The proof of this is left as an exercise for the reader, who should be convinced
after trying a few simple explicit examples. With this identity, our double
cross product becomes

A × (B × C) = BmAjCj − CmAiBi = B(A · C) − C(A · B).

The ijk notation also gives us a way to go from a Cartesian formulation
to a vector invariant formulation in more complex situations. For example,
the theory of viscosity involves the calculation of the so-called viscous tensor,

σij =
∂vi

∂xj

+
∂vj

∂xi

− 2

3
δij
∂vk

∂xk

(50)

The force in the j direction is proportional to ∂iσij . The question is how to
write this tensor in terms of vector velocities and gradients in any coordinate
system.

A tensor is a sort of “double vector,” with two indices each behaving
individually like a vector. The last term in (50) is simply a divergence, and
is therefore easy to write in any coordinate system. (The delta function
always behaves like a delta function in any coordinates.) The first group of
derivatives does not seem to generalize quite so straightforwardly, at least
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not in a way that plainly preserves its vector-like properties. For example,
in cylindrical coordinates, when we calculate σRφ, should we use

∂vR

∂φ
or eR·

(

∂v

∂φ

)

?? (51)

Clearly, these are not equivalent expressions.

Matters become much more clear if we write

∂vi

∂xj

= [(ej·∇)v]·ei. (52)

We see at once that this is obviously true in Cartesian coordinates. But the
right side is just a rather elaborate vector dot product. The generalization
of a dot product to any locally orthogonal coordinate system is direct and
simple. Just choose whichever vector basis you would like for the e unit
vectors. Although we normally reserve i, j, and k for Cartesian coordinates,
the right side of equation (52) is valid, in the sense of behaving like the
components of a tensor, for any choice of the e coordinate basis.

Here is another way to state what we have just written: ∂vi/∂xj should
be thought of as the derivative of the vector v taken along the path ej·∇.
In this sense, it is also a true vector, the directional derivative of v along ej.
To find a particular component of this vector, take the dot product with ei

as above. This argument works whether the e vectors are Cartesian or not.

This is the easiest way to understand how to generalize derivative ex-
pressions of the form ∂ivj, which are not written in a nice vector invariant
notation, to a vector dot product, which is coordinate independent. Practice
what you have learned by demonstrating that

σRφ =

(

1

R

∂vR

∂φ
+R

∂

∂R

(

vφ

R

)

)

(53)

Does this vanish for solid body rotation? What about the divergence ∂vi/∂xi?
Does our formula give the correct expression for the divergence operator in,
say, cylindrical coordinates? Once you’ve done that, be really ambitious and
try ǫijk∂vi/∂xj . Do you get the correct expression for the curl operator?
(You should.)

If you actually have done these exercises, you will have done a lot of
writing! The same results can be achieved with much greater elegance using
a powerful formalism known as differential geometry, in which vectors and
tensors of arbitrary degrees can be handled more smoothly in a coordinate-
independent manner. Differential geometry is essential in more complex sit-
uations (General Relativity, for example). But the simpler and less elegant
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approach we have taken here is a better way to begin, because it is more
intuitive, and in fact will suit our needs just as well.

3.4 Lagrangian Derivative of Line, Area, and Volume
Elements

Often we are interested in calculating an integral over a volume of the flow,
following the motion of the fluid, and calculating the change in the integral.
It can be very useful to have at hand some rules about how a differential line,
area, or volume element changes as it moves with the flow.

Consider a differential line element dr. The difference in the velocity field
v across the line element is dr·∇v. In a time ∆t, as the line element is swept
along with the flow, it will experience the following distortion:

dr → dr + (dr·∇v)∆t (54)

In other words, the Lagrangian time derivative of the element dr is

D(dr)

Dt
= dr·∇v ≡ dv, (55)

an exact differential for the velocity field.

Consider next the coordinate line elements dx = dxex, and the same for
y and z. Each of these elements is changed in time ∆t by the velocity field
v = (vx, vy, vz) as follows:

dx′ = dx + ∆(dx) = (dx+ [dx∂xvx]∆t, [dx∂xvy]∆t, [dx∂xvz]∆t) (56)

dy′ = dy + ∆(dy) = ([dy∂yvx]∆t, dy + [dy∂yvy]∆t, [dy∂yvz]∆t) (57)

dz′ = dz + ∆(dz) = ([dz∂zvx]∆t, [dz∂zvy]∆t, dz + [dz∂zvz]∆t) (58)

Thus, after time ∆t, the original coordinate line elements each acquire com-
ponents along all three axes. The orignal volume element is

(dx×dy)·dz = dx dy dz. (59)

A direct calculation gives

(dx′
×dy′)·dz′ = dx dy dz(1 + ∇·v ∆t) (60)

to leading order in ∆t. Hence, the Lagrangian time derivative of a volume
element is

D(dx dy dz)

Dt
= (dx dy dz)∇·v. (61)
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The velocity divergence is directly responsible for local volume element changes
as the fluid flows.

The Lagrangian derivative of an area element dS is more tricky. We will
perform the calculation by choosing a particular cubic face

dx×dy = dS = dSzez, (62)

and deducing the more general vector invariant form from our specific result.
A direct calculation gives to linear order in ∆t:

dx′
×dy′ = dx×dy + dx dy∆t [(∂xvx + ∂yvy) ez − ∂yvzey − ∂xvzex] (63)

Adding and subtracting the term

dx dy ∆t∂zvz ez

on the right side of this equation turns it into something more presentable:

dx′
×dy′ = dx×dy + dx dy∆t [∇·v ez − ∇vz] (64)

The z axis picks out the unique direction of the orginal surface element dS,
and the vector generalization of this expression is immediate and obvious:

dS′ = dS + ∆t (∇·v) dS − ∆t (∂iv)·dS (65)

where the notation ∂i represents the component of the gradient operator
matching the i component of dS and dS′. In full index form this equation
reads:

dS ′

i = dSi + ∆t ∂jvj dSi − ∆t (∂ivj)dSj

The Lagrangian derivative of dS becomes

D(dS)

Dt
= (∇·v) dS − (∂iv)·dS (66)

In particular, for an arbitrary vector field W ,

W ·
D(dS)

Dt
= [(∇·v) W − (W ·∇)v] ·dS. (67)

3.5 The Bernoulli Equation and Conservation of Vor-

ticity

We start with the following identity, which follows immediately from equation
(49).

v × (∇ × v) =
1

2
∇v2 − (v·∇)v
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Using this result to replace (v·∇)v in the dynamical equation of motion
results in

∂v

∂t
+

1

2
∇v2 − v×ω = −1

ρ
∇P − ∇Φ (68)

where ω = ∇×v is known as the vorticity, a quantity of fundamental signif-
icance in fluid dynamics.

Let us first consider the case in which either ρ is constant, or P is a
function of ρ and no other quantities. Then

H =
∫ dP

ρ
,

the so-called enthalpy, is a well-defined quantity. If the pressure P is propor-
tional to ργ , then

H =
γP/ρ

γ − 1
∝ ργ−1. (69)

Taking the dot product of equation (68) with v gives us

1

2

∂v2

∂t
+ v·∇

(

1

2
v2 + H + Φ

)

= 0 (70)

Under steady conditions, this equation states that

1

2
v2 + H + Φ (71)

is a constant along a streamline, a result known as Bernoulli’s theorem. If,
in addition, there is a region where the flow is uniform (at large distances for
example), this constant must be the same everywhere in the flow.

This has important consequences if there is a boundary surface on which
the velocity takes very different values above and below—aircraft wings, for
example. Wings are designed so that the velocity is greater on the upper
surface than on the lower surface. But then the constancy of v2/2 + H
everywhere requires the pressure on the bottom surface of the wing to be
greater than on the top. (The wing is thin, so that Φ is itself a constant!)
In this way, an airplane is supported during its flight. More generally, it can
be shown that the lift on a wing is directly proportional to the line integral
of the velocity taken around a cross section of the wing itself. This integral
is called the “circulation” Γ. The relationship between the lift force and
the circulation is given by a very general relationship known as the Kutta-
Joukowski lift theorem:

Lift Force = −ρV Γ (72)
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where V is the velocity at large distances from the wing. The minus sign
ensures that a slower velocity on the bottom generates a positive lift. We
will prove this theorem later in the course, as well as derive some useful
approximations for Γ.

If we take the curl of equation (68), and remember that the curl of the
gradient vanishes, we find

∂ω

∂t
− ∇×(v×ω) =

1

ρ2
(∇ρ×∇P ) (73)

Let us once again consider the case where either ρ is constant, or when P is
a function only of ρ. In that case, the right hand side vanishes and:

∂ω

∂t
− ∇×(v×ω) = 0 (74)

With the help of our ǫijkǫlmk identity and just a little work, it is straight-
forward to show that

∂ω

∂t
− ∇×(v×ω) = 0 (75)

is the same as

∂ω

∂t
+ (v · ∇)ω =

Dω

Dt
= (ω · ∇)v − ω∇ · v (76)

To understand what this means, consider a closed circuit in the fluid, and
perform the integral

∮

v · dr ≡
∫

ω · dS (77)

where in the integral on the right, the area is bounded by the original circuit.
The integral is just the circulation we discussed in the previous section, and
it is conserved as it moves with the flow. More generally, one speaks of
vorticity conservation: vorticity is conserved, in the sense that the vorticity
flux through an area moving with fluid does not change.

This is now simple to prove, because we have already done all the hard
work. Moving with the flow,

D

Dt
(ω · dS) =

(

Dω

Dt

)

·dS + ω·
D(dS)

Dt
. (78)

Using (67) and (76), one sees immediately that this adds up to zero! Later
in the course, we will give another proof of this important theorem, without
using an area integral.
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We may simplify (76) somewhat. Mass conservation implies

D ln ρ

Dt
= −∇ · v (79)

so that our ω equation becomes

Dω

Dt
− ω

D ln ρ

Dt
= (ω · ∇)v, (80)

or
D

Dt

(

ω

ρ

)

=
1

ρ
(ω · ∇)v (81)

In strictly two-dimensional flow, this is a very powerful constraint. Then
ω has only a z component, and the right side must vanish. Under these
circumstances, we work with equations that have been integrated over the
vertical direction, and use the surface density Σ =

∫

ρdz. We then obtain:

D

Dt

(

ω

Σ

)

= 0 (82)

This is known as the conservation of potential vorticity. It is extremely useful
in the study of two-dimensional turbulence, and in studying wave propagation
in planetary atmospheres.

Exercise. Consider time-independent rotational flow, with vφ(R, z) =
RΩ(R, z) in cylindrical coordinates. All other velocity components vanish.
Assume that vorticity conservation holds. Prove that Ω cannot, in fact,
depend upon z!

Exercise. Ertel’s theorem. In equation (81), if we take the dot product
with the entropy gradient ∇S, we obtain

∇S·
D

Dt

(

ω

ρ

)

=
∇S

ρ
·(ω · ∇)v (83)

You may think that if an entropy gradient is present, then we in should in
general retain the term in equation (73) proportional to ∇ρ × ∇P . But if
the entropy can be written as a function of the thermodynamic variables P
and ρ (S = S(P, ρ)), as is very often the case, this cross term vanishes when
dotted with entropy gradient. Why?

Prove that the above equation may be written in the form

D

Dt

(

ω

ρ
·∇S

)

=
ω

ρ
·∇

(

DS

Dt

)

. (84)
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If the motions are such that the Lagrangian change in S is very small, then
the left side of the equation may be ignored, and

ω

ρ
·∇S

is itself conserved with the motion of a fluid element. Therefore, even if P is
not a function of ρ alone and vorticity is generated by ∇ρ×∇P torques, this
dot product is still conserved. This is known as Ertel’s theorem, and it is
used all the time by geophysicists studying the atmosphere and the oceans.

Exercise. Conservation of helicity. The helicity of a region of fluid is
defined to be

H =
∫

ω · v dV

where the volume integral is taken over the fluid region. Assume that ω · n
vanishes when integrated over the surface bounding the region, where n is
the unit normal to the area, and that the conditions for Kelvin’s circulation
theorem hold. Prove that the helicity H is conserved moving with the fluid:

DH
Dt

= 0

Do not assume that the flow is incompressible.

3.6 Solutions of the Laplace Equation

Consider an incompressible flow described by ∇·v = 0. If the flow is also
irrotational, then v may be derived from a gradient, v = ∇Ψ. These two
equations imply

∇2Ψ = 0, (85)

which is the equation of Laplace. Note that this is true even if the the curl
of v is finite: any vector field can be expressed as the sum of the gradient
of a scalar potential plus the curl of a vector potential. The scalar potential
of the velocity field must always satisfy the Laplace equation if the flow
is incompressible; information about the vector potential is lost when the
divergence of v is taken.

The Laplace equation arises often in fluid mechanics. We have just seen
one simple example, but there are many others. The gravitational potential
satisfies the Laplace equation for example (when its sources are external to
the fluid), and the pressure very nearly satisfies the Laplace equation in a
highly viscous, steady flow. It is of interest to familiarize ourselves with some
of its simple solutions.
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It is possible to get quite far by using symmetry arguments, and by finding
solutions in one coordinate system (where they are obvious) and writing
them in other coordinates (where they are not so obvious). For example, in
Cartesian coordinates:

∇2Ψ =

[

∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2

]

Ψ = 0 (86)

So, obviously, three solutions are Ψ equals x, y, or z. In spherical coordinates,
however,

∇2Ψ =
1

r

∂2(rΨ)

∂r2
+

1

r2 sin θ

∂

∂θ

(

sin θ
∂Ψ

∂θ

)

+
1

r2 sin2 θ

∂2Ψ

∂φ2
= 0 (87)

We have just shown that three solutions of this equations are Ψ equals
r sin θ cosφ, r sin θ sinφ, and r cos θ. That, at least on pure mathematical
grounds, is not immediately obvious. But you can plug in our solutions and
satisfy yourself that they really are valid.

Conversely, an obvious solution in spherical coordinates is Ψ = 1/r. It is
not so obvious that

Ψ =
(

x2 + y2 + z2
)−1/2

(88)

satisfies the Cartesian Laplace equation, but it must, and it does.

The spherical Laplace equation has picked out one point in space to be
the origin, r = 0. Obviously, this could be any point, and the “translation
symmetry” of the Laplace operator is most apparent in Cartesian coordi-
nates. Clearly, if Ψ(x, y, z) is a solution of the Laplace equation, then so
is

Ψ′ ≡ Ψ(x− x′, y − y′, z − z′) (89)

where r′ = (x′, y′, z′) is an arbitrary constant vector. Thus, if 1/r is our
point source solution, then so must be

Ψ =
1

|r − r′| (90)

The symmetry here is obvious physically, but not mathematically! Indeed,
it is such a powerful mathematical constraint that we shall now generate
all the axisymmetric solutions to the spherical Laplace equation from this
one—obvious?—solution.

Consider the special case in which r′ lies along the z axis. Then

|r − r′|−1 =
(

r2 + (r′)2 − 2rr′ cos θ
)−1/2

(91)
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Let r become arbitrarily large. Then

|r − r′|−1 =
1

r

(

1 − 2(r′/r) cos θ + (r′/r)2
)−1/2

, (92)

and we may expand the right side in a power series in the small quantity
(r′/r). We then find

|r − r′|−1 =
1

r
+
r′ cos θ

r2
+

(

r′2

r3

)

3 cos2 θ − 1

2
+ ... (93)

The nth term in the series will be r′n/rn+1 times a polynomial of degree n in
cos θ, the so-called Legendre polynomials Pn(cos θ):

|r − r′|−1 =
∞
∑

n=0

(

r′n

rn+1

)

Pn(cos θ) (94)

Notice, however, that our choice of letting r become much greater than r′

was entirely arbitrary. We could have equally well let r′ become large. Under
those conditions, we would have the above solution with r and r′ reversed.
Therefore, in general,

|r − r′|−1 =
∞
∑

n=0

(

rn
<

rn+1
>

)

Pn(cos θ) (95)

where r< (r>) is the smaller (larger) of r and r′.

The sum on the right hand side of the equation is a solution to the Laplace
equation in spherical coordinates. But it is also a superposition of functions
that are power laws in r times a polynomial in cos θ. Since the Laplace
equation is linear and homogeneous in r (each term scales as 1/r2), it follows
that the individual terms in the sum must each separately satisfy the Laplace
equation. Thus, we have found an infinite number of solutions. Moreover,
it can be shown that the Pn(cos θ) functions form a complete basis, so that
we have found all of the axisymmetric solutions of the Laplace equation that
are necessary.

In fact, for our purposes in this course, we will not need an infinite number
of solutions. The most useful to us will be those proportional to P0, P1, and
P2:

(A+B/r), (Ar +B/r2) cos θ, (Ar2 +B/r3)(3 cos2 θ − 1)/2, (96)

where A and B are constants. Notice that replacing cos θ by either sin θ cosφ
or sin θ sin φ still gives valid solutions. That is “obvious.” Why?
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3.7 Gravitational Tidal Forces

As an illustration of how the expansion of the potential function can be used,
let us calculate the height of the tides that are raised on the earth by the
moon. (Our calculation will actually be completely general for any two body
problems, apart from the specific numbers we use.) The oceans of the earth
form surfaces satisfying the equation of hydrostatic equilibrium,

∇P = −ρ∇Φ. (97)

The interface between sea and air is an equipotential surface. We are in-
terested in how these surfaces differ from spheres when the presence of the
moon is taken into account.

We define the z axis to be along the line joining the centers of the earth
and the moon. The distance between the earth and moon centers will be r,
and a point on the earth’s surface is at a vector location r +s relative to the
center of the moon. Let s = (x, y, z) in Cartesian coordinates with origin at
the center of the earth. Note that

1

|r + s| = (r2 + s2 + 2rs cos θ)−1/2, (98)

where θ is the angle between r and s. We need to keep track of the sign,
which is different from our r, r′ expansion. We regard r as fixed, and calculate
forces by taking gradient with respect to x, y, and z. We have

− GMm

|r + s| = −GMm

r

[

1 − sP1(cos θ)

r
+
(

s

r

)2

P2(cos θ) + ...

]

(99)

where Mm is the mass of the moon. Differentiating with respect to z = s cos θ
gives, to first approximation

−∂Φ
∂z

= −GMm

r2
(100)

which looks familiar: it is the Newtonian force acting between the centers
of the two bodies, directing along the line joining them. The direct force is
cancelled by a centrifugal force in the frame of the earth–moon orbit. The
tidal force comes in at the next level of approximation. The tidal potential
is:

Φ (tidal) = −GMms
2

r3
P2(cos θ) = −GMm

r3
[z2 − (x2 + y2)

2
] (101)

The tidal force, after carrying out the gradient operation, is

g (tidal) = −∇Φ =
GMm

r3
(−x,−y, 2z) (102)
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Figure 2: Above: the vectors r and s and angle θ used in calculating the tides
raised on the earth by the moon. Below: Cartesian coordinates centered on
the earth’s core. x and z are shown; y points into the page.

Tidal forces squeeze inward in the directions perpendicular to the line joining
the bodies, and stretch along the direction defined by this line.

Note that we have calculated only the forces: the sea displacements that
result from these forces can be very complicated! The displacements are not
necessarily in phase with the tidal force, and temporal oscillations together
with local conditions can produce exceptionally large tides (e.g., the Bay of
Fundy), or very small tides (e.g., the Mediterranean Sea).

Let us assume, however, that the new shape of the earth has adjusted
so that the surface is an equipotential of the combined gravitational fields
of the earth plus the moon. Let Φ1 be the potential function of the earth’s
unperturbed spherical field, −GMe/s. Let Φ2 be the changed potential func-
tion in the presence of the moon’s potential; Φ2 differs only slightly from
Φ1. More precisely, the presence of the moon introduces two terms: i.) the
direct gravitational potential GMmz/r

2, whose gradient force is exactly can-
celed by the centrifugal force, plus ii.) a term proportional to P2(cos θ). It
is this P2 potential that is the leading order term we should retain. (The
centrifugal potential also introduces a tidal term at this order, but here we
will ignore this effect.) The lunar tidal potential causes a displacement of
all the original spherical equipotential surfaces, and it is this quantity ξ that
we wish to calculate. Imagine following the distortion of one particular fixed
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value equipotential surface as the moon’s influence is added. Then by ex-
plicit assumption, Φ2 has the same value as the original equipotential surface
Φ1, only now at another location: after the surface has been displaced by ξ.
Thus,

Φ2(s + ξ) = Φ2(s) + ξ · ∇Φ2 = Φ1(s) (103)

where s is the radius of the earth. But

Φ2(s) − Φ1(s) ≡ Φ (tidal) (104)

and to leading order we may replace Φ2 with Φ1 in the ξ · ∇ term. Then

Φ (tidal) = −GMms
2

r3
P2(cos θ) = −ξ · ∇Φ1 = −ξs

GMe

s2
(105)

or

ξs = s
Mm

Me

(

s

r

)3

P2(cos θ) (106)

This works out to be

ξs = 0.32P2(cos θ) meters (107)

for the earth-moon system. The sun’s effect is about one-third as large, and
depending on the lunar phase, can either enhance or offset the moon’s tidal
force. (There is also the neglected centrifugal tide, of comparable magnitude.)
The biggest tidal enhancement occurs at either new moon or full moon.
(Why?)

Notice how extremely sensitive the height of the tidal displacement is to
the separation distance r. When the moon was closer to the earth a billion
years ago, as it is believed to have been, the tidal displacements were almost
an order of magnitude larger.

Exercise. The equation

Φ (tidal) = −ξ · ∇Φ1

has a simple mechanical interpretation in terms of “work done” and “poten-
tial energy.” What is it?

4 Waves

Small disturbances in fluids propagate as waves. Since quantum mechan-
ics ascribes wave behavior even to ordinary particles, almost everything in
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physics seems to be some kind of wave or another. Wave propagation in
fluids is fascinating and remarkably subtle. The study of waves has been an
important stimulant for the development of mathematics. For example, the
entire field of spectral methods (expressing a complicated function as a linear
superposition of simple functions) grew from Fourier’s attempts to represent
general disturbances as a superposition of waves. Finally, the study of waves
can reveal far-reaching properties of the fluid equations that other types of
solution cannot. This is because when we study small amplitude waves, we
can often obtain rigorous analytic, time-dependent solutions without any
assumptions of spatial symmetry. Normally, such analytic results must be
time-steady and/or highly symmetric.

In this section, we will study the properties of waves in a great variety of
different systems.

4.1 Small Perturbations

Waves are said to be linear or nonlinear according to whether their associated
amplitudes are much smaller than, or in excess of or comparable to, the
corresponding equilibrium values of the background medium. For example,
if at a particular point in a fluid the equilibrium pressure is P (r), and a wave
disturbance at time t causes the pressure to change to P ′(r, t), then in linear
theory,

P ′(r, t) − P (r) ≡ δP ≪ P (r) (108)

For the velocity, linear theory generally requires the disturbance to be much

less than
√

P/ρ, not the velocity of the background. The flow velocity itself
is irrelevant, since relative motion by itself does not affect local physics!
(Velocity gradients in the equilibrium flow are a different matter, however.
They can, in fact, be critical for understanding wave propagation.) The name
“linear” refers to the fact that in the mathematical analysis, only terms linear
in the δ amplitudes are retained, while terms of quadratic or higher order are
ignored.

Small disturbances can be described mathematically in more than one
way. The above equation for δP is known as an Eulerian perturbation,
which is the difference between the equilibrium and perturbed values of a
fluid quantity taken at a fixed point in space. It is sometimes useful to work
with what is known as a Langrangian perturbation, particularly when freely
moving boundary surfaces are present. In a Lagrangian disturbance, we focus
not upon the change at a fixed location r, but upon the changes associated
with a particular fluid element when it undergoes a displacement ξ. For the
case of a pressure disturbance, for example, we ask ourselves how does the
pressure of a fluid element change when it is displaced from its equilibrium
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value r to r + ξ? The Langrangian perturbation ∆P is therefore

P ′(r + ξ, t) − P (r) ≡ ∆P. (109)

Note the difference between equations (108) and (109). To linear order in ξ,
∆P and δP are related by

∆P = P ′(r, t) − P (r) + ξ · ∇P = δP + ξ · ∇P. (110)

The Lagrangian velocity perturbation ∆v is given by Dξ/Dt:

∆v ≡ Dξ

Dt
=
∂ξ

∂t
+ (v · ∇)ξ (111)

where v is any background velocity that is present. This is simply the in-
stantaneous time rate of change of the displacement of a fluid element, taken
relative to the unperturbed flow. Since

∆v = δv + (ξ · ∇)v, (112)

the Eulerian velocity perturbation δv is related to the fluid displacement ξ
by:

δv =
∂ξ

∂t
+ (v · ∇)ξ − (ξ · ∇)v. (113)

Exercise. Let v = RΩ(R)eφ. Consider a displacement ξ with radial and
azimuthal components ξR and ξφ, each depending upon R and φ. Show that

DξR
Dt

= δvR,
Dξφ
Dt

= δvφ + ξR
dΩ

d lnR

where D/Dt = ∂/∂t + v·∇. (Be careful!)

Exercise. Compare our expression for δv with equation (76) for vorticity
conservation. For the case in which ∇·v = 0, show that δv is nonvanish-
ing only if ξ is NOT frozen into the flow (like vorticity!). Why should the
restriction ∇·v = 0 be important?

We may think of δ and ∆ as difference operators, something like ordinary
differention. For example,

δ

(

1

ρ

)

=
1

ρ+ δρ
− 1

ρ
= −δρ

ρ2
, (114)
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since we work only to linear order. But care must be taken when partial
derivatives are present! Note that, for example,

δ
∂P

∂x
=
∂(δP )

∂x
(115)

BUT:

∆
∂P

∂x
=
∂∆P

∂x
− ∂ξ

∂x
·∇P 6= ∂∆P

∂x
(116)

In other words, δ commutes with the ordinary Eulerian partial derivatives
with respect to time and space, but ∆ does not. It is also possible to have
precisely zero Eulerian pertubations, and yet have finite Lagrangian displace-
ments and perturbations! In this case, there are no physical disturbances at
all: instead, by displacing fluid elements and giving them exactly the undis-
turbed value at the new location, we have simply relabeled the coordinates
without disturbing the fluid. In a given problem, when we use Lagrangian
disturbances, we must take care to ensure that true physical disturbances are
being calcuated. In this sense, Eulerian disturbances are less prone to mis-
understanding. An Eulerian perturbation is always a real physical change!

To understand better the motivation for defining a Lagrangian perturba-
tion, consider waves on the surface of the sea. The pressure at the air-sea
interface remains fixed (essentially zero) as the wave passes. If z = 0 is the
unperturbed surface, the boundary condition satisfied by the wave is not
δP (0) = 0, since the pressure at the location of the unperturbed surface
in fact changes. Instead, the boundary condition is ∆P (0) = 0, since this
constant pressure condition “moves” with the displaced fluid element. This
may be written:

δP = −ξ ∂P
∂z

(117)

where all quantities are evaluated at the unpertubed z = 0 surface. In
simple circumstances, ∂P/∂z = −ρg where g is the downward acceleration
of gravity, and thus δP = ρgξ. Can you give a simple physical interpretation
of this equation?

Exercise. Go back to the section on tidal forces, and give an interpretation
of our analysis in terms of the Eulerian perturbation δΦ and the Lagrangian
perturbation ∆Φ. What corresponds to a “fluid element” in this problem?
Note that this is an example of a vanishing Lagrangian perturbation with a
finite Eulerian perturbation.

4.2 Water Waves

It is time to get wet.
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Consider a body of water of depth H in a constant downward pointing
gravitational field −g. In equilibrium there is no velocity and the pressure is
given by P = −ρgz (z < 0 in the water). The fundamental linear equations
of motion for small disturbances are

∇·δv = 0, (118)

∂δvz

∂t
= −1

ρ

∂δP

∂z
(119)

∂δvx

∂t
= −1

ρ

∂δP

∂x
(120)

Notice that the gravitational field does not appear in the linear equations
themselves, since it has no Eulerian perturbation. (It is what it is.) x is a
direction perpendicular to z. If we take ∂/∂z of equation (119) and add ∂/∂x
of equation (120) we find that the pressure satisfies the Laplace equation:

∂2δP

∂x2
+
∂2δP

∂z2
= 0 (121)

This is a bit unexpected for a wave equation! Let us assume that all small δ
quantities are proportional to exp(ikx− iωt) times a function of z. As usual,
we take only the real part when the true physical quantity is needed. The
amplitudes δP and δv could in principle be complex numbers. This form is
permitted because the coefficients in the linearized equations do not depend
upon any spatial variables or time. k is known as the wavenumber, and ω is
known as the angular frequency. Let λ be the wavelength and T the period
of this sinusoidal wave. Then k = 2π/λ, and ω = 2π/T .

Taking δP to be now the z-dependent amplitude of the perturbed pres-
sure, we find that it must satisfy the differential equation

d2δP

dz2
− k2δP = 0 (122)

Let us take k > 0 without any loss of physical generality. (The sign of k
depends upon which direction we choose to be the positive x direction along
the water’s surface.) Then our solutions are ekz and e−kz. If

δP = exp(kz) + A exp(−kz) (123)

with A an integration to be chosen, then equation (119) gives

δvz = − ik

ρω
(exp(kz) − A exp(−kz)) (124)
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Since the equilibrium state has no velocity, the vertical displacement ξz fol-
lows from δvz = −iωξz, or

ξz =
iδvz

ω
=

k

ρω2
(exp(kz) − A exp(−kz)) (125)

At the bottom of the sea z = −H , δvz = 0. Hence A = exp(−2kH). This
implies

ξz =
2ke−kH

ρω2
sinh[k(z +H)] (126)

and
δP = 2e−kH cosh[k(z +H)] (127)

where sinh and cosh are the usual hyperbolic sine and cosine functions. To
relate ω to k, we use the free surface pressure boundary condition at z = 0:

0 = δP + ξz
∂P

∂z
= 2e−kH [cosh(kH) − gk

ω2
sinh(kH)] (128)

which becomes
ω2 = gk tanh(kH) (129)

This relationship between the wave angular frequency ω and wavenumber k
is known as a dispersion relation, and it is the most important equation in
determining the qualitative behavior of linear waves. The relation

frequency × wavelength = velocity (130)

that one learns in one’s first physics course is equivalent to the dispersion
relation

ω2 = k2c2 (131)

where c = ω/k is the “wave velocity.” For simple sound waves (see section
5.3) or for light waves, c is a constant independent of the wavenumber. In
general, however, the velocity c does depend upon the wavenumber. For
water waves, equation (129) gives

c2(water waves) = gH

(

tanh kH

kH

)

(132)

For very long wavelengths kH ≪ 1 (so very shallow seas also work), c2 = gH ,
and these so-called long waves have a velocity independent of k, like light
or sound. Earthquakes can sometimes generate such long wavelength distur-
bances. They are known as “tsunamis.” The fact that different wavenumbers
travel at the same velocity means that a strong wave pulse will retain its
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form as it travels. By contrast, short wavelength (or deep water) waves have
c2 = g/k. This means that smaller wavelength disturbances move slower, and
a wave pulse composed of many different individual wavenumbers spreads
out with time. In deep water, longer wavelength components race ahead
of smaller wavelength components. After a relatively short time, the initial
pulse has spread out, and has only a small peak amplitude. By contrast, a
long wavelength tsunami coming into shallow coastal seas retains the large,
unspread amplitude that it had in the open sea. When the raised sea bot-
tom makes itself felt, the dispersion relation ω2 = gHk2 demands that a
wave of a given frequency has a growing wavenumber as the sea depth H
gets smaller. The waves “pile up” as the distance between successive wave
crests decreases, and the velocity of these wave crests ω/k =

√
gH becomes

smaller with diminishing H . The wave inevitably grows in amplitude, sim-
ply to conserve its energy! Higher elevations within the wave begin to move
faster than lower elevations in this truly nonlinear disturbance, and the wave
breaks. If the amplitude is not too large, it is just another fun day at the
beach. But if the wave is a tsunami, the results can be disastrous in more
than just a mathematical sense.

4.2.1 Hydraulic Jumps

A slightly less spectacular but no less interesting nonlinear phenomenon re-
lated to surface waves on water is known as the hydraulic jump. If you turn
on a water faucet and allow a strong stream to strike the bottom of the sink,
you will see the following behavior. Near the incoming stream, the water is
relatively shallow and moving rapidly. Then, quite abruptly, the height of
the water jumps and the flow slows as it moves to the edge of the sink. Why
is there a sudden jump in height?

What you are observing is something like a shock wave in the water. The
wave speed c =

√
gH represents the rate at which signals—including causal

behavior—are propagated in shallow water. The water emerging from the
faucet and spreading in the sink is traveling faster than c (about 20 cm s−1)
near the contact point where the incoming stream strikes. The water does
not “know” that the sink has a wall, because no signal can travel upstream
against this velocity. A sort of transition occurs some at some stand-off dis-
tance from the wall. The depth of the water increases, the velocity decreases,
and signals may then propagate through the slower-moving liquid, allowing it
to adjust to the presence of the wall. This rapid change is called a hydraulic
jump.

The presence of a wall is by no means necessary for the occurence of a
hydraulic jump. Tidal changes in rivers and estuaries can induce velocities
in excess of c. In this context, hydaulic jumps are called “bores.” There are
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many well-known bores around the world, including France. They can be
sufficiently vigorous that people sometimes are able to surf on river bores!
There is a famous bore on la Dordogne known simply as le Mascaret (“the
bore,” for anglophiles). Parisians of a certain age will recall that la Seine
used to have its own locally-named bore, la Barre. It disappeared in the
1960’s, eliminated by dredging activities that changed the shape of the river
bottom.

Consider a one-dimensional flow of shallow water in the +x direction.
We denote the density as ρ, the velocity U1 and the height H1. The pressure
P1 is a function of height z: P1 = ρg(H1 − z). (The velocity U1 is nearly
independent of z for shallow water.) We will work with the height-integrated
equations of motion, for which we shall need the result

∫ H1

0
P1dz =

1

2
ρgH2

1 .

The fluid makes a transition at some point from state 1 to state 2, with
corresponding flow variables U2, H2, and P2. In the transition region, there
will be motion both in the x and z directions, but if we begin by integrat-
ing over z, we are left with a one-dimensional problem in x. Thus, mass
conservation becomes

U1H1 = U2H2 (133)

while momentum conservation (essentially a balance between the effective
pressure forces) becomes:

U2
1H1 +

gH2
1

2
= U2

2H2 +
gH2

2

2
. (134)

Eliminating U2 from the equations gives

U2
1

gH1
=
H2(H1 +H2)

2H2
1

(135)

and by symmetry
U2

2

gH2
=
H1(H1 +H2)

2H2
2

(136)

The ratio F = U2/gH is called the Froude number, and it plays a role anal-
ogous to the Mach number (as we shall see) for sound waves. The hydraulic
jump gets its name of course because it really is a jump: H2 > H1. Then
F1 > 1, while F2 < 1. The fluid enters “supercritical” and exits “subcriti-
cal.” Indeed, if we now solve equation (135) for H2, we find the one physical
solution is

H2

H1
=

√
1 + 8F1 − 1

2
, (137)
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an explicit solution forH2 (and thus U2 = H1U1/H2) in terms of the upstream
1-variables.

Notice that our solution H2/H1 does give solutions for F1 < 1 that lead
to to H2 < H1, but these correspond to a jump in the 2 → 1 direction.
The “arrow of time,” in the sense of whether the 2-side or the 1-side is
the initial condition, comes from energy dissipation considerations, and is a
separate piece of physics. The hydraulic jump does not conserve mechanical
energy, it dissipates it as heat. The second law of the thermodynamics tells
us that mechanical energy can spontaneously dissipate into heat, but never
the reverse.

Start with the energy flux for an incompressible flow:

U [
ρU2

2
+ P + ρgz] (138)

where the final term is the potential energy. Substituting for the pressure P
and integrating over height gives

E ≡ ρ

(

HU3

2
+ gUH2

)

(139)

Using equations (133), (135), and (136) leads to

E2 − E1 =
ρgU1

4H2
(H1 −H2)

3. (140)

This is the rate at which energy is being dissipated in the jump. It is pro-
portional to (H1 −H2)

3, which means energy is lost if and only if H1 < H2.
This, ultimately, is why only hydraulic jumps are observed in nature, and
never a “hydraulic fall.”

4.2.2 Capillary Phenomena

At sufficiently small wavelengths, gravity is no longer the dominant restoring
force for surface water waves. The fact that water has a surface tension, and
acts like a membrane, must be taken into account.

Physically, surface tension arises because water molecules attract one an-
other weakly by electrical dipole-dipole interactions. There is an attractive
force at the surface-air interface, where molecules are pulled down from neigh-
bors below but not up from the air above. The measured dipole moment of a
water molecule is p = 6.2 × 10−30 C-m (“Coulomb-meters”). The density of

42



water is 103 kg m−3, and each H2O molecule has a mass of 18 proton masses.
This gives an average inter-molecular separation of about r = 3 × 10−10 m,
and typical dipole field of E = p/(4πǫ0r

3). We expect, therefore, that a
characteristic potential energy per unit area (these are the units of surface
tension) should be of order

T ∼ pE

r2
∼ 1

4πǫ0

p2

r5
= 0.14 J m−2 (141)

The measured value of T for water is in fact 0.074 J m−2. Notice that surface
tension units may also be expressed as “Newtons per meter,” a force per unit
length.

The latter interpretation is useful for the current problem. If the surface
is displaced by a small amount ξz, the vertical component of the tension
force per unit length is T (∂ξz/∂x), where x axis is along the surface, and T
is the surface tension. A surface segment of extension δx has forces pulling
in opposite senses at x and x+ δx. The net force per unit length is

T (∂ξz/∂x)x+δx − T (∂ξz/∂x)x ≃ T (∂2ξz/∂x
2)(δx),

analogous to waves on a string. This force is directed downward if the
curvature is negative. The opposing pressure (force per unit area) is thus
−T (∂2ξz/∂x

2), i.e., the pressure is increased at the surface if the tension
force is directed downwards.

When the surface of water is distorted, the local Lagrangian pressure
change is therefore no longer zero. Instead, it takes on the value dictated by
the surface tension:

∆P = −T ∂
2ξz
∂x2

= δP + ξz
∂P

∂z
(142)

With the pressure gradient equal to −ρg and ξz proportional to eikx, we
obtain

δP = ρξz
(

g + Tk2/ρ
)

. (143)

Since this is the only point in the analysis in which the gravitational field g
appears (remember that it disappeared from the linear equations of motion),
the entire previous theory is unmodified, except for replacing g by geff =
g + Tk2/ρ! For water, T is conveniently measured in cgs units (74 ergs per
cm2), and the dimensionless parameter that measures the relative importance
of surface tension Tk2/(ρg) is equal to unity at a wavelength of about 1.7
cm. Our dispersion relation becomes:

ω2 = geffk tanh(kH) =

(

gk +
Tk3

ρ

)

tanh(kH) (144)
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In the deep water limit, the wave velocity is

ω

k
=

(

g

k
+
Tk

ρ

)1/2

. (145)

Long wavelength (surface gravity waves) and short wavelength (capillary
waves) disturbances have complementary properties. Surface gravity wave
crests move more rapidly at longer wavelengths (because long wavelength
disturbances are farther from precise pressure balance), whereas capillary
waves move more rapidly at smaller wavelengths (because short wavelength
disturbances have a greater restoring tension). Raindrops on a pond excite
capillary waves and the circular wave pattern emanating from the contact
point shows smaller and smaller separation of crests at larger distances, since
the short wavelengths move fastest. A big stone “kerplooshing” in a lake
excites surface gravity waves, and the circular pattern shows larger and larger
separation of crests at greater distances, because long wavelength gravity
waves have moved the farthest.

4.3 Sound Waves in One Dimension

Compressional disturbances in a uniform medium propagate as sound, or
acoustic, waves. As noted in the previous section, sound waves are nondis-
persive: all frequency components travel at the same velocity. (Imagine
listening to a symphony orchestra if this were not the case!) The primary
point of interest in this relatively simple calculation is to derive an expression
for the speed of sound in a gas.

The equations of an adiabatic gas in one dimension are

∂ρ

∂t
+
∂(ρv)

∂x
= 0 (146)

∂v

∂t
+ v

∂v

∂x
= −1

ρ

∂P

∂x
(147)

P = Kργ (148)

Our initial state will be the simplest possible: P and ρ both constant, v =
0. We introduce Eulerian linear perturbations to all flow variables. The
linearized equations become

∂

∂t

δρ

ρ
+
∂δv

∂x
= 0 (149)
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∂δv

∂t
= −1

ρ

∂δP

∂x
(150)

δP

P
= γ

δρ

ρ
(151)

Replacing δP in favor of δρ in the middle equation above gives

∂δv

∂t
= −a2 ∂

∂x

δρ

ρ
(152)

where

a2 = γ
P

ρ
. (153)

a2 is in fact the square of the speed of sound, as we shall presently show.

Differentiating (150) with respect to t and (149) with respect to x, then
eliminating the mixed partial derivative leads to the classical wave equation

∂2δv

∂t2
= a2∂

2δv

∂x2
(154)

The most general solution to this equation is

δv = C1f(x+ at) + C2g(x− at) (155)

where C1 and C2 are abitrary constants, and f and g are arbitrary functions.
The function f remains unchanged when dx/dt = −a and represents a distur-
bance traveling toward negative x at the speed a, while g represents the same
thing for a disturbance traveling toward positive x at velocity a. Clearly a is
the characteristic sound velocity at which all perturbations travel, since it is
easy to show that δρ and δP also depend only upon the arguments x± at.

Sound waves allow internal communication within a gas (or a solid). If a
small disturbance occurs at one location, for example, another location at a
distance x away cannot be affected by this disturbance until a time x/a has
passed. In other words, sound waves “causally connect” spatially separated
mechanical processes.

The wave equation can be written in a form which is suggestive of energy
conservation. Multiply (154) by ∂δv/∂t. Note that

∂δv

∂t

∂2δv

∂t2
=
∂

∂t





1

2

(

∂δv

∂t

)2


 (156)
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Only slightly more work is needed to obtain

a2∂δv

∂t

∂2δv

∂x2
= −∂

∂t





a2

2

(

∂δv

∂x

)2


+
∂

∂x

(

a2∂δv

∂t

∂δv

∂x

)

(157)

(Here, we have assumed that a2 is a constant in the background.) Using
these results, equation (154) transforms to

∂

∂t





1

2

(

∂δv

∂t

)2

+
a2

2

(

∂δv

∂x

)2


− ∂

∂x

(

a2∂δv

∂t

∂δv

∂x

)

= 0 (158)

This is in “conservation form”: the time derivative of some quantity, which
acts like a density, plus the divergence of an associated flux, must vanish.
Indeed, if either ∂δv/∂x or ∂δv/∂t vanish at the boundary, then the wave
flux

−
(

a2∂δv

∂t

∂δv

∂x

)

vanishes, and
∫





1

2

(

∂δv

∂t

)2

+
a2

2

(

∂δv

∂x

)2


 dx (159)

is conserved. This quantity is itself not the true energy density (it has the
wrong dimensions), but is directly proportional to it. The actual conserved
energy density is

ρ

2

(

∂ξ

∂t

)2

+
ρa2

2

(

∂ξ

∂x

)2

(160)

where ξ(x) is the displacement of the fluid element located at x before it
is perturbed. (This quantity is exactly the same as our previous expression
except for a factor of ω2.) The energy flux is similarly modified:

−
(

ρa2∂ξ

∂t

∂ξ

∂x

)

(161)

Exercise. For any type of wave disturbance, we will soon see that the energy
flux is given by the average of δP δv. This is the rate at which the wave
pressure does work per unit area of gas. Show that the equation (161) is
equivalent to δP δv.
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4.4 Harmonic Solutions

As with our treatment of water waves, we seek plane wave solutions of the
form exp(ikx − iωt), since we may superpose such harmonics to reproduce
any initial condition we choose. The wavenumber k and angular frequency
ω are related to the wavelength λ and wave frequency ν by k = 2π/λ, ω =
2πν. Each fluid variable has the same harmonic x, t dependence, but their
amplitudes will of course differ. We may use this approach from the start
of the analysis, once the linear equations are found, without having to first
reduce the problem to one variable. This is a good approximation even when
the background is dependent upon x (or more spatial dimensions), provided
that our wavenumber is much larger than background spatial gradients. If
we wish to work to higher order accuracy however, for example by letting the
amplitudes and wavenumbers depend weakly on position, we must first reduce
the problem to a single wave equation. This is because the precise functional
form of the amplitudes of the pertubed density, pressure, and velocity will
general differ from one another in a manner that cannot be determined a
priori. These considerations may be formalized in a mathematical procedure
known as WKB theory (for Wentzel–Kramers–Brillouin)1.

In three-dimensions the solutions have a spatial dependence exp(ik · r)
where k and r are vectors. These are called plane waves because the planes of
constant k · r all have the same phase. For sound waves, if we take our wave
equation (154), and look for harmonic solutions, we find that such solutions
exist, provided that

ω2 = k2a2, k2 = k2
x + k2

y + k2
z (162)

which is our simple dispersion relation.

What is value of a2? We have

a2 = γ
P

ρ
= γ

nkT

mn
= γ

kT

m
(163)

where n is the number density of particles, k is the Boltzmann constant, T is
the temperature, and m is the average mass per particle. For a monatomic
gas γ = 5/3, for a diatomic molecule like H2, γ = 7/5. The essential point
is that the speed of sound is roughly the thermal speed of a typical gas
atom or molecule. In a mixture of different gases, say a dry nitrogen-oxygen
atmosphere, n is the total number density of particles of all species, and

a2 = γ
nkT

mNnN +mOnO
(164)

1The theory was actually developed by Liouville, Rayleigh, and Jeffreys, so it should
be called LRJ theory! The technique became well-known after the advent of quantum
mechanics when it was introduced by Wentzel, Kramers, Brillouin, and others.
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where the subscript N refers to Nitrogen and O to Oxygen. With T = 300K,
nN/n = 0.79, nO/n = 0.21, and molecular masses taken from a table of
atomic weights (nitrogen, in particular, is a mixture of different isotopes),
one finds a2 = 348 meters per second. Atmospheric sound waves therefore
take about 3 seconds to travel one kilometer. (Under realistic conditions,
water vapor in the air can also measurably affect the speed of sound. This
effect is hard to calculate, because atmospheric water vapor is not purely
molecular; it is present on scales from individual molecules to macroscopic
[but still tiny] droplets.)

Exercise. Show that for a harmonic acoustic wave, the energy flux is the
energy density multiplied by a. What does this imply for the speed at which
wave energy is propagated in a sound wave?

4.5 Incompressible Waves: the Boussinesq Approxi-
mation

For sound waves, the restoring force is provided by the outward directed
pressure of compression, or the inward directed pressure of the ambient gas
on the rarified gas during its dilation. In either case, it is the internal pres-
sure force that tries to restore equilibrium. When the restoring force is
purely external—gravity, for example—the flow generally behaves as though
the fluid were nearly incompressible. For surface water waves (gravitational
restoring force), we treated the flow as incompressible, but in this case the
physical fluid itself was truly incompressible! Gravity can be the restoring
force in gaseous systems as well, and the resulting waves set up a nearly
incompressible velocity flow, even though the gas itself is compressible. This
class of waves, which includes internal buoyant atmospheric modes (and cor-
responding oceanic modes), is of great meteorolgical importance. The ques-
tion we need to address is what does “nearly incompressible” mean for a gas,
in a quantitative sense? The compressibility is small compared to what?

Compressibility arises principally from the density changes associated
with a diverging velocity flow,

−iω δρ
ρ

= −∇·δv = −ik·δv

In the so-called Boussinesq approximation, we ignore these density changes,
and the flow behaves as though it were incompressible, with a vanishing
velocity divergence. More precisely, if kδv is the magnitude of k times the
magnitude δv, we are really assuming that

δρ

ρ
≪
∣

∣

∣

∣

∣

kδv

ω

∣

∣

∣

∣

∣

(Boussinesq Approximation)
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Physically, a sufficiently slowly-moving fluid element remains in close pressure
equilibrium with its surroundings. If the density of the fluid must change to
meet this requirement, then it will do so. A density change does not, by
itself, contradict the above Boussinesq inequality: at large k the right side of
the equation can become arbitrarily large, since ω is typically bounded. If L
is the characteristic length scale of a background gradient, the frequencies of
interest will ordinarily be of order a/L for a Boussinesq wave, as opposed to
ka for a compressive wave. To be precise, we shall be working in a regime in
which the following hierarchy of perturbation scales holds:

δP

P
∼ 1

kL

δρ

ρ
≪ δρ

ρ
∼ δv

a
≪ kδv

ω
∼ (kL)

δv

a
(165)

To see how this works in detail, we derive the dispersion relation of incom-
pressible wave modes in a gravitationally stratified medium with an entropy
gradient. For a liquid, we may take the limit in which the adiabatic index
approaches infinity, in which case the waves are caused by density gradients.
(The density in an ocean may depend upon height, for example, because of
varying salinity. Salt water is heavier than fresh water.) In both cases, the
disturbances are called internal waves. They are sometimes referred to as
internal gravity waves, especially in water, to distinguish them from surface
gravity waves. They are important not only for understanding the terrestrial
atmosphere and oceans, but the interiors of stars as well. (Note that in astro-
physical texts, “gravity waves” can sometimes mean gravitational radiation.
The context is usually clear.)

4.5.1 Internal Waves

Consider a medium in which the gravitational field points in the −z direction.
There are entropy, pressure, and density gradients with respect to z. We
introduce a z velocity perturbation of the form

δvz exp(ikx− iωt), (166)

where x is in a direction perpendicular to z, but otherwise arbitrary. The
equilibrium background is motionless. The linearized equations of motion
are

−iωδvz =
δρ

ρ2

dP

dz
(167)

iγω
δρ

ρ
+ δvz

d lnPρ−γ

dz
= 0 (168)

(Since δvx = 0, we find δP = 0 from the x equation of motion.) Note that
both mass conservation and the Boussinesq approximation are automatically
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satisified (∇·δv = 0). The second equation above is simply the perturbed
adiabatic form of the entropy equation,

δ

(

d lnPρ−γ

dt

)

= 0 (169)

coupled with δP = 0. This is such a simple system that the k dependence
has disappeared completely, and the resulting dispersion relation of equations
(167) and (168) is:

ω2 ≡ N2 = − 1

γρ

dP

dz

d lnPρ−γ

dz
(170)

This defines the so-called Brunt-Väisälä frequency N . Vertical displacements
in a vertically stratified medium oscillate at a frequency N which is indepen-
dent of their horizontal wavenumber k. Physically, these oscillations come
about because an upward adiabatic displacement of an element of fluid leaves
the element cool relative to its surroundings—if, and this is an important “if”,
the background entropy is increasing upward. (The pressure, on the other
hand, must always decrease upward to oppose the force of gravity.) A cool
element is denser than its surroudings (because of local pressure balance),
so the buoyant force is restoring. If, on the other hand, the background en-
tropy gradient were to decrease upwards, we would find that N2 < 0! This
precludes a wave respose altogether, and results instead in a fluid instabil-
ity. An upward adiabatic displacement now produces a fluid element that
is warmer than its surroundings (the surroundings have cooled more rapidly
than adiabatic as one moves up), so there is no restoring buoyant behavior.
Instead, the displaced element continues upward, where the anti-buoyancy is
even worse. The resulting instability gives rise to thermal convection, the up-
ward transport of heat by a turbulent fluid. You’ve seen this in the kitchen:
it is boiling water. The sun “boils” as well in its outer layers, producing
a convection zone which is clearly visible as regions of ascending hot gas
and decending cool gas on the solar surface. We shall have more to say on
convection when we discuss instabilities more formally later in the course.

Our Brunt-Väisälä dispersion relation does not depend upon wavenum-
ber, which is curious. It means, in fact, that there is no real wave propagation:
as we shall shortly see, dω/dk cannot vanish if a signal truly propagates. Re-
call that in our calculation, δP = 0. With exact pressure equilibrium being
maintained everywhere, it is not surprising that nothing is propagating. We
need to find a way to get real waves, not just stationary oscillations.

Consider more general disturbances of the form

δv exp[i(kzz + kxx) − iωt] (171)

The linearized equations are then

kxδvx + kzδvz = 0 (mass conservation) (172)
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−iω δvx = −ikx
δP

ρ
(x-eqn. of motion) (173)

−iω δvz = −ikz
δP

ρ
+
δρ

ρ2

dP

dz
(z-eqn. of motion) (174)

iγω
δρ

ρ
+ δvz

d lnPρ−γ

dz
= 0 (entropy eqn.) (175)

It is a straightforward matter to extract the dispersion relation

ω2 =
k2

x

k2
N2 (176)

where k2 = k2
x + k2

z . These are true internal waves, exhibiting not only
dispersion (different velocities for different wavenumbers), but non-isotropic
behavior as well (ω depends upon the direction of k).

We have noted that internal waves are of importance to geophysicists, be-
cause they propagate through the atmosphere and in the interior of oceans.
In the ocean, the entropy equation is replaced by condition dρ/dt = 0. Alter-
natively, the resulting N2 may also be obtained by taking the incompressible
limit γ → ∞ in our adiabatic formula:

N2 = − 1

γρ

dP

dz

d lnPρ−γ

dz

γ→∞
=

1

ρ

dP

dz

d ln ρ

dz
(Incompressible Fluid) (177)

Note that it is the density of each fluid element that remains fixed in an
incompressible fluid, as opposed to the entropy in a gas. Do not confuse
dρ/dt = 0 with ρ =constant. Spatial gradients of ρ are necessary for internal
waves to exist. It is the pre-existing background density gradient (due to
changing salinity) that allows these oceanic buoyant waves to propagate.

In stars similar to the sun, the convectively unstable zone is in the star’s
outer layers. Turbulence maintains a value of N2 very close to zero, but
slightly negative to maintain a low level of instability. Internal waves must
propagate below the convective zone, deeper in the solar interior. The am-
plitudes caused by such waves at the star’s surface are therefore very small.
By way of contrast, sound waves propagate freely in the convective zone,
and those that are reflecting from just below the sun’s surface are readily de-
tected. They have been used as diagnostic probes of conditions in the solar
interior, while internal waves remain invisible. This is a pity, because such
waves could convey information about the very deep interior of the sun, in
regions inaccessible to sound wave probes. Internal waves are also excited in
stars by tidal interactions in binary systems, where they are thought to play
a central role in the determining how the stellar orbits evolve.

Exercise. Verify that the scalings of equation (165) are valid for internal
waves.
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4.5.2 Rossby Waves

Our next example is an interesting class of waves that propagate in planetary
atmospheres, and owe their existence to vorticity conservation. They have
the remarkable property of propagating in only one direction! These are
known as “Rossby waves,” after the meteorologist Carl Rossby who first
studied the phenomenon in the late 1930’s.

We confine ourselves to a small local plane on the earth’s surface, rotat-
ing with a 24 hour period. To obtain the equations of motion under these
circumstances is very simple, and is just a matter of adding in the Coriolis
term. (Centrifugal forces are small in this problem.) The equation of motion
is

Dv

Dt
+ 2Ω × v = −1

ρ
∇P (178)

We assume that an enthalpy H exists, ρdH = dP , and that the right hand
side is then the excess enthalpy caused by the wave’s presence. Only motions
along the surface of the planet enter our problem. In spherical coordinates,
we thus consider the θ and φ equations of motion. The angular velocity Ω
is along the axis of rotation, but only the radial component Ω cos θ perpen-
dicular to the planet’s surface enters into the equations. Let us call the local
θ direction dx = rdθ, and the local φ direction dy = r sin θ dφ. Because we
are considering a small patch of the earth’s surface, the earth’s radius r is
regarded as very large, 1/r is very small, and the curvature terms in our
equations may be ignored. Thus, x and y are treated as Cartesian variables.
Our linearized equations are

∂δvx

∂t
− fδvy = −∂H

∂x
(179)

∂δvy

∂t
+ fδvx = −∂H

∂y
(180)

where f = 2Ω cos θ is the so-called Coriolis parameter. Differentiating the
top equation by y and the bottom by x and equating the mixed enthalpy
derivatives gives

∂

∂t

(

∂δvx

∂y

)

− f
∂δvy

∂y
=

∂

∂t

(

∂δvy

∂x

)

+ f
∂δvx

∂x
+ δvx

df

dx
(181)

Notice that the term df/dx = (1/r)df/dθ = −2Ω sin θ/r, is crucial to this
problem. Rossby waves depend upon a varying Coriolis parameter. The mass
conservation equation

∇·δv = 0 (182)
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can be most easily accommodated by the use of a “stream function” ψ:

δvx =
∂ψ

∂y
, δvy = −∂ψ

∂x
(183)

Then equation (181) simplifies nicely:

∂

∂t
∇2ψ =

∂ψ

∂y

df

dx
(184)

Now we may try a plane wave solution of the form exp i(kxx + kyy − ωt).
Notice the rather subtle point that we must not regard f as a constant in this
problem, so that some care is needed to verify that this plane wave satisfies
the original equations (179) and (180). You should try to do this. How does
H behave?

The dispersion relation is

ω =
ky(df/dx)

k2
x + k2

y

= −2Ωky sin θ

k2r
, (185)

where k2 = k2
x +k2

y. Notice that it is linear in both in Ω and ky. With Ω > 0,
sin θ > 0, we must have ky < 0. In a Rossby wave, surfaces of constant phase
must drift in the direction of decreasing φ, i.e., westward. Rossby waves are
“sens unique!”

The physical origin of a Rossby waves is vorticity conservation. Potential
vorticity is conserved in two-dimensions. In a rotating frame, it is the sum of
the intrinsic vorticity of a fluid element plus the local vorticity of the rotating
earth that is conserved:

D

Dt
(̟ + 2Ω cos θ) = 0 (186)

where

̟ =
∂δvy

∂x
− ∂δvx

∂y
,

D

Dt
=
∂

∂t
+ δv·∇ (187)

(Exercise: Prove this.) Thus, in the northern hemisphere, when an element
moves toward the equator, 2Ω cos θ decreases, and the intrinsic vorticity ̟
goes up; when the element moves northward, ̟ goes down. It is these
compensating, Coriolis-driven motions that produce the westward drift of
the wave. The displacement of a fluid element thus follows the phase of
the vorticity: a northward (negative δx) displacement is associated with
a negative vorticity. In figure 3, we have sketched one full wavelength of
a northern hemisphere Rossby wave. The left half-wavelength corresponds
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vorticity<0
vorticity>0

N

W
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Figure 3: Why Rossby wave crests drift westward. The figure shows a small
portion of the northern hemisphere. The S-curve inidcates an organized wave
of fluid displacements. The black dot is in a region of northward displace-
ments and negative (intrinsic) vorticity, but the dot’s velocity is southern —
a northern velocity would be inconsistent with the sign of the vorticity (do
you see why?) — so the dot’s vorticity must be increasing with time. This
means that the adjacent region to the east will soon be arriving: the wave
pattern drifts westward.

to northern displacements, and is a region of negative vorticity; the right
half-wavelength corresponds to southern displacements and positive vorticity.
South-directed velocity, which remember is positive in these coordinates,
is present in both positive and negative vorticity regions, as shown in the
figure. The black dot is in a region where the displacement is northward,
but the velocity is southward, and it will therefore soon find its vorticity
increasing. The eastward adjacent region of positive vorticity will therefore
move westward, bringing its increased vorticity to the black dot. The whole
wave therefore drifts westward.

In the 1930’s, after the discovery of these waves, there was great hope that
weather forecasting would be vastly improved. In fact, we now know that
such grand hopes were näıve (weather is chaotic), but large scale climactic
influences are, on large enough time scales, closely related to Rossby wave
circulations in both the atmosphere and ocean. The flow of both the jet
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stream and Gulf stream are influenced by slowly moving Rossby waves, as is
the El Niño phenomenon. The latter, in particular, can significantly affect
the climate on time scales of years.

4.5.3 Long Waves

We end by coming back to surface water waves, this time with periods suffi-
ciently long to be influenced by the rotation of the earth. These differ from
Rossby modes in having significant vertical motions. The restoring force is
a combination of gravity and Coriolis motions. If we write down the funda-
mental equation for mass conservation,

∂ρ

∂t
+ ∇·(ρv) = 0 (188)

we may note that there is a peculiar feature: even though the density is
formally constant, ∂ρ/∂t becomes infinite when the water surface rises above
a level at which it was previously absent! We may avoid this purely formal
singularity by integrating vertically over the height of the water. If the
undisturbed level is h and the total level is h+ ζ (ζ ≪ h), then the linearized
mass conservation equation is

∂ρζ

∂t
+
∂(ρhvx)

∂x
+
∂(ρhvy)

∂y
= 0 (189)

since v is already a small quantity. (Note that we work in the asymptotic
long wave limit kh ≪ 1, so that the velocity v is independent of depth.)
This height-integrated equation is now quite regular, and the density may be
scaled out:

∂ζ

∂t
+
∂(hvx)

∂x
+
∂(hvy)

∂y
= 0 (190)

An incompressible three-dimensional fluid looks a compressible fluid in two
dimensions: squeezing the fluid in two dimensions makes it rise into the third,
thereby increasing the local surface density.

The excess pressure is simply the weight per unit area of the height of
the water above (or below) h, i.e., ρgζ . Our two Coriolis equations are

∂vx

∂t
− fvy = −∂gζ

∂x
(191)

∂vy

∂t
+ fvx = −∂gζ

∂y
(192)
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Unlike the case of Rossby waves, the leading order behavior of long waves
allows us to treat f as a constant. Assuming that all variables have the plane
wave form exp i(kxx+ kyy − ωt) produces the dispersion relation

ω2 = k2gh+ f 2 (193)

where k2 = k2
x + k2

y. Thus, f is a lower limit “cut-off” frequency of any long
wave. This is not a problem for tsunamis, whose frequency is well above f ,
but matters are more interesting for waves excited by the tidal forces of the
moon. The earth turns 2π radians per day, and the moon orbits around the
earth in the same sense 2π/29 radians per day. Thus, the frequency of the
tidal forcing is

ωt = 2 ×
(

2π − 2π

29

)

.

The f parameter is 4π sin λ, where λ is the latitude angle measured from
the equator. f is less than ωt everywhere except for λ > 75 degrees, at
polar latitudes. Everywhere else on the earth’s surface, tidal long waves may
be excited. Understanding the propagation properties of tidal long waves is
particularly important when these ocean waves flow from deeper oceans into
shallow coastal seas and large amplitudes may result.

Exercise. The variation in the Coriolis parameter, which was critical to the
existence of Rossby waves, also allows a type of trapped long wave to form,
known as a Kelvin wave. Unlike Rossby waves, which travel only westward,
Kelvin waves travel only eastward!

1. Consider flow near the equator, and assume that δvx = 0, so that only flow
parallel to latitudes occurs (“zonal flow”). Let α = (π/2) − θ, the latitude
angle. Show that the equations of motion (191) and (192) may be written

−2Ω δvyα =
g

r

∂ζ

∂α

∂δvy

∂t
= −g∂ζ

∂y

where r is the earth’s radius, and that mass conservation becomes

∂ζ

∂t
+ h

∂δvy

∂y
= 0

2. Solve these equations and show that a plane wave of the form exp(iky−iωt)
has the dispersion relation

ω2 = ghk2,
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and an amplitude dependence of

exp

(

−krΩα
2

ω

)

Why does this require only eastward propagating waves?

Kelvin and Rossby waves are intimately involved with the El Niño phe-
nomenon, in which unusally warm ocean temperatures off the Pacific coast of
South American cause worldwide climate changes. Under normal conditions,
there is a strong east-to-west moving wind between, say, Chile and Tahiti,
due to the effects of the Coriolis force on atmospheric convective circula-
tion. This wind causes ocean surface currents to flow westward from Chile,
drawing up cold subsurface layers of water. The coastal waters are thereby
cooled. If this wind should weaken for some reason, this oceanic upwelling
would also weaken, and the surface temperatures would rise relative to the
cool water that normally is present. But this change in surface tempera-
ture generates westward moving Rossby waves, which in turn propagate the
warmer surfaces temperatures across the Pacific. This has the consequence of
easing the atmospheric east-to-west pressure gradient force, further weaking
the surface wind. A small change in the Chilean surface water conditions is
thus amplified and re-amplified. This is the El Niño phenomenon.

How does this stop? The El Niño generated Rossby waves are reflected
off the coast in southeast Asia, and return as eastward moving Kelvin waves!
The Kelvin waves restore high pressure conditions off the Chilean coast, the
east-to-west winds return, and normal conditions are restored. Because the
Rossby waves move so slowly, the process can take 3-4 years to complete.
See “The physics of El Niño,”

http : //physicsweb.org/articles/world/11/8/8.

4.6 Group Velocity

The dispersion relation (193) has the interesting property of reducing to
ω = f as k (or h) vanishes. f just depends on the rotation of the earth. Can
a rotating earth by itself propagate waves, even with no water??

Obviously not. Yet this is truly the velocity at which a k = 0 wave crest
would propate, ω/k. The point is that this is the velocity at which a point of
constant phase propagates, and it is only the speed of a “pattern”. Another
system which has the same form of dispersion relation is a line of pendula
whose masses are connected by springs. If the pendula have length l, the
dispersion relation is

ω2 = k2C2 + g/l, (194)
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where C2 is the spring tension divided by the mass per unit length and g is
the gravitational field. If we cut the springs, the pendula all oscillate, but
clearly nothing physical is propagating, even though a pattern will appear to
move if we set up the pendula properly. Only when the springs are present
will a real signal—in fact, real energy—be propagated. Note that when the
springs are present (or when the water has a finite depth!), the frequency
depends upon k. That is the key point.

All physical quantities in a wave, including causality itself, propagate not
at the phase velocity ω/k, but at what is known as the group velocity ∂ω/∂k.
The wave frequency must depend upon the wavenumber if anything physical
is being propagated! If ω is independent of k, the group velocity vanishes,
and there is no true physical propagation. To understand where the name
“group” comes from, imagine a wave packet whose mathematical form is
taken to be

exp[iS(x, t)]. (195)

At a time t and location x, a local wavenumber and frequency may be defined:

k =
∂S

∂x
, ω = −∂S

∂t
. (196)

(More generally, k = ∇S, implying that the local wavevector is orthogonal
to constant phase surfaces.) Hence

∂k

∂t
= −∂ω

∂x
= −∂ω

∂k

∂k

∂x
(197)

This, in turn, implies,
∂k

∂t
+ vg

∂k

∂x
= 0, (198)

where
vg = ∂ω/∂k (199)

is the group velocity. Equation (198) states that a “group” of wave crests
with well-defined wavenumber k moves along coherently at the velocity vg.
An initial superposition of different wavenumbers would spread apart, each
wavenumber moving with its own value of vg—unless, of course, vg is a con-
stant, as it is for both sound and light waves.

Exercise. Show that in three dimensions

∂k

∂t
+ (vg·∇)k = 0

where k = ∇S and vg = ∇kω.
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Another simple approach is to consider the superposition of two plane
waves with nearly equal wavenumbers k1 and k2, and frequencies ω1 and ω2.
Let S1(x, t) = k1x− ω1t, and similarly for 2. Then

exp(iS1) + exp(iS2) = exp
i(S2 + S1)

2

[

exp
i(S1 − S2)

2
+ exp

i(S2 − S1)

2

]

(200)
The right side is just

= 2
[

cos
(

S1 − S2

2

)]

exp
i(S2 + S1)

2
= 2 cos

(

S1 − S2

2

)

exp(iSavg) (201)

where Savg is the average of S2 and S1. This is a plane wave modulated by a
slowly-varying cosine envelope. The modulation has a phase which remains
constant along the trajectory

x− ω1 − ω2

k1 − k2
× t = x− vgt = constant (202)

The modulation therefore travels along the rapidly oscillating plane wave at
the group velocity vg. Since a pure, unmodulated plane wave sends no signal
(it has no beginning and no end), true signals travel at the group velocity.

Finally, we illustrate this point by a more rigorous procedure. To under-
stand the mathematics, consider an integral of the form

∫

∞

−∞

exp(iMΦ(x)) dx (203)

as M → ∞. Let Φ be well-behaved with an extremum (it could be a max-
imum or minimum) at x = xm. Away from x = xm, there is essentially no
contribution to the integral, because the oscillations become infinitely rapid
as M increases without bound. In the neighborhood of x = xm, however,
the oscillations cease, because Φ has no first derivative. The phase is said
to be stationary. Thus, the integral may be well-approximated by restricting
its range to a small neighborhood around xm, and expanding Φ in a Taylor
series:
∫ xm+ǫ

xm−ǫ
exp(iMΦ(x)) dx =

∫ xm+ǫ

xm−ǫ
exp[iM [Φ(xm) + Φ′′(xm)(x− xm)2/2] dx

(204)
where Φ′′(xm) is the nonvanishing second derivative of Φ at x = xm. But
in fact, there is little error in taking the range of integration back to ±∞,
since there is still, once again, little contribution to the integral away from
x = xm. We are left with

exp[iMΦ(xm)]
∫

∞

−∞

eiΦ′′(xm)s2/2 ds (205)
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where we have shifted the integration variable to s = x − xm. The remain-
ing integral may be found in tables or evaluated by straightforward contour
integration techniques. It is equal to e±iπ/4(π/|Φ′′(xm)|)1/2 where the ± sign
is the sign of Φ′′(xm). This technique of evaluating an integral in which the
argument is rapidly varying is called the method of stationary phase.

For our application, we consider a Fourier superposition of waves of dif-
ferent wavenumbers:

∫

∞

−∞

A(k) exp[i(kx− ωt)] dk (206)

It is assumed that the Fourier transform A(k) is not a rapidly varying func-
tion of k. At sufficiently large values of the exponential argument (either
x, t or k, ω), we may use the method of stationary phase to evaluate this
integral. We need not find its exact value. Rather, we note that its value
will be completely dominated by the contribution at the point at which the
exponential argument has a maximum (or minimum) with respect to k:

x− dω

dk
t = 0 (207)

In other words, the space curve x = vgt will follow the region where all of
the contribution to the Fourier integral originates. The group velocity tracks
the wave packet.

The above considerations show that the physical attributes propagate at
the group velocity dω/dk. In two or three dimensions, this generalizes to
the gradient in wavenumber space of ω. (The method of stationary phase
requires that all three directions correspond to an extremum of the argument
of the exponential function.) In other words, the group velocity always points
in the direction orthogonal to surfaces of constant ω.

As a slightly esoteric but very physical example of this, consider quantum
mechanical de Broglie waves. For particles in a potential V (r),

E = h̄ω =
h̄2k2

2m
+ V (208)

where k2 = k2
x + k2

y + k2
z . Thus

vgr = ∇kω =
h̄k

m
=

p

m
(209)

where p is the momentum. This corresponds to the classical velocity of a
particle, which indeed does carry its physical attributes! Note that the phase
velocity contains nothing of physical significance here.

60



Our intuitive understanding of group velocity has been based on the no-
tion of a wave packet with different frequencies and wavenumbers clustered
around a dominant frequency ω. But in practice, we work with a signal prop-
agation velocity vg even when only a pure harmonic wave exp(ikx − iωt) is
present in our problem. If there are no other neighboring frequencies present,
how do we make sense of the concept of a group velocity?

The point, which is subtle, is that there are always neighboring frequencies
present, even when there do not seem to be. Any signal must have been
turned on a some point in time, as we have already emphasized. A “pure”
harmonic wave had to have been “turned on” at some time in the past,
however distant that time may have been (t → −∞). Accordingly, it is
of interest to consider the behavior of a wave with frequency ω + iγ, and
then let γ > 0 approach zero at the end of the calculation. The fact that
we approach ω from the positive imaginary direction is not lost in this limit;
it leaves a trace by introducing the group velocity into the structure—the
causal structure—of the wave. It leaves this imprint in the form of a group
velocity.

Start with a plane wave exp(ikx− iωt), a pure mode propagating in the
positive x direction. We introduce a small positive imaginary part iγ to ω to
account for the wave being turned on from zero amplitude in the distant past.
But ω and k are not independent variables, they are related by k = k(ω),
the inverse of the dispersion relation ω = ω(k). Hence, if ω changes by iγ
then k must change by

k → k + iγk′ = k + iγ/vg (210)

where k′ = dk/dω = 1/vg. The appearance of the group velocity vg is
intimately linked to the coupling between ω and k that is present by the
existence of the dispersion relation.

The wave form becomes

exp[γ(t− x/vg)] exp[(ikx− iωt)] (211)

Notice that the amplitude of the exponential modulation of the oscillation
does not simply rise everywhere uniformly with time. Instead, it propagates
at the group velocity vg. At remote times in the past the wave was tiny,
and this small amplitude region has now advanced toward large positive x
(assuming k′ > 0), where the wave envelope is indeed vanishing. Turning
on the wave is a causal process, and the amplitude could rise uniformly
only if there was no change in the wavenumber k accompanying a change
in ω; that is, only if ω and k were unrelated by a dispersion relation. The
interdependence of k and ω is ultimately responsible for the causal structure
of the modulating envelope. The propagation speed vg is independent of the
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vanishing parameter γ. At the end of the next section, you will be asked to
show that in the limit γ → 0, the wave energy propagates at vg.

Dispersion relations of the form

ω2 = k2c2 + ω2
0, (212)

where c is a characteristic velocity and ω0 a constant frequency, appear often
in physics. We have already seen two examples: long waves in the oceans
and seas, and a system of pendula coupled with springs. Other examples
include (1) electromagnetic waves in a plasma

ω2 = k2c2 + ω2
p (213)

where now c is the speed of light and ωp is the natural oscillation frequency
(due to separation of charges) in a plasma; and (2) relativistic Klein-Gordon
waves,

(h̄ω)2 = (h̄k)2c2 +m2c4 (214)

where c once again is the speed of light. In each of these cases, the phase
velocity is in excess of c, which in these two examples means faster than the
speed of light! The group velocity, on the other hand, is always less than c.
For one-dimensional waves in a plasma, for example,

vg =
kc2

ω
=

kc2
√

k2c2 + ω2
p

< c (215)

This also guarantees that material particles obeying the Klein-Gordon dis-
persion relation move slower than the speed of light. This makes physicists
happy.

Water waves also show interesting behavior due to group velocity effects.
In deep water, ω2 = gk, and the group velocity of wavenumber k is half
as fast as the speed of wave crests at the same k. If you look carefully at
waves generated by winds or a passing boat, you will see a spreading packet
of waves moving along, and within the packet wave crests will appear out
of “nowhere” in the back, move forwards, and then disappear at the front
of the packet! As a nice example of the interplay between phase and group
velocities, consider the wake behind a boat (or even a duck) moving through
the water.

Start with figure 4. From the point of view of the boat, the water is
passing by with a velocity V . Waves are generated at the bow of the boat, at
all wavelengths for which the boat’s velocity exceeds the corresponding phase
velocity vp. In particular, forward propagating waves for which vp = V would
appear stationary just in front of the boat. More generally, at an angle θ
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α θ

V

B

Vp

Figure 4: B represents a boat with a current of velocity V streaming past.
Along a wedge of half opening angle α, wavecrests generated by the boat are
stationary if their phase velocity satisfies V cos θ = vp, where θ + α = 90◦.
Different wavenumbers k will have different angles α.

measured relative to the path of the boat (fig. 4), the phase velocity vp

satisfying the equation

vp − V sinα = 0 → V cos θ = vp = (g/k)1/2 (216)

picks out the direction for which the component of V normal to the wave
fronts exactly cancels the outward velocity of the fronts, namely vp. These
waves appear stationary in the frame of the boat. If in time t, the boat
traveled V t and the waves traveled vpt = V t cos θ, then the end of each ray
traced by each wave of a given wavenumber k would define a set of points
forming a circle with diameter V t. The points P and Q shown in figure 5
are representative. BUT, waves of a given wavenumber are found not at P
and Q, but at P ′ and Q′: this is the group velocity distance

vgt = vpt/2 = (V t/2) cos θ

from the original position of the boat B′. The actual waves therefore travel
in the same direction (e.g., toward P and Q) as the move out from B′, but
only reach half of the formal phase velocity distance. In other words, the
waves form a circle not of diameter V t, but of diameter V t/2.

The wake of the boat lies within the wedge whose boundary starts from
the ship’s current position B, and is tangent to this smaller circle. As shown
in the second drawing of figure 5, the wedge half angle α satisifes

sinα =
1

3
(217)
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Q

P’ Q’

1

1

2
αB

B

g t

Figure 5: UPPER LEFT: Waves generated at the initial boat postion B′

would reach a circle of diameter BB′ = V t, where B is the current boat posi-
tion, if they traveled at the phase velocity vp = V cos θ. In reality, they travel
exactly half this distance, forming the inner circle. UPPER RIGHT: The half
opening angle satisfies sinα = 1/3, for any choice of time t. LOWER: The
ensemble of all such “inner circles” forms the wake of the boat.
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or α = 19.5◦, a universal result for both ducks and battleships! Since our
choice of t is arbitrary, there are an infinity of such smaller circles from a
continuum of B′s, and the circle ensemble fills the wedge behind the boat
and forms a wake, as shown in the final drawing of figure 5.

Notice that this elegant little result is a consequence of nothing more
than dimensional analysis and the concept of group velocity. The frequency
of surface waves on deep water depends only upon the gravitational constant
g and the wavenumber, and it follows from this alone that ω ∝ k1/2. Thus
vp = 2vg, and our entire analysis flows from this! Indeed, it is possible
to do much more, like calculate the actual curved shape of the wave crests
themselves (see Lighthill, pp. 276-7).

Consider next the group velocity of internal gravity waves. Calculating
the components ∂ω/∂kx and ∂ω/∂kz from (176), one finds that they are the
components of a vector orthogonal to the wave number k! (Do it.) In other
words, the group velocity points along the same direction as the surfaces of
constant phase, which must also lie orthogonal to the wavenumber. This is
very different from a sound wave, which propagates at right angles to surfaces
of constant phase. An internal wave packet appears to be moving “sideways”
relative to the undulations that form the wave surfaces.

Our final example is taken from capillary waves. The deep water group
velocity is, from equation (144) or (145),

dω

dk
=

g + 3Tk2/ρ

2(gk + Tk3/ρ)1/2
(218)

Notice that as k → 0, the group velocity of the waves increases (these are
now surface gravity waves), and the same is true for k → ∞ (these are true
capillary waves). This means that the group velocity has a minimum at a
well-defined wavenumber. In the neighborhood of this minimum, the waves
behave nondispersively.

The interplay between phase and group velocities for capillary and gravity
waves is nicely illustrated by water flowing over an obstacle in a stream. If
the fluid velocity is smaller than the minimum phase velocity

cm = (4gT/ρ)1/4

(about 23 cm s−1, see equation [145]), no wavenumbers can be stationary in
the flow. But at flow velocities in excess of cm, there are two solutions of
the dispersion relation that are possible. One is a gravity wave, the other a
capillary wave. Consider stationary disturbances caused by the obstacle, say
a stone. In this case, the stream velocity is exactly equal to the phase velocity.
The capillary wave has a group velocity in excess of its phase velocity, hence
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the disturbance is propagated back upstream, opposite to the current. (The
stream is moving “subsonically” relative to this group velocity!) On the other
hand, the gravity wave has a group velocity less than the stream velocity.
Hence, this disturbance has no choice but to be carried downstream from the
obstacle. Therefore the capillary and gravity waves are separated. This effect
is clearly visible if you look carefully at stones in a stream. (A relatively slow
current and small stones work best.) You will see small wavelength capillary
waves piling up in front of the stones, and long wavelength gravitational
surface waves trailing behind.

4.7 Wave Energy

A mechanical vibration excites sound waves in the air. These waves prop-
agate through the medium, and excite other mechanical vibrations in the
receiver. The energy necessary to excite these secondary oscillations must
come from the waves themselves, i.e., sound waves transport energy. This
argument is valid for any source and receiver, so in general we expect any
type of propagating wave to transport energy.

Calculating the wave energy flux, a quantity second order (i.e., quadratic)
in the amplitudes, requires some care. Our formal expression for the energy
flux of a gaseous fluid is

F =

(

v2

2
+ Φ

)

ρv +
γ

γ − 1
Pv (219)

Now waves have an oscillatory time and space dependence, so that if v is
present only because of the wave itself, the kinetic energy flux will be of
third order in the amplitude δv, and negligibly small. The term involving
the potential Φ is proportional to the mass flux ρv, and corresponds to
bulk motion of the fluid through the potential. In general, adiabatic waves
cause no such bulk motions. (Imagine simple compression waves propagating
through masses connected to one another by springs.)

This leaves the pressure term. Consider the following (specious) reason-
ing. The velocity is linear order in δv. If P0 is the equilibrium pressure, then
P0δv vanishes on average, but δPδv does not. Therefore the wave energy
flux is

F =
γδPδv

γ − 1
?? (220)

This, alas, is incorrect.

The reason that this approach fails is that it does not separate the com-
ponent of the energy flux that is proportional to the mass flow from the
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component that is present when the mass flux vanishes. More specifically,
we may write

γ

γ − 1
Pv =

γ

γ − 1
c2ρv (221)

where c2 is kBT/m, the product of the Boltzmann factor and temperature
divided by the mass per particle. Only the piece of δP that causes temperature
fluctuations (ρ δc2) results in true wave energy transport. The sum of the
correlated fluctuations in the product ρv combine to give zero! This is just
our claim that the mass flux from the wave vanishes, but the mathematical
details are a little subtle, and we return to this point at the end. The true
wave energy flux is therefore

γ

γ − 1
ρ δc2 δv =

γ

γ − 1
P

(

δT

T

)

δv (222)

But the adiabatic gas law combined with the ideal gas equation of state gives

γ

γ − 1

(

δT

T

)

=
δP

P
(223)

and we are left with a flux of

Fw = δP δv (224)

Notice that energy flux is just the rate at which the wave pressure does work
on unit area of the fluid, a very satisfying and sensible result.

(Incidentally, I need hardly remind the reader that when a quantity like
δP δv is evaluated, one must take the real parts of δP and δv before mul-
tiplying them together! The simplifying trick of using complex variables
works only in a linear calculation, when the real and imaginary parts of all
quantities separate.)

What of our claim that the mass flux ρv vanishes? This is reasonable
physically, but formally appears to be in trouble, since δρ δv does not, in fact,
vanish for sound waves. Here, we must at last confront the difficulty that we
are trying to calculate a quantity that is second order in the amplitudes (the
energy flux) with a wave theory that has been calculated only to first order
in the amplitudes! The true velocity in a wave is

v = δv + v(2) (225)

where v(2) includes all contributions of second order and higher (nonlinear)
that are not calculated in first order (linear) theory. The true second order
mass flux quantity is then

ρv = δρ δv + ρ0v
(2) (226)
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where ρ0 is equilibrium mass density. It is this sum that vanishes, in the
process allowing v(2) to be determined (at least up to second order in the
amplitudes).

To be thorough, we should expand everything to second order in the per-
turbation amplitudes, and retain all expressions through this order. In fact,
what one finds is exactly what we found by the simple procedure of setting
the mass flux equal to zero everywhere. When we investigate nonlinear one-
dimensional sound wave theory, we will, in fact, calculate the second order
velocity explicitly.

For water waves, life is simple. With ρ taken to be constant, the term
proportional to ∇·v vanishes in our mechanical energy equation, there is no
δρ, and the energy flux term is always just δP δv. The wave energy flux
thus takes exactly the same form for adiabatic gases and for constant density
liquids. It is always the rate at which wave pressure does work on unit area
of the fluid, whether the fluid is a gas or a liquid.

Exercise. The intensity of sound is measured in decibels. If FE is the energy
flux of a sound wave, then

120 + 10 log10(FE/W m−2)

is the number of decibels (dB) associated with the sound. Here, FE is mea-
sured in watts per square meter. (One watt is one joule per second.) Zero dB
corresponds to the onset of hearing, 120 dB is extremely painful. What are
the fluid displacements associated with each of these limits? Take ρ = 1.2
kg m−3, a = 350 m s−1, ν = 400 Hz.

Exercise. Consider the wave form introduced at the end of §4.6 for studying
group velocity and causality,

ζ ≡ exp[γ(t− x/vg)] exp[(ikx− iωt)].

In general the wave energy density will be of the form Cζ2, where C is a
constant independent of space and time. Show that the energy density is, on
average, ρE = C exp[2γ(t− x/vg)]/2.

Next, evaluate H =
∫

∞

0 ρEdx, and note that it is finite! This is the total
energy contained in the region x > 0. The quantity dH/dt is the rate of the
change of energy in this region, and this is equal to the wave energy flux
entering into the region at x = 0. (In one dimension, the energy flux has
units of energy per time.) Show that when γ → 0, the energy flux is just the
product of the energy density and the group velocity vg, i.e., that the energy
propagates at the group velocity.
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4.8 Nonlinear Acoustic Waves

Up to this point, our wave theory has included only terms linear in the ampli-
tude. For the case of one-dimensional adiabatic flow, however, it is possible
to solve the time-dependent flow exactly to all orders in the amplitudes. The
result is interesting not only in its own right, but for the light it throws
on how linear waves may develop nonlinear features. Surprisingly, it is not
simply a matter of the wave amplitudes becoming large.

This problem was first solved by the extraordinary mathematician Bern-
hard Riemann, and it is therefore often referred to as “the Riemann problem.”

4.8.1 Quasilinear Theory of Partial Differential Equations

Before we begin our atttack on the Riemann problem, we need to review the
theory of first order partial differential equations. Actually, because of our
use of the Lagrangian derivative in the fluid equations, we already have the
tools that we need. Consider an equation of the form

∂f

∂t
+ v

∂f

∂x
= g (227)

where v and g are functions that depend upon x, t, and possibly f . Such
equations, linear in the derivatives but possibily nonlinear in the other vari-
ables, are known as quasilinear partial differential equations. The function v
clearly plays the role of a velocity. Indeed, our equation (227) is manifestly
of the form of a Lagrangian derivative, and we may say that traveling with
the fluid, df/dt = g. More precisely, along the path

dx

dt
= v(x, t, f) (228)

the function f satisfies
df

dt
= g(x, t, f) (229)

The first equation for dx is called the trajectory characteristic; the second, for
df , is called the solution characteristic. Together, these are “the characteris-
tic equations.” Note that our example is quite general, since any first order
quasilinear PDE can be expressed in this Lagrangian derivative form. The
solution of this form of PDE may be reduced to the solution of coupled ordi-
nary differential equations for the characteristics, together with appropriate
boundary conditions.

Let us see how this works with a simple example. Assume that at t = 0,
the function f is given by F (x), our boundary condition. Let v be a given
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constant, and for simplicity let g = f . Go to a particular point on the t = 0
axis, call it x = x0. (See figure 6.) The trajectory characteristic is a path
emerging from x = x0 satisfying dx/dt = v, namely

x = x0 + vt (trajectory characteristic.) (230)

The solution characteristic is the solution to df/dt = f taken along this path:

f = F (x0) exp(t) (231)

Note that we insist upon writing F (x0) rather than F (x), because the bound-
ary condition requires us to use the value of x along the trajectory charac-
teristic x = x0 + vt at t = 0. This particular value of x is of course x0. At
any point (x, t) along the trajectory beginning at x = x0, x0 itself is given
by x0 = x− vt. Our final solution thus takes the form

f(x, t) = F (x− vt) exp(t) (232)

Direct substitution into the original PDE shows that this is indeed the solu-
tion.

4.8.2 The Steepening of Acoustic Waves

With the technique of the last section understood, we may proceed to the
more complex problem of the coupled nonlinear fluid equations for one-
dimensional acoustic disturbances.

Our problem is to solve the system of equations:

∂v

∂t
+ v

∂v

∂x
= −1

ρ

∂P

∂x
(233)

∂ρ

∂t
+ v

∂ρ

∂x
= −ρ∂v

∂x
(234)

Equation (233) is the equation of motion; (234) is simple mass conservation.
Our gas all lies on the same adiabat, P = Kργ . Hence,

dP

ρ
= d

(

a2

γ − 1

)

(235)

where a is the adiabatic sound speed

a2 =
γP

ρ
= γKργ−1 (236)
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X0

X

t

Figure 6: Trajectory characteristics in the x, t plane. The point x0 denotes
the starting point of each trajectory. (Only one is shown explicitly in the
figure.) The initial data are given as some function f(x, t = 0) which we
denote as F (x0). The solution characteristic equation then tells us how f
changes along each of the trajectory characteristics, starting with the first
point, x0.
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We express ρ and P in terms of a, and write our coupled equations in terms
of v and a:

∂v

∂t
+ v

∂v

∂x
= − 2a

γ − 1

∂a

∂x
(237)

2

γ − 1

(

∂a

∂t
+ v

∂a

∂x

)

= −a∂v
∂x

(238)

The next step is “obvious” — if you are Riemann. You add (237) and (238)
to obtain

∂

∂t

[

v +
2a

γ − 1

]

+ (v + a)
∂

∂x

[

v +
2a

γ − 1

]

= 0. (239)

Then you subtract the same two equations:

∂

∂t

[

v − 2a

γ − 1

]

+ (v − a)
∂

∂x

[

v − 2a

γ − 1

]

= 0. (240)

This wonderful trick has decoupled the two equations into two quasi-linear
equations that can be solved separately, and then their results can be com-
bined. Equation (239) has the solution

R+ ≡ v +
2a

γ − 1
= const on

dx

dt
= v + a (241)

the so-called + characteristics, and equation (240) has the solution

R− ≡ v − 2a

γ − 1
= const on

dx

dt
= v − a (242)

the − characteristics. The + and − trajectory characteristics have the phys-
ical interpretation of sound waves moving relative to the fluid either forwards
or backwards. Different quantities, R+ and R−, are maintained at constant
values along these sound tracks. The + and − characteristics can, indeed
must, cross each other without inconsistency. That is how we can solve in-
dependently for v and a! At a point where a + and − characteristic cross,

v =
1

2
(R+ + R−), a =

γ − 1

4
(R+ −R−) (243)

The true problem arises when two characteristics of the same type cross.
This is when shocks form, the ultimate nonlinear behavior.
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4.8.3 Piston Driven into Gas Cylinder

To understand in more detail how this happens, consider the classic problem
of a piston moving in some prescribed manner at the head of a gas cylinder.
The gas occupies the region x > 0. For t < 0, a piston at x = 0 is stationary.
At t = 0 it begins to move with a velocity vP (t). This must also be the
velocity of the gas immediately adjacent to the piston wall. The position of
the piston is xP (t), the integral of vP (t) from t = 0 to time t. Refer to figure
(7), the time-space diagram, in what follows.

The − characteristics all originate from t = −∞ and x = +∞, hence

R− = v − 2a

γ − 1
= − 2a0

γ − 1
(244)

everywhere, where a0 is the initial value of the sound speed in the undisturbed
gas. This is the same constant on every − characteristic, and so this equation
is true throughout the flow: in a well-defined flow, every space-time point is
linked to some − characteristic emerging from the distant past. (We should
always think of advancing with dt > 0 along any characteristic, since this is
propagation of information. A − characteristic emerging from the piston in
the dt > 0 direction would head in the direction behind the piston! This is
nonsense.)

The + characteristics originate from the piston head, “moving” into the
fluid ahead. For t ≤ 0 the piston location corresponds to x = 0. For t > 0,
this corresponds to the path tP = tP (xP ), the inverse function xP (tP ). (Note
that we explicitly label the piston path with subscript P .) In the lower half
plane t ≤ 0, the + characteristics are straight lines

dx

dt
= a0, x = a0(t− t0), R+ =

2a0

γ − 1
(t ≤ 0) (245)

where t0 is the time along the axis x = 0 at which a characteristic begins.
The last characteristic emerging from the stationary piston comes from the
point x = t = 0. Then, for t > 0, there is a nonvanishing velocity at the
beginning of each + characteristic (the piston head), vP , which is a given
function of time, tP . To calculate how this changes the + characteristics,
let us first go back to the − characteristics. The − characteristics must
penetrate everywhere that our solution is well-defined. Therefore, by the
constancy of R−, the sound speed at the piston head aP is linked to its value
at −∞, and is determined by

vP − 2aP

γ − 1
≡ R− = − 2a0

γ − 1
. (246)
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Figure 7: Piston driven into a cylinder. The path of the piston is shown in the
tx plane by the thick line. The thin lines are − characteristics and + char-
acteristics. The latter always emerge from the cylinder along straight lines,
but the slope becomes more shallow as the piston accelerates. Eventually
the + characteristics cross and a shock must form.
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If our problem is well-posed, this would have to be true for any vp, aP along
the path of the piston. We may solve easily now for aP interms of vP :

aP = a0 +
γ − 1

2
vP . (247)

Now, for t > 0, at some arbitrary point in the flow Q

R+ = v +
2a

γ − 1
= vP +

2aP

γ − 1
, (248)

where now the “P” refers to the point at the piston head connected with
point Q in the flow by a + characteristic. But, at the same arbitrary point
Q in the flow,

v − 2a

γ − 1
= − 2a0

γ − 1
= vP − 2aP

γ − 1
, (249)

where once again, the “P” refers to the point at the piston at the head of the
+ characteristic. This follows because while the point Q in the flow and the
point P on the piston each lie on their own separate − characteristic, along
any − characteristic, R− is the same number! That number is always given
by equation (246) for every point P along the piston. We thus find that v
and a are both constant along the + characteristic joining P and Q:

v = vP = vP (tP ) (a given function of tP ) (250)

a = aP = a0 +
γ − 1

2
vP . (251)

Note that this does not mean that v and a are constant throughout the region
t > 0! Their value changes from one + characteristic to another because aP

and vP change from once + characteristic to another. But since v and a are
both constant along a + characteristic, the equation of the + trajectory must
be a straight line:

dx

dt
= v + a = vP + aP → x− xP = (vP + aP )(t− tP ), (252)

or
x− xP = [vP (γ + 1)/2 + a0](t− tP ). (253)

With xP and vP given functions of tP , equation (253) becomes an implicit
equation for tP = tP (x, t), and our problem is formally solved by equations
(250) and (251) with the replacement of tP by tP (x, t).

An explicit solution can be found for the case

vP = αtP , xP = αt2P/2, (254)
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and piston that is accelerating into the cylinder. In this case (253) is a simple
quadratic equation in tP . This task we shall leave for the reader. But it is
easy to see that something will go terribly wrong! The slope for each of the +
characteristics emerging at later and later times becomes steeper and steeper
if one considers dx/dt, but less and less steep in the tx plane (i.e., dt/dx)
shown in the figure. These characteristics soon cross, and the theory breaks
down. This corresponds to the formation of a shock wave, as the density
(or velocity) profile becomes steeper and steeper (characteristics becoming
closer and closer). The point at which the characteristics cross corresponds
to an infinite spatial gradient. Something new enters the problem: viscosity
becomes crucial for resolving the shock profile.

Exercise. What happens mathematically in the analytic solution when the
characteristics cross?

4.8.4 Driven Acoustic Modes

This section constains optional advanced material, included for your interest.

We turn next to the case of only slightly nonlinear acoustic waves. Let the
piston position as a function of time be

xP (tP ) = ǫ sin(ωtP ) (255)

where ǫ is a small, but finite constant parameter. Then

vP = ǫω cos(ωtP ) (256)

and
x = ǫ sin(ωtP ) + [ǫω cos(ωtP )(γ + 1)/2 + a0](t− tP ) (257)

This is too complicated to solve for tP explicitly as a function of x and t for
any ǫ, but it can be solved order-by-order. First, with ǫ = 0,

tP = t− x

a0
(258)

which is just the standard “retarded time.” Given a location x, a time t, and
an unperturbed sound speed a0, the above tP is just the time at which the
signal now at (x, t) originated—in linear theory. The velocity is then

v = vP = ǫω cos(ωt− kx) (259)

where the wavenumber is k = ω/a0. This is a standard linear plane wave.
Finally the sound speed solution may be written

a− a0

a0
= ǫ

(

γ − 1

2a0

)

ω cos(ωt− kx) (260)
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which again is a result in agreement with linear theory. Motion of the piston
at some time tP is simply mimicked at location x a time tP + x/a0 later.

We now enter the nonlinear regime. In equation (257), we obtain the
first order correction to tP by replacing tP with its zeroth order expression
t− x/a0 in every term linear in ǫ, which we shall henceforth denote tP0:

x = ǫ sin(ωtP0) + [ǫω cos(ωtP0)(γ + 1)/2 + a0](t− tP ) (261)

The first order solution for tP , which we shall call tP1 is then given by

tP1 = t− x

a0

(

1 − ǫk
γ + 1

2
cos(ωtP0)

)

+
ǫ

a0

sin(ωtP0) (262)

The corrected velocity is now just proportional to cos(ωtP1). To this order,
we see that there are periodic changes both to the explicit phase of the wave,
as well as to the wavenumber.

Let us investigate how these changes affect the possibility of a systematic,
nonvanishing velocity field at this higher order. Working strictly to first order
in ǫ (which assumes, for example, that quantities such as k2xǫ are small),
repeated expansion of the cosine and sine functions gives

cos(ωtP1) = cos(ωt− kx) − ǫ(γ + 1)k2x

4
sin(2(ωt− kx)) − ǫk sin2(ωt− kx)

(263)
Thus the average of cos(ωtP1) does not vanish:

〈cos(ωtP1)〉 = −ǫk
2

(264)

The velocity is ǫω cos(ωtP1), so the nonvanishing average velocity is second
order in ǫ.

We are now in a position to address the question of whether there is any
mass flux associated with the sinusoidal oscillation of the piston, at least to
the lowest order needed to do the calculation. The density is proportional to
the 2/(γ − 1) power of the sound speed a = aP ,

ρ ∝ a
2/(γ−1)
P (265)

Using our explict solution, we obtain

a
2/(γ−1)
P = a

2/(γ−1)
0

(

1 + (ǫk)
γ − 1

2
cos(ωtP )

)2/(γ−1)

(266)

77



(We do not yet specify the order of tP .) The mass flux is proportional to

va2/(γ−1) = ǫω cos(ωtp) a
2/(γ−1)
0 (1 + ǫk cos(ωtP ) + ...) (267)

Its average is computed as

〈va2/(γ−1)〉 = a
2/(γ−1)
0

(

ǫω〈cos(ωtP )〉 + ǫ2ωk〈cos2(ωtP )〉 + ...
)

(268)

In the first term on the right, we need to use tP1 so that the contributions
through order ǫ2 to the mass flux are included. The second term is already
of quadratic order, and tP0 is acceptable. Using equation (264), both terms
in the equation are of magnitude ǫ2ωk/2, but they occur with opposite signs.
Thus, the mass flux vanishes through order ǫ2, just as we argued more infor-
mally in an earlier section.

Notice how the nonlinear structure has emerged in our calculation from
a simple sinusoidal traveling wave. An explicit phase function has appeared
which itself has the form of a traveling wave, and the wavenumber is also
modulated. Indeed, the following argument suggests that in nonlinear theory
an exact solution should show a continuous steepening of the wave as time
goes on. The sound speed is faster in regions of higher density than in lower
density, so the crests of a traveling wave should always be trying to overtake
the evacuated troughs in front of them. This is indeed what happens. But
how do we interpret the limit in which the gradient becomes infinite, i.e.,
the density and velocity profiles have discontinuities? These structures are
called shock waves, and our the topic of our next section.

4.9 Shock Waves

4.9.1 Rankine-Hugoniot Relations

We have seen that a sound wave propagating in a medium tends to move
slightly more rapidly in regions where it is compressed (and the temperature
is higher) than in regions where it is not. The effect of this that the peaks
of a sound wave are constantly overtaking the troughs, and the profile of the
wave steepens with time. In a finite amount of time, which can be calculated
by the methods discussed above, the slope of the density formally becomes
infinite, and if we were to continue to believe our equations, the density
becomes double-valued!

No such nonsense is observed in nature, of course. What happens instead
is that a wave continues to steepen until the characteristic length scale over
which the density changes becomes comparable to the collisional mean free
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2V
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Figure 8: Schematic shock structure of the velocity field. Flow enter from
the left (x < 0) at velocity v1, passses through the shock transition (x = 0),
slows, and emerges (x > 0) with velocity v2. The transition layer is very
narrow. The density, pressure and temperature profiles would all show sharp
increases.

path of the gas particles. At this point, our simple adiabatic equations of
motion certainly can no longer be trusted. This is precisely the scale at which
viscosity and thermal conduction become important.

A description of how the disturbance behaves is as follows. The gas wave
steepens until the gradient is, from a macroscopic point of view, a disconti-
nuity in both the density and the velocity. This discontinuity is the shock
wave. In reality, there is a continuous flow through the “discontinuity”, and
the fluid passes through the shock, making a rapid transition from one state
of well-defined velocity, density, and pressure to another. But the transition
is tightly regulated. Mass, momentum, and energy must all be conserved.
This is sufficient to determine the final state of the gas, given its pre-shock
state: the fate of the gas does not depend on the form of the viscosity or
thermal conduction. The presence of dissipation, however, means that the
entropy is not continuous across the shock. Rather, it increases irreversibly.

To be explicit, consider the fluid equations in the frame in which the shock
is at rest at the location x = 0. The fluid enters from the side x < 0, makes a
transition, and leaves at x > 0. Assume that the flow is entirely perpendicular
to the plane of the shock, or front. (See figure 8.) The structure is steady in
time. Under these conditions, the shock is well described by one-dimensional
fluid equations. The equations of mass, momentum, and energy can all be
written in the conservation form

∇ · F = 0 (269)

where F is an associated flux. For example, mass conservation is simply
∇·ρv = 0. Sections 2.4 and 3.3 discuss the energy and momentum fluxes
respectively. These fluxes apply to an adiabatic gas, whereas the shock front
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is dissipative. We will discuss the dissipative equations later in the course;
for now we note that the viscous and thermal conduction fluxes simply add
directly to the adiabatic flux terms that are already present. These dissipa-
tive fluxes are negligible except in a very narrow layer within a few particle
mean free paths of the front. In particular, equation (269) still holds in its
conservation form for the mass, momentum and energy fluxes. If we now
integrate (269) from one side of the shock to the other, beginning and ending
well outside the dissipation zone, we find

F2 = F1 (270)

where the labels 2 and 1 refer to the postshock (“downstream”) and preshock
(“upstream”) regions. In zones 2 and 1, the adiabatic fluxes may be used.
The equations of mass, momentum and energy conservation are therefore

ρ2v2 = ρ1v1 (271)

P2 + ρ2v
2
2 = P1 + ρ1v

2
1 (272)

ρ2v
3
2

2
+
γP2v2

γ − 1
=
ρ1v

3
1

2
+
γP1v1

γ − 1
(273)

The velocity v is the velocity normal to the shock front. These are three
equations for three unknowns, P2, ρ2, and v2. These unknowns can be solved
for, once the upstream values P1, ρ1 and v1 are specified. (Notice that any
external potential forces are unimportant if the shock transition is narrow,
since these forces are continuous from one side of the transition to the next.)

Eliminating ρ2 and P2 from (271–273), we find that the ratio x = v2/v1

satisfies the quadratic equation

x2 − 2(γM2 + 1)

M2(1 + γ)
x+

(

γ − 1 + 2/M2

γ + 1

)

= 0 (274)

where we define the so-called “Mach number” M by

M2 =
v2
1

γP1/ρ1
=
v2
1

a2
1

. (275)

This is the ratio of the upstream gas velocity to the upstream adiabatic
sound speed, all squared. As usual, there are two solutions to this quadratic
equation, one of which we know without doing any work at all: x = 1!
(Obviously v1 = v2 satisfies the original equations.) But knowing that a
quadratic equation of the form (274) has one root x = 1 means that the
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other root is simply the constant term in the equation. This is the shock
solution:

x =
v2

v1

=
ρ1

ρ2

=
γ − 1 + 2/M2

γ + 1
(276)

The pressure ratio is obtained from

P2 = P1 + ρ1v
2
1 − ρ2v

2
2 = P1 + ρ1v1(v1 − v2)

which follows from (271) and (272), and one finds:

P2

P1
=

2γM2 + 1 − γ

1 + γ
. (277)

The temperature T is proportional to P/ρ, and works out to be

T2

T1
=

(2γM2 + 1 − γ)(γ − 1 + 2/M2)

(1 + γ)2
(278)

Equations (276-278) are collectively known as the Rankine-Hugoniot jump
conditions for a plane parallel shock front.

4.9.2 Discussion

The study of shocks is rich and fascinating, and it could be an entire course
by itself (see the two volumes of Courant and Friedrichs or Zel’dovich and
Razier), so here we must be content to limit ourselves to just a few essential
comments.

The R-H conditions become particularly simple in two limiting cases. The
first is when M2 → 1, in which case all of our “2/1” ratios reduce to unity
as well. The magnitude of the discontinuities of the density, pressure and
temperatures is proportional to M2 − 1, when this quantity is small. The
existence of shocks requires an upstream velocity satisfying M2 > 1, and a
weak shock corresponds to the limit M2 → 1 from above. You should be
able to show that the postshock Mach number is always less than unity, but
that the entropy always increases across a shock front. Low entropy, ordered
kinetic energy is converted into high entropy, disordered thermal energy.

The second limit of interest corresponds to a strong shock, M2 → ∞.
Then the R-H conditions reduce to

v2

v1
=
ρ1

ρ2
=
γ − 1

γ + 1
, (279)
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P2

P1
=

2γM2

γ + 1
(280)

T2

T1

=
2γM2(γ − 1)

(1 + γ)2
(281)

The last equation may be rewritten as

T2 =
2(γ − 1)

(γ + 1)2

mv2
1

k
(282)

where m is the mass per particle and k is the Boltzmann constant. The post-
shock temperature is independent of the preshock temperature in a strong
shock, and instead depends only upon the kinetic energy per particle of the
gas entering the shock.

Notice that although there is no limit to how much a shock can heat gas,
there is a limit as to how much it can compress gas. For γ = 7/5 it is a factor
of 6; for γ = 5/3 a factor 4. Indeed, it is precisely the fact that the gas is so
strongly heated that limits the postshock density rise. The pressure becomes
prohibitively high beyond density compression factors that are only of order
unity or so, and further compression stops.

Strong shocks emerge when a large amount of energy is suddenly released
in an exceedingly short period of time. We call this a “bomb.” Much of the
development of shock wave physics has been driven by the practical result
that it is possible to determine the energy released in nuclear weapons by
studying the structure of the flow behind the shock wave that is produced.

The velocity of the spherical shock wave produced by a bomb that has
exploded in a uniform gas can depend only upon the energy released E and
the initial density of the gas ρ. From these two quantities, dimensional
analysis is sufficient to make a rough guess of what the shock radius rsh and
shock velocity vsh are as a function of time t:

rsh ∼ (Et2/ρ)1/5 vsh ∼ (2/5)(E/ρt3)1/5 (283)

As it happens, the unknown proportionality constant here turns out to be
very close to unity for values of γ of physical interest.

A small atomic bomb has a yield of about 1021 ergs (1014 J). The density
of air at sea level is about 1.2 kg m−3. Thus, 0.01 seconds after the blast,
a shock wave with a velocity of roughly 4000 m s−1 propagates through the
air. The speed of sound is only about 350 m s−1, so this is a strong shock
wave, M2 ≃ 130. With an average mass per particle in the atmosphere of
about 4.6×10−23 g, and γ = 7/5, the postshock temperature works out to be
7400 K. The air radiates approximately as a blackbody at this temperature,
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Figure 9: The Mach cone created by a supersonic aircraft. See text for
details.

and would appear blue. (In fact, the gas becomes partially ionized and it is
not quite fair to take a constant value of γ, but the numbers are not far off
in the end.) Supernovae, nature’s ultimate explosions, also produce strong
shocks in the surrouding low density gaseous medium. These are discussed
in my course in Astrophysical Gasdynamics.

In less explosive circumstances, when a terrestrial aircraft flies faster than
the local speed of sound, a cone forms beyond the plane whose surface cor-
responds to a weak shock wave (see figure 9). In front of the cone, the air
is completely undisturbed, since no acoustical signal can move faster than
the plane. The interior of the cone marks the region in which sound waves
caused by the plane have been able to propagate.

Following the figure, at time zero, the plane is located at A, and at time
t it has traveled a distance V t to point B. An acoustic disturbance has
traveled a distance at during this time, and its sphere of influence lies behind
the plane as shown. The ensemble of all such spheres fills the interior of the
Mach cone with half opening-angle α such that

sinα =
a

V
=

1

M
(284)

By way of contrast, a subsonic aircraft remains always within the spheres of
influence created by its acoustic disturbances. Lighthill makes the amusing
observation that if we could only hear the conversation in a supersonic plane
as it passed overhead, all the sounds would come out backwards: “pap pep
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pip pop pup” becomes “pup pop pip pep pap”! This can perhaps be thought
of as a negative Doppler shift.

Notice that the condition (284) states that V sinα = a. This states that
relative to the plane, sound waves have a velocity component normal to the
cone of a− V sinα = 0, i.e., they are stationary. This is why the Mach cone
surface is itself stationary, and why a BOOM is heard as the cone passes over
head. All the acoustic disturbances generated by the plane pile up along the
surface of the cone and are perceived at once, whereas in the cone interior
they are spread out and spatially dispersed.

The other consequence of the condition (284) is that the component of the
gas velocity normal to the cone’s surface corresponds to a Mach number of
exactly unity: V sinα/a = 1, regardless of the plane’s Mach number through
air, V/a > 1. The faster the plane travels, the sharper the Mach cone
becomes, so that the normal component of the gas velocity always maintains
a Mach number of unity. This means that the conic surface corresponds to a
weak shock. (The fact that shock is weak also means that it does not matter
whether we use the pre- or post-shock value of a.) This is a good thing for
human beings: the over-pressure behind a moderately strong M2 = 2 shock
in the atmosphere would be the same as being 10 meters under water! That
would be quite a BOOM.

A well-designed supersonic aircraft should have a nose that tapers to a
sharp point, so that the apex of the cone is not blunt, and the M = 1 conical
surface can extend all the way to the tip. A blunt nose would result in a strong
shock with all the adverse temperature and pressure increases that entails.
This is why the Concorde looks the way it does: a sharp tip and compact
swept-back wings to stay within its Mach cone. Subsonic aircraft, on the
other hand, are designed with a smooth nose, so that the flow streamlines
can smoothly pass over the airplane without becoming turbulent, and straight
extended wings, so that the normal component of the air speed is large and
can generate lift.

4.10 Stable Nonlinear Waves on Water

4.10.1 Rayleigh’s Solitary Wave

Recall the dispersion relation for water waves in a body of depth H :

ω2 = gk tanh(kH) (285)

When kH is small,

ω2 = gk[(kH) − (kH)3/3 + ...] (286)

84



This implies a phase velocity c = ω/k of

c = c0(1 − (kH)2/6 + ...) (287)

where c20 = gH . This quadratic departure from a constant phase velocity is
typical not just of water waves, but any system which is weakly dispersive.
(Departures from constant c0 are of order k2 if the dispersion relation is
smooth and ±k symmetric.) The simplest possible wave equation that leads
to this phase velocity (keeping only the quadratic term in kH) is:

∂v

∂t
+ c0

∂v

∂x
+
c0H

2

6

∂3v

∂x3
= 0 (288)

A considerably more detailed analysis of nonlinear shallow water waves,
which we shall pursue in the next section, yields an equation that is hardly
different: the velocity v is added to the wave speed c0 in the second, convec-
tive, term:

∂v

∂t
+ (c0 + v)

∂v

∂x
+
c0H

2

6

∂3v

∂x3
= 0, (289)

and results in the only nonlinear term in the equation. This is one of sev-
eral different but equivalent forms of the Korteweg-de Vries (KdV) equation,
which is generic to nonlinear, slightly dispersive wave systems. The best
known applications are to water and plasma waves.

In the case of water waves, the velocity v is not the vertical displacement
velocity, but is instead proportional to the excess wave speed beyond c0 =√
gH of linear theory. More precisely, let c =

√
gh, be the nonlinear wave

speed, where h includes both the undisturbed depth H plus the wave height.
Then, it can be shown that c0 in the second term in the linear wave equation
(288) is replaced by

c0 + v = 3c− 2c0

in nonlinear theory. Hence, we identify v = 3(c − c0). (See Acheson pp.
89–92, and the problem at the end of the next section.)

The KdV equation is famous for the fact that it has an exact solution, first
discovered by Rayleigh.2 Let v = f(x− Ut), where U is a constant velocity
to be determined. We seek a solution in which the function f(X) vanishes
at large |X|, an isolated traveling wave form that retains its profile as it
propagates. If we substitute our expression for v into the above equation,
there obtains

(c0 − U)f ′ + f ′f +
c0H

2

6
f ′′′ = 0 (290)

2Actually, Rayleigh discovered the solution of the KdV equation before the equation
was discovered! He derived his result directly from the fundamental fluid equations.
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where f ′ is the derivative of f with respect to the argument X = x − Ut.
The expression on the left is an exact derivative, and may be immediately
integrated to give

(c0 − U)f +
f 2

2
+
c0H

2

6
f ′′ = 0 (291)

where the boundary conditions at infinity have been used to set the inte-
gration constant equal to 0. Multiplication by f ′ gives us another exact
derivative on the left. Then, integration and implementaion of the boundary
conditions leads to

(f ′)2 =
2

c0H2
f 2 [3 (U − c0) − f ] . (292)

This is a separable first order equation:

∫

df

f
√

3(U − c0) − f
= ±

(

2

c0H2

)1/2

X. (293)

The easiest way to do the integral is to substitute f = 3(U − c0)sech
2 (s),

and we find that

v(x, t) = f = 3(U − c0)sech
2





√

3

2

(U − c0)

c0H2
(x− Ut)



 (294)

This is the classical, (nearly) exact, nonlinear wave form in which the steepen-
ing caused by the finite amplitude is exactly balanced by dispersional spread-
ing. The relationship between nonlinear wave speed U − c0 and finite wave
amplitude a follows from the finite amplitude wave speed

c2 = gh, (295)

with h = H + δh = H + a. Then

ga ≡ gδh = 2c0δc = 2
√

gH(U − c0), (296)

whence

U = c0 +
a

2

√

g

H
. (297)

It follows that larger amplitude waves have larger velocities.

The solution (294) was first observed on the Union Canal at Hermiston,
Scotland in 1834 by a talented Scottish engineer, John Scott Russell. His
own description is both charming and informative:
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“I was observing the motion of a boat which was rapidly drawn along a
narrow channel by a pair of horses, when the boat suddenly stopped - not so
the mass of water in the channel which it had put in motion; it accumulated
round the prow of the vessel in a state of violent agitation, then suddenly
leaving it behind, rolled forward with great velocity, assuming the form of a
large solitary elevation, a rounded, smooth and well-defined heap of water,
which continued its course along the channel apparently without change of
form or diminution of speed. I followed it on horseback, and overtook it
still rolling on at a rate of some eight or nine miles an hour, preserving its
original figure some thirty feet long and a foot to a foot and a half in height.
Its height gradually diminished, and after a chase of one or two miles I lost
it in the windings of the channel. Such, in the month of August 1834, was
my first chance interview with that singular and beautiful phenomenon which
I have called the Wave of Translation”.

Exercise. With 1 mile equal to 1.6 km and 1 foot equal to 0.3 m, can you
compute the depth H of the canal from Russell’s data? Is the ∼ 30 foot
length of the disturbance consistent with our solution?

Solitary waves became very fashionable in particle physics when it was dis-
covered that two such waves could interact, and even though each wave was
nonlinear, they emerged from the “collision” completely unaltered! These
were quickly dubbed solitons, and viewed as models of elementary particles.
Particle physics has since moved on, but soliton theory (the name has become
generic for solitary waves) remains an active area of research. In fiber optics,
passage of a signal through a medium causes both nonlinear and dispersive
effects. The fact than these effects can be made to mutually cancel allows
signal transfer across vast distances with little distortion, a result of consid-
erable practical benefit. A fiber optics cable linking Glasgow and Edinburgh
runs beneath the original canal Russell used for his prescient observations of
solitary waves (see www.ma.hw.ac.uk/solitons/press.html). If you are read-
ing these notes online, you may in fact be making direct use of the KdV
equation!

4.10.2 Derivation of the Korteweg-de Vries Equation

This section contains optional advanced material, included for your interest.

In this section, we give a rigorous derivation of the Korteweg-de Vries
equation, based on the treatment of Drazin and Johnson (Solitons: An In-
troduction).

We seek two-dimensional, irrotational solutions to the equations of mo-
tion. The vertical direction is z, and the horizontal direction (the direction of
wave propagation) is x. The depth of our channel is H and the displacement
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of the surface is denoted as η. A typical horizontal scale (the “wavelength”) is
L, the ratio δ = H/L is small if the limit where the waves are not dispersive.
If a is the maximum surface displacement, the ratio α = a/H is assumed to
be small throughout this analysis. δ, we shall see, can be somewhat more
general.

The velocity may be derived from a scalar potential v = ∇φ. Thus, mass
conservation is

∇·v = ∇2φ = 0 (298)

The equation of motion for a velocity field with vanishing vorticity is

∂v

∂t
+ ∇

(

v2

2

)

= −∇

(

P

ρ
+ Υ

)

(299)

where Υ is the gravitational potential energy. We will take the zero of Υ
to be at z = H , so that Φg = gη. We use the subscripts to denote partial
differentiation,

φx =
∂φ

∂x
, φz =

∂φ

∂z
, φt =

∂φ

∂t
, (300)

and the same with other variables.

The equation of motion may be integrated immediately,

φt +
1

2

(

φ2
x + φ2

z

)

+
P

ρ
+ gη = f(t) (301)

where f(t) is a function of time only. This function can be absorbed into the
definition of φ without any physical consequence, so we may set f(t) = 0. (φ
is defined only up to an arbitrary additive function of time.)

On the surface z = H + η, P = 0, and our dynamical equation becomes
the boundary condition

φt +
1

2

(

φ2
x + φ2

z

)

+ gη = 0, on z = H + η. (302)

The other boundary condition on z = H + η is that vz = dη/dt, or

φz = ηt + φxηx, on z = H + η. (303)

since the displacement η is a function of x and t. Our final equation is
the Laplace equation for φ, together with the boundary condition that the
vertical velocity φz vanishes at the bottom z = 0:

φxx + φzz = 0, with φz = 0 at z = 0. (304)
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We seek solutions to equation (304) subject to the boundary condtions (302)
and (303).

To make progress, we need to know the relative magnitudes of the terms
in our equations. We first introduce the dimensionless forms of the x, z, and
η variables. These are X, Z, and ζ , respectiely:

x = XL, z = HZ, η = aζ. (305)

Recale that α = a/H is assumed to be small. No assumptions are made for
ratio δ = H/L. Our dimensionless time T is defined by

t = T (L/
√

gH) (306)

i.e., T is the time computed in units of the time it takes a linear wave to
cross a distance L. The basic scaling for φ comes from the assumption that
the wave is driven by gravity and only slightly nonlinear, φt ∼ ηg. In other
words, the characteristic size for φ is

φchar ∼ Tag ∼ La

√

g

H
, (307)

hence we define the dimensionless potential Φ by

φ = La

√

g

H
Φ (308)

Partial derivative rescalings are therefore

ηt =
a
√
gH

L
ζT , ηx =

a

L
ζX , (309)

and

φx = a

√

g

H
ΦX , φz = aL

√

g

H3
ΦZ , φt = agΦT . (310)

We may now formulate our problem in dimensionless variables. The
Laplace equation is

ΦZZ + δ2ΦXX = 0 (311)

The dynamical boundary equation (302) is

ΦT +
α

2

(

Φ2
X +

1

δ2
Φ2

Z

)

+ ζ = 0 on Z = 1 + αζ . (312)
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and the kinematic surface boundary condition (303) is

δ2(ζT + αζXΦX) = ΦZ on Z = 1 + αζ . (313)

We now scale δ out of the equations, so that only the small parameter α
remains. Let

ξ = (α1/2/δ)[X − T ], τ = (α3/2/δ)T, ψ = (α1/2/δ)Φ (314)

Then
∂

∂X
=
α1/2

δ

∂

∂ξ
,

∂

∂T
=
α3/2

δ

∂

∂τ
− α1/2

δ

∂

∂ξ
(315)

Notice that the ξ variable is in essence a change of coordinates into a frame
moving with at the velocity

√
gH of the linear wave. Our equations become

ψZZ + αψξξ = 0, ψZ = 0 at Z = 0, (316)

αψτ − ψξ + ζ +
1

2

[

α(ψξ)
2 + (ψZ)2

]

= 0 on Z = 1 + αζ , (317)

and
α2ζτ − αζξ + α2ζξψξ = ψZ on Z = 1 + αζ . (318)

As promised, δ has disappeared from the governing equations.

The remainder of our problem is a straightforward expansion in the small
parameter α. Let

ψ = ψ0 + αψ1 + α2ψ2 + ... (319)

ζ = ζ0 + αζ1 + α2ζ2 + ... (320)

To leading order, our equations are therefore

ψ0ZZ = 0, with ψ0Z = 0 at Z = 0 (321)

ζ0 − ψ0ξ + (ψ0Z)2/2 = 0 on Z = 1, (322)

and
ψ0Z = 0 on Z = 1. (323)

Equation (321) implies ψ0Z = 0 everywhere, so (323) is automatically satis-
fied. Hence

ψ0 = θ0(ξ, τ) (324)

where θ0 is an arbitrary function of ξ and τ , but not Z. Therefore, equation
(322) becomes

ζ0 = ψ0ξ = θ0ξ. (325)
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At this stage, our ψ expansion is

ψ = θ0(ξ, τ) + αψ1 + α2ψ2 + ..., (326)

and thus
ψZZ = αψ1ZZ + α2ψ2ZZ + ... (327)

and
ψξξ = θ0ξξ + αψ1ξξ + α2ψ2ξξ + ... (328)

The ζ is expansion is
ζ = θ0ξ + αζ1 + ... (329)

The Laplace equation to order α reads

ψ1ZZ = −θ0ξξ (330)

Hence
ψ1Z = −Zθ0ξξ (331)

(since we must have ψ1Z = 0 at Z = 0), and

ψ1 = −Z
2

2
θ0ξξ + θ1(ξ, τ) (332)

where now θ1 is an arbitrary function of ξ and τ . Finally, the α2 Laplace
terms give

ψ2ZZ = −ψ1ξξ =
Z2

2
θ0ξξξξ − θ1ξξ (333)

Integrating with respect to Z twice as before, and using the Z = 0 boundary
condition gives

ψ2Z =
Z3

6
θ0ξξξξ − Zθ1ξξ (334)

and

ψ2 =
Z4

24
θ0ξξξξ −

Z2

2
θ1ξξ + θ2(ξ, τ) (335)

where θ2 is an arbitrary function of ξ and τ . The ψ expansion is now complete
through order α2:

ψ = θ0 + α

(

θ1 −
Z2

2
θ0ξξ

)

+ α2

(

θ2 −
Z2

2
θ1ξξ +

Z4

24
θ0ξξξξ

)

+ ... (336)

We will need ψξ through order α only,

ψξ = θ0ξ + α

(

θ1ξ −
Z2

2
θ0ξξξ

)

+ ..., (337)
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but we require ψZ through order α2:

ψZ = −αZθ0ξξ + α2

(

−Zθ1ξξ +
Z3

6
θ0ξξξξ

)

+ ... (338)

We return now to our surface equations (317) and (318). Through terms
of order α, equation (317) reads

αθ0τ −
[

θ0ξ + α(θ1ξ −
Z2

2
θ0ξξξ)

]

+ θ0ξ + αζ1 +
α2

2
θ2
0ξ = 0 (339)

or

ζ1 − θ1ξ = −1

2

(

θ2
0ξ + θ0ξξξ

)

− θ0τ (340)

(Note that in terms of order α, we may set Z = 1.) In equation (318) we
expand through order α2. This gives

α2ζ0τ −αζ0ξ−α2ζ1ξ +α2θ0ξζ0ξ = −α(1+αζ0)θ0ξξ−α2 (θ1ξξ + θ0ξξξξ/6) (341)

Terms of order α cancel out, and to order α2 we find that

ζ1ξ − θ1ξξ = ζ0τ + θ0ξζ0ξ + ζ0θ0ξξ − θ0ξξξξ/6 (342)

Differentiating equation (340) with respect to ξ and setting it equal to equa-
tion (342) gives

−1

2
(2θ0ξθ0ξξ + θ0ξξξξ) − θ0τξ = ζ0τ + θ0ξζ0ξ + ζ0θ0ξξ −

θ0ξξξξ

6
(343)

If we now recall that θ0ξ = ζ0, we may simplify our result into a single
equation for ζ0,

2ζ0τ + 3ζ0ζ0ξ +
ζ0ξξξ

3
= 0. (344)

We may now drop the “0” subscript from our dimensionless amplitude ζ with-
out ambiguity, and arrive at the Korteweg-de Vries equation in its standard
form:

ζτ +
3

2
ζζξ +

ζξξξ

6
= 0 (345)

The KdV equation equation expresses a balance between the excess wave
velocity beyond linear theory, nonlinear steepening, and linear dispersion, all
of which are of the same order.

Exercise. Show that equations (289) and (345) are equivalent.
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5 Steady Irrotational Flow in Two Dimen-

sions

A very broad class of flow depends only upon two spatial variables, the
third axis being one of symmetry. The most important example is probably
the flow around the wing of an airplane, which is, to a first approximation,
independent of the position along the wing. (This approach obviously breaks
down at the ends corresponding to the wing tip and the junction of the wing
with the aircraft body.) If, in addition to two-dimensional symmetry, the
flow also has the property of being irrotational, it is possible to apply very
powerful complex variable techniques to the problem of finding explicit flow
solutions.

An irrotational flow in a simply-connected domain is one in which any
closed-loop line integral of the velocity v vanishes:

∫

C
v · ds = 0 (346)

(Informally speaking, a simply-connected domain is one that has no holes.)
Stokes’ theorem applied to the line integral then gives

∫

A
(∇×v)·da = 0 (347)

where A is any area bounded by the curve C. Since the area is arbitrary,
∇×v must vanish everywhere in the fluid. Notice that if the flow is singular
the line integral need not vanish if it encompasses the singularity! Thus the
flow Rvφ = constant has a nonvanishing line integral if the path surrounds
the singular origin, but a vanishing integral if the path does not surround
the origin. In this chapter, therefore, we shall study two-dimensional velocity
fields that locally satisfy the equations

∇·v = 0 incompressible flow (348)

and
∇×v = 0 irrotational flow (349)

5.1 The potential and stream functions

Incompressible flow in two dimensions must obey the equation

∂vx

∂x
+
∂vy

∂y
= 0 (350)
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An obvious way to satisfy this equation is to introduce a function of Ψ with
the property

vx =
∂Ψ

∂y
, vy = −∂Ψ

∂x
(351)

The divergence-free condition is then identically satisfied by the equality of
mixed partial derivatives. This is a special case of the more general result
that a divergence-free field can always be written as the curl of another field,
the so-called vector potential. In the case of two-dimensional planar flow,
only one component of the vector potential is needed (not three), and this Ψ
field is known as the stream function. It gets its name from the fact that

vx
∂Ψ

∂x
+ vy

∂Ψ

∂y
= 0, (352)

i.e., curves of Ψ = constant are parallel to the velocity streamlines.

But the velocity field is also irrotational, and so must be derivable from
a scalar potential Φ:

vx =
∂Φ

∂x
, vy =

∂Φ

∂y
(353)

The functions Ψ and Φ are more than two different functions that determine
the velocity field; they are in fact deeply interrelated. Notice, for example,
that

0 = vx
∂Ψ

∂x
+ vy

∂Ψ

∂y
=
∂Ψ

∂x

∂Φ

∂x
+
∂Ψ

∂y

∂Φ

∂y
(354)

Thus, the gradients of Ψ and Φ are orthogonal, and it follows that lines of
constant Ψ and lines of constant Φ are orthogonal. A constant Φ curve is
parallel to the gradient of a constant Ψ curve, and vice-versa.

The relationships

vx =
∂Φ

∂x
=
∂Ψ

∂y
, vy =

∂Φ

∂y
= −∂Ψ

∂x
(355)

will be recognized by all students of complex variable theory as the Cauchy-
Riemann relations. They imply that there must exist an analytic function w
of a complex z = x+ iy such that

w(z) = Φ(x, y) + iΨ(x, y). (356)

In other words, Φ and Ψ are respectively the real and imaginary parts of an
analytic complex function, w(z).

The Cauchy-Riemann relations are easily proven. By definition, an an-
alytic function w(z) has a well-behaved derivative dw/dz. In particular,
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differentiating w = w(x+ iy) with respect to x must give the same result as
differentiating with respect to iy. Hence

∂Φ

∂x
+ i

∂Ψ

∂x
= −i∂Φ

∂y
+
∂Ψ

∂y
(357)

Equating real and imaginary parts then gives the Cauchy-Riemann equations.

Once again, by equality of mixed derivatives, the Cauchy-Riemann rela-
tions imply that both Φ and Ψ each satisfy the Laplace equation,

∂2Φ

∂x2
+
∂2Φ

∂y2
=
∂2Ψ

∂x2
+
∂2Ψ

∂y2
= 0 (358)

Exercise. What are the Cauchy-Riemann equations in polar coordinates
x = R cosφ, y = R sinφ? Show that they lead to the Laplace equation:

1

R

∂

∂R

(

R
∂Φ

∂R

)

+
1

R2

∂2Φ

∂φ2
= 0 (359)

and similarly for Ψ.

Note that the flow velocity may be obtained very simply from the function
dw(z)/dz:

dw

dz
=
∂w

∂x
=
∂Φ

∂x
+ i

∂Ψ

∂x
= vx − ivy (360)

Hence

v =
√

v2
x + v2

y =

∣

∣

∣

∣

∣

dw

dz

∣

∣

∣

∣

∣

(361)

Conversely, if we know the velocity fields as functions of z, we may find the
corresponding w by direct integration.

Exercise. Show that

eiφdw

dz
= vR − ivφ

5.2 Flows in the Complex Plane

We are interested in solving for two-dimensional velocity fields in the xy plane
in the presence of bounding surfaces. We have shown, quite remarkably, that
this plane may be taken to be the complex z = x + iy plane, and that
our solution reduces to finding an analytic function w(z) in this plane. To
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find the solution for a flow with a bounding surface g(x, y) = constant, we
need to find some w(z) whose stream function (imaginary part) Ψ(x, y) is
constant along this same surface. Here is the critical idea: let Z = f(z) map
a boundary curve in the x, y plane into some other boundary curve in the
X, Y plane. To find the flow with this new boundary, we simply map all the
other flow streamlines along with boundary, using the same f(z). These new
streamlines then define the flow with the new bounding surfaces.

Let us be mathematically precise: if w(z) is the first flow solution with
one set of boundaries, and Z = f(z) maps these x, y boundary curves into
X, Y boundary curves (which will generally have a different shape), then
w(F (Z)) is the new flow W (Z) in the Z plane. (In particular, steamlines in
the z plane get mapped into streamlines in the Z plane, and equipotential
get mapped into equipotentials.) Here z = F (Z), the inverse function of f .
This is the powerful technique of conformal mapping, which we will study in
more detail later. For now, let us study some specific examples to see how
this idea works in practice.

5.2.1 Uniform Flows

Uniform flow over the x-axis is perhaps the simplest one can imagine. With
vx = U , vy = 0, we have w(z) = Uz. If the flow is inclined at an angle
α relative to the x-axis, vx = U cosα, vy = U sinα, dw/dz = Ue−iα, w =
Uze−iα.

The function w(z) = z could describe uniform flow toward positive x in
the upper half plane with a y = 0 boundary. The transformation function
Z = f(z) = z1/2 maps the x < 0 axis Reiπ (part of the boundary) into iR1/2,
the new Y axis (and part of the new boundary). The x > 0 axis is unchanged,
mapping into X > 0. Therefore, the new flow W (Z) = w(F (Z)) = Z2

corresponds to flow bounded by the positive X axis and the positive Y axis.
We have solved the problem of flow into a corner forming a 90◦ angle. What
does the flow look like, i.e., what are vX and vY ? What about Z = z1/n for
integer n > 2? What boundary problem would this transformation solve?

5.2.2 Line Vortex

As we have noted, there is nothing special about Cartesian coordinates, and
it is often convenient to use polar variables R cos φ = x, R sin φ = y. The
functions Ψ and Φ lead to the velocity fields vR and vφ. A particularly useful
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and important flow is known as the line vortex:

vφ =
Γ

2πR
, vR = 0. (362)

We shall leave it to the reader to show that the potential and stream functions
are

Φ =
Γφ

2π
, Ψ = − Γ

2π
ln(R) (363)

and that they satisfy the Laplace equation in polar coordinates. Note that
both these functions have singularities associated with the origin, where nei-
ther φ nor ln(R) is well-defined. The complex potential is

w(z) = Φ + iΨ = −i Γ

2π
[ln(R) + iφ] = −i Γ

2π
ln(z), (364)

a result that also follows directly from the last exercise, with vR = 0. (Show
this!) There is nothing special about the point we choose to call the origin,
so a line vortex at z = z0 is simply

w(z) = −i Γ

2π
ln(z − z0) (365)

The streamlines of the vortex are circles about the point z = z0.

5.2.3 Cylindrical Flow

Consider an analytic function f(z), except for possible isolated singularities.
Assume that all such singularities lie outside the circle |z| = a. The Milne-
Thompson theorem states that the function

w(z) = f(z) + f

(

a2

z̄

)

(366)

has the same singularites as f(z) outside the curve |z| = a, and that the
circle |z| = a is a streamline. (Here the bar denotes complex conjugate.) To
see this, note first that all singularites of f(z) lie outside |z| = a, and thus
inside of this circle for the function f(a2/z̄). (The modulus of the argument
of f must be greater than a for there to be a singularity.) On the circle
zz̄ = a2, w becomes

w(z) = f(z) + f(z), (367)

whose imaginary part (namely, the stream function) is a constant (namely,
zero). Hence, the circle |z| = a is itself a streamline.
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We will not need the Milne-Thompson theorem in its full generality, but
will instead work with the simple function

w(z) = U

(

z +
a2

z

)

, (368)

which corresponds to uniform flow at large |z| and has the circle |z| = a as
a streamline. In other words, it is the solution to the problem of potential
flow around a cylinder! (The region |z| < a is of no interest.) If we want the
flow to approach the cylinder by an angle α relative to the x-axis, we apply
the circle theorem to w = Uze−iα, and obtain

w(z) = U

(

ze−iα +
a2eiα

z

)

(369)

In polar coordinates z = Reiφ, so the α = 0 flow is

Φ = U

(

R +
a2

R

)

cos φ, Ψ = U

(

R− a2

R

)

sinφ, (370)

corresponding to the real and imaginary parts of w. Thus,

vR = U

(

1 − a2

R2

)

cosφ, vφ = −U
(

1 +
a2

R2

)

sinφ. (371)

On the surface of the cylinder R = a,

vR = 0, vφ = −2U sinφ (372)

so that there is “slip” past the surface. In a real cylinder, viscous effects
would ensure that both vφ and vR vanish at the surface. Note that although
there is slip, there is no circulation: the line integral of vφ round the cylinder
is zero.

But our solution is not unique! We may superpose a line vortex (364)
without violating the boundary conditions either at the cylinder’s surface or
at infinity. In this way, we can generate solutions with any circulation around
the cylinder. Since the sum of two analytic functions is obviously analytic
(in this sense our technique is linear), we simply add the vortex solution to
vφ:

vφ = −U
(

1 +
a2

R2

)

sinφ+
Γ

2πR
. (373)

This has circulation Γ. How is it that we have TWO solutions to the Laplace
equation with the same boundary conditions? It is because the potential Φ
is double-valued for the vortex. The uniqueness theorem does not hold if Φ
is singular—even if the derivatives of Φ lead to perfectly physical velocity
fields!
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5.3 Force Exerted by a Flow

Let us calculate the pressure P on a cylinder for the more general solution
in the previous section with non-zero circulation. The Bernoulli constant is

P +
1

2
ρv2

φ = constant (374)

on the surface of the cylinder. Thus,

P

ρ
= constant − 2U2 sin2 φ+

UΓ

πa
sin φ (375)

The radially inward force per unit length along the cylinder is Pa dφ. The
x and y components are obtained by multiplying this force respectively by
− cosφ and − sinφ. Upon integrating over φ from 0 to 2π, the x force
component is seen to vanish. This is physically obvious since the pressure
on the surface depends only upon y. Moreover, only the circulation term
contributes to the y force. The average of sin2 φ is 1/2, and the net y force is

Fy = −ρUΓ (376)

Therefore, there is a positive lift force if there is negative (clockwise) circu-
lation around the cylinder (U > 0). This relationship between circulation
and lift is the fundamental reason that airplanes fly. Airplane wings are not
cylinders, however, and we will shortly have a better understanding of why
they have the shapes they do.

On one hand, the vanishing of the x force is mathematically obvious be-
cause of the symmetry; on the other hand, it seems to contradict all common
sense and experience. Don’t we feel a retarding force when the wind blows??
The next time you are struggling to walk in a strong wind, just tell yourself
“There is no force, there is no force...”

In fact, there is a real force, we surely feel it, and real cylinders do as well.
The point is that the solution we have just found is never realized in nature.
Even though the air is not “very” viscous, there is some finite viscosity η and
any finite viscosity changes the flow very near the surface of any object in
a wind. Near the object, the flow changes not just by a little, but by a lot,
whatever the value of η. In real fluids, there can be no tangential velocity
at the surface. Instead, a viscous boundary layer forms. The boundary layer
is present for any finite η, only the thickness of the layer changes with the
magnitude of the viscosity. Inside the boundary layer, the velocity is much
smaller than the inviscid solution above, and the flow comes to rest at the
surface. Outside the boundary layer, our inviscid solution is an excellent
approximation.

99



Does this mean that the drag force is essentially viscous? Our description
above points in that direction, and for very viscous flows the drag force on
a cylinder is indeed proportional to η. But for a large Reynolds number R,
defined as

R =
ρUa

η
=
Ua

ν
(377)

the drag force per unit length for a cylinder is of order ρU2×a. (Here, ν = η/ρ
is the so-called “kinematic viscosity.”) The precise value of the viscosity only
serves to determine the proportionality constant, but it is generally of order
unity. The reason for this is fascinating, and introduces one of the most
important and surprising concepts in fluid dynamics: the separation of a
boundary layer.

What happens is that the pressure is large at the front surface and the
back (or “trailing”) surface, but small on the top and bottom of the cylinder.
This gives rise to a sharply steepening pressure gradient as the flow in the
boundary layer circulates around the cylinder, and moves along the trailing
surface. A sufficiently high adverse pressure gradient makes it impossible
for the boundary layer to remain fixed to the trailing surface. Instead, it is
unstable to detachment. No such difficulties are associated with the front
surface, where the pressure gradient is in the direction of the flow.

The detached boundary layer cannot exist happily in the middle of the
fluid! Instead, it generates local turbulence and extended regions of high
vorticity. All of this kinetic activity lowers the pressure near the trailing
surface, relieving the adverse pressure gradient that a fluid would otherwise
sense as it flows over the top of the cylinder. There is then a turbulent, low
pressure wake behind the cylinder. If we examine flows of smaller and smaller
viscosity (e.g., larger and larger Reynolds number) we do not approach the
inviscid solution; rather we approach a solution in which the turbulent wake
becomes more narrow, but just as vigorous, as the viscosity decreases. The
reduced pressure behind the cylinder combined with the high pressure ahead
of the cylinder result in a large effective drag force.

In fact, the vanishing of all drag forces when an object moves through an
inviscid fluid is quite independent of the shape of the object. We will now
show that in two-dimensional flow, if a body has a boundary described by a
contour C, then the complex velocity potential w(z) produces x and y forces
Fx and Fy given by3

Fx − iFy =
iρ

2

∫

C

(

dw

dz

)2

dz. (378)

This is known as Blasius’s Theorem.
3In two dimensions, when we speak of a “force,” this is in reality a force per unit length.

100



φ
ds

X
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C

P

Figure 10: Geometry for Blasius’s Theorem. The ellipse represents the object
in the flow with boundary curve C.

To prove this elegant result, refer to figure (10). On a small boundary
segment ds, the force components due to the pressure P are easily resolved:

dFx − idFy = P (− sinφ− i cos φ) ds (379)

where φ is the angle between the x axis and the segment ds tangent to the
surface. Hence,

dFx − idFy = −iP e−iφ ds (380)

Now C is a flow streamline, so

dw

dz
= vx − ivy = v e−iφ (381)

on C. (v is
√

v2
x + v2

y.) The Bernoulli constant K is

K = P +
1

2
ρv2 (382)

so that
dFx − idFy = i(ρv2/2 −K)e−iφ ds (383)
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Now the K term will vanish when we do the integration: it is simply the
complex conjugate of the integral of dz = eiφds around a closed loop. Since
v2 = (dw/dz)2 exp(2iφ), integration over C immediately gives

Fx − iFy =
iρ

2

∫

C

(

dw

dz

)2

dz (384)

which is the desired result.

To apply this powerful theorem, consider first the integral of dw/dz
around the surface:

∫

C

dw

dz
dz.

If dw/dz is free of singularities outside the object, then we may take the
integration path along any surface enclosing the body. In particular, for
an isolated body in a flow that is asymptotically uniform at large |z|, the
complex velocity field is uniquely described by a Laurent series:

dw

dz
= U +

a1

z
+
a2

z2
+ ... (385)

a1 can be related to the circulation Γ as follows. Begin with

dw

dz
dz = (vx − ivy)(dx+ idy) = (vxdx+ vydy) + i

(

∂Ψ

∂x
dx+

∂Ψ

∂y
dy

)

(386)

integrated around the boundary. In the imaginary part, we have replaced the
velocity components by their stream function representation. But the stream
function Ψ is a constant on the boundary, and thus the imaginary part of
the above vanishes identically. Only the real part remains. Its integral is the
circulation around the object, Γ.

Next, evaluate the same integral of dw/dz, and use the residue theorem.
The result must be 2πia1. We have therefore shown that

Γ = 2πia1. (387)

Finally, to evaluate the forces, we need to evaluate the closed path integral
over (dw/dz)2. Only one term survives after squaring (385) and integrating,
namely the integral over 2Ua1/z. Hence

∫

C

(

dw

dz

)2

dz =
∫

C

2Ua1

z
dz = 4πiUa1 = 2UΓ (388)
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Blasius’s theorem then gives immediately

Fx = 0, Fy = −ρUΓ (389)

This is what we found explicitly for the cylinder, now seen to be true much
more generally.

The fact that inviscid motion through a fluid gives rise to no drag forces
was viewed as paradoxical in the early days of fluid mechanics, and it is still
referred to in just that way: d’Alembert’s paradox. It is really a theorem,
not a paradox! In fact it holds in three dimensions as well, because the
momentum flux of streamlines is the same at large upstream and downstream
distances. Drag forces would simply not exist for inviscid fluids. In fact, with
well-designed streamlining (no detached boundary layers!), drag forces can
be made to be very small, even in real flows.

The lift force is given by Fy = −ρUΓ, as result that is known as the Kutta-
Joukowski lift theorem. It holds for two dimensional flow past an object of any
shape. Its most important application is to the theory of flight. Negative
circulation around an airplane wing (i.e., in the clockwise sense) produces
positive lift (U > 0). The question now becomes, what is the circulation Γ?
Although for a cylinder we were free to choose Γ, it will turn out that for
less symmetric, more winglike shapes, only one value of Γ allows the flow to
be free of singularities! This is the value that airplanes choose. (Airplanes
are not stupid.)

5.4 Conformal Mapping and Flight

Consider the so-called Joukowski transformation:

Z = z +
c2

z
(390)

where c2 is a real positive constant. Do not confuse this with with equation
(368), which is associated with the velocity field around a cylinder. Here we
are using the same mathematical function to describe a coordinate transfor-
mation. The inverse transform is

z =
Z

2
+

√

Z2

4
− c2 (391)

We have chosen the + sign so that z = Z at large |z|, and we must insert a
branch cut in the Z plane between Z = 2c and Z = −2c to avoid the square
root singularity. Don’t worry: the branch cut will generally be inside the
body.
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Consider the effect of this transformation on the circle z = aeiφ, the
surface streamline for a cylinder. In the Z = X + iY plane,

X + iY = aeiφ +
c2

a
e−iφ =

(

a +
c2

a

)

cos φ+ i

(

a− c2

a

)

sinφ. (392)

Therefore, the circle z = aeiφ maps into

X2

(a + c2/a)2
+

Y 2

(a− c2/a)2
= 1. (393)

This is an ellipse in the Z plane, with semi-major axis a + c2/a, and semi-
minor axis a − c2/a. Thus, this transformation enables us to find the flow
around an elliptical cylinder, once it is known for a circular cylinder.

Consider the case in which uniform flow approaches from an angle α. The
solution for a circular cylinder has been worked out in in equation (369).
Moreover, adding a line vortex to the problem does not change a cylindrical
streamline surface. With an imposed vortex of circulation Γ, the elliptical
solution may be written in parameterized form:

w = U
(

ze−iα + a2eiα/z
)

− iΓ(ln z)/(2π), z =
Z

2
+

√

Z2

4
− c2 (394)

(Note that rotation by α in the line vortex logarithm just gives an unimpor-
tant additive constant to w.) From this solution, we may of course derive
the general velocities vX and vY , but it is more interesting to go immediately
to the case c → a. Then our ellipse collapses to become a plate along the
X-axis of length L = 4a. An easy way to study the Z plane velocity fields is

dW

dZ
=
dw/dz

dZ/dz
=
U (e−iα − a2eiα/z2) − iΓ/(2πz)

1 − a2/z2
(395)

Something new has entered into the problem: the velocity field is in general
singular at the ends of the plate, corresponding to z = ±a, or Z = ±2a. But
by choosing the circulation properly, both the numerator and the denomi-
nator can be made to vanish simultaneously. For negative Γ, corresponding
to lift, the trailing edge Z = 2a (z = a) can be made smooth and free of
singular behavior, if

Γ = −4πUa sinα. (396)

The leading edge is still singular. Can we find a flow that retains an upward
lift force and is free of singularities at both edges?
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Yes. The trick is beautiful but rather technical, so we refer the interested
reader to Acheson for details. The basic idea is that the leading edge singu-
larity can be removed by reshaping the surface from that of a plate, with ±Z
symmetry, to something that more resembles a tear drop: blunt and rounded
at the leading edge, smooth and tapering to a point at the trailing edge. This
is, in fact, the shape of aircraft wings. For this nonsymmetrical shape, the
leading edge singularity is actually inside the wing, while the trailing edge
singularity is eliminated when the flow around the wing achieves the above
value for the circulation:

Γ = −πUL sinα, (397)

where L = 4a is the full width of the wing. The Kutta-Joukowski lift theorem
gives

FY = πρU2L sinα (398)

the classical equation relating the upward force to the flow velocity and angle
α of attack.

In practice, equation (398) works well for small α. Once the angle of
approach becomes steeper than a few degrees, the boundary layer separates,
the pressure behind the wing drops, and there is a great increase in the
drag force. The plane stalls. This is not good. Needless to say, pilots are
very careful to maintain a small angle of ascent/descent when taking off and
landing!

A classical problem with flight is ice forming on the wings. Besides adding
weight, which is of secondary importance, a layer of ice changes the aerody-
namics, causing the boundary layer to separate earlier, reducing lift and
increasing drag. Many plane crashes have occurred this way, and reputable
airlines are extremely careful to de-ice their aircraft before take-off. In flight,
at altitudes above 18, 000 feet (5500 m) the air is extremely dry and icing
is not a problem. Modern jet aircraft generally fly at altitudes well above
this, except when hovering at low altitudes waiting to land at a crowded
airport. As recently as 1994, a plane crashed in the US while waiting to land
in Chicago, because of ice forming on its wings.

Why does ice cause the boundary layer to separate earlier? Interestingly,
it is because turbulence within a boundary layer can actually make the layer
hold closer to the surface in the presence of an adverse pressure gradient.
The increased mixing of momentum in the turbulent boundary layer acts
somewhat like a large viscosity, delaying the separation of this layer. By
way of contrast, the turbulence in the wake of a flow that occurs after a
laminar boundary layer has prematurely separated is not helpful. This is
bad turbulence.

You may notice that airplane wings sometimes have small, raised metal
shapes, whose role is to induce boundary layer turbulence, which in this case
is “good.” (The shapes are called vorticity generators; a similar role is played
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by the dimples [petits trous] on a golf ball.) Icing of the wings makes it more
difficult for this good turbulence to form, so the boundary layer separates too
soon, and the ensuing bad turbulence in the wake of the air flow increases
the drag.

6 Vortex Motion

Consider the circulation integral

Γ =
∫

C(t)
v · dx (399)

where C(t) is a closed circuit consisting of fluid particles moving with the
flow. The path is described by x(x0, t), where x0 labels the fluid element at
time t = 0. Then

Γ =
∫

v·

(

∂x

∂x0

)

t

dx0, (400)

since of course the integration is done at fixed time. If we take the time
derivative following the fluid elements (∂/∂t)x0

, there obtains

dΓ

dt
=
∫

(

∂v

∂t

)

x0

·

(

∂x

∂x0

)

t

dx0 +
∫

v·

(

∂

∂x0

)

t

(

∂x

∂t

)

x0

dx0 (401)

But (∂x/∂t)x0
is just the velocity of a fluid element, v! The final integral is

therefore over a perfect derivative of v2, and since we begin and end at the
same point in the flow, it vanishes. As for the first integral, the time deriva-
tive of the velocity follows a fluid element, so it is precisely the Lagrangian
derivative D/Dt that appears in the equation of motion. If the quantity
dP/ρ is expressible as dH (i.e. an enthalpy function exists), and all external
forces are derived from a potential function χ, then

dΓ

dt
= −

∫

C(t)
∇(H + χ)·dx = 0, (402)

since the integrand is an exact gradient and the circuit begins and ends at
the same point. This is Kelvin’s circulation theorem, the most important
result in vorticity theory. Notice that the circuit must move with the fluid:
the theorem is false if we hold the circuit fixed in space. Note also that the
theorem holds for a viscous fluid, provided that we take our one-dimensional
path entirely in a region where viscosity is negligible. An area bounded by
our circuit could, in principle, contain regions of very high viscosity. As long

106



A

B

C

D

Figure 11: Aircraft wing is shown on the left as thick lined ellipse. Region
of vorticity is restricted to flow near the wing and in the trailing vortex. In
these regions, the circulation is equal and opposite.

as our path is inviscid, the calculation is valid. Finally, we note that the area
bounded by the circuit need not be simply connected. In these respects, this
proof differs from the one we presented in section 3.4, which made use of
Stoke’s theorem and required inviscid flow throughout the area bounded by
the curve.

This theorem has interesting implications for the take-off of an aircraft.
We know from our work in the last chapter that circulation is needed around
the wing to generate lift. Imagine a large closed circuit well away from the
wing at all times. Around this circuit the circulation must always remain
zero. But near the wing we know that there is circulation. If we divide our
path into two circuits shown in figure (11) then any circulation calculated
around circuit ABCA must be exactly equal and opposite to the circulation
calculated around circuit ACDA. In fact, aircraft generate a trailing vortex
which is shed behind the wing in the process of generating vorticity of the
opposite sign around the wing. This trailing vortex is crucial to generate lift!
The local generation of vorticity implies a central role for viscosity, no matter
how small the latter may be. Vorticity is continuously shed during takeoff,
and the circulation around the wing is built up. When the circulation takes
on the critical value −πUL sinα, time-steady, nonsingular flow is possible,
and vortex shedding stops.

The next time you fly in a plane, you can explain all this to the person
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sitting next to you...

6.1 Vorticity is Local

As we discussed in section 3.4 (and implied by Kelvin’s theorem), vorticity
field lines are frozen into the fluid. This has the consequence that a tube
whose surface is defined by such lines remains well-defined as the flow evolves:
fluid elements on a vortex line stay on the same vortex line. Remember as
well that fluid may rotate around a central point, have a finite circulation
integral, but locally have no vorticity! In fact, regions of locally intense
circulation tend to have all their vorticity confined to a small core.

Atmospheric vorticity is highly localized, and can be devastating. Torna-
dos are generated as trailing vortices from much larger regions of low pressure
(’cyclones’). Tornados are first seen as vortex tubes, rather like a funnel, ex-
tending from large thunderclouds. Relative shear between the cloud and the
vortex tube shrinks the tube’s cross section as the length is extended. Vor-
ticity is conserved, and there is a corresponding rise in the circulation around
the tube.

James Stone, a well-known numerical astrophysicist, once described to
me an episode with highly localized atmospheric vorticity that involved him
personally! When he was at the University of Maryland near Washington
DC, a summer storm suddenly became extremely intense while he was driving
home. He deemed it prudent to stop his car and take what shelter he could
by the side of the road. With his face pressed against the ground he felt a
huge roar pass over him, and when he looked up, cars on the other side of
the road had been turned over and hurled violently. Though just adjacent
to the disturbance, he and his side of the road escaped serious damage. A
tornado had passed within 10 meters of him.

6.2 Motion of Isolated Vortices

In the old days, the phenomenon of vortex motion could have been demon-
strated as follows. I would come to class with a nice, expensive cigar (Cuban
please), light it, and then draw in smoothly. I would next let out a sharp,
small burst of air from the back of my throat. The emerging smoke would
form a viscous boundary layer, closely following the edge of my mouth, then
curl back on itself as it detached and moved into the surrounding inviscid
air. A region of persistent vorticity is generated in the inviscid medium, and
a smoke ring is born.

But I can’t do that any more. Not only is it politically incorrect to
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smoke in class, in the twenty-first century all educational experience is via
the internet. So go to Google and type in “smoke rings”. Or just visit

www.woodrow.org/teachers/esi/1999/princeton/projects/fluid dynamics/vortex.html

Vortex rings are remarkably coherent: they can interact with one another,
yet still retain their individual identities.4 They are common in nature,
sometimes even forming above volcanoes. An analysis of their motion which
involves the interaction with an inviscid background still presents a technical
challenge, but fortunately the problem of a spherical vortex is easily analyzed.
It is harder to generate in the lab than a ring vortex, but its theoretical
properties are nicely illustrative.

6.2.1 Irrotational Flow Around a Sphere

We begin with the irrotational flow surrounding our sphere of vorticity. At
large distances, the flow is uniform along the z axis at velocity U . In terms
of spherical radius r and spherical angle (relative to the z axis) θ,

vr = U cos θ, vθ = −U sin θ (403)

This motivates trying a solution of the form

v = U [A(r) cos θer − B(r) sin θeθ] (404)

Then,

0 = ∇·v =
1

r2

∂(r2vr)

∂r
+

1

r sin θ

∂(vθ sin θ)

∂θ
= cos θ

[

1

r2

d

dr
(r2A) − 2B

r

]

(405)

Hence,

vθ = −B(r)U sin θ = −U sin θ

2r

d(r2A)

dr
(406)

The flow is irrotational, so ω ≡ ∇×v = 0. The curl has only a φ component,
however. Therefore,

ωφ =
1

r

[

∂(rvθ)

∂r
− ∂vr

∂θ

]

= 0. (407)

4In this respect, vortex rings are similar to the solitary waves we encountered in chapter
4. Interestingly, both vortices and solitary waves (solitons) have at one time or another
been used as models for elementary particles.
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Substituting our expressions for vr, vθ, we find

0 = −1

2

d2(r2A)

dr2
+ A (408)

This is easily solved:

A(r) = C1 +
C2

r3
(409)

where C1 and C2 are integration constants. Since A→ 1 as r → ∞, C1 = 1.
We also require vr = 0 at the spherical surface, r = a. (There is no such
restriction on vθ for an inviscid flow.) Hence C2 = −a3. Our solution is
therefore

vr = U cos θ

(

1 − a3

r3

)

, vθ = −U sin θ

(

1 +
a3

2r3

)

(410)

Note the slip velocity vθ = −(3/2)U sin θ at the surface of the sphere. (Com-
pare vr and vθ with their counterparts [371] for cylindrical flow.)

6.2.2 Matching Spherical Vortex

We seek an interior solution with vorticity that matches smoothly on to the
exterior flow. Under steady conditions, the vorticity equation is

∇×(ω × v) = 0. (411)

This is equivalent to
(v·∇)ω = (ω · ∇)v. (412)

This is nicely descriptive of frozen-in vorticity: the left side is the rate of
change of a fluid element, the right side is the rate at which a vortex line is
sheared by velocity gradients along its length.

Moreover, if the flow is independent of φ, only the φ component ω of the
vorticity ω is present, and this satisfies

(v·∇)
(

ω

r sin θ

)

= 0 (413)

That is, ω/(r sin θ) is a constant for each element of fluid. (It is actually
easiest to prove this using equation (412) in cylindrical coordinates R and z,
since φ in both systems is identical. At the end of the calculation, switching
to spherical coordinates just means identifying R = r sin θ.)
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The simplest flow that one can imagine is when all fluid elements have the
same constant for ω/r sin θ. Then ω = Cr sin θ, with C to be determined.5

Since we wish to match the flow at the spherical surface, we look for solutions
with the same angular dependence on cos θ and sin θ as our exterior solution.
Moreover, the flow is divergence-free in the sphere, so that equations (404)
and (406) still hold:

vr = UAi(R) cos θ, vθ = −U sin θ

2r

d(r2Ai)

dr
(414)

where Ai is the interior counterpart to A. Then the φ-component of ω is,

1

r

∂(rvθ)

∂r
− 1

r

∂vr

∂θ
=
U

r

[

−1

2

d2(r2Ai)

dr2
sin θ + sin θAi

]

= ω = Cr sin θ (415)

The sin θ factor cancels out nicely. The resulting differential equation is

Cr2

U
= −1

2

d2(r2Ai)

dr2
+ Ai (416)

The solution is

Ai = C1 +
C2

r3
+ Cpr

2 (417)

where C1 and C2 represent integration constants of the homogeneous part of
the differential equation, and Cp is the coefficient of the particular solution.
(Since C is as yet undetermined, we are free to chose Cp as we like.)

Now C2 = 0, because the solution cannot be singular at the origin. Fur-
thermore, we must have vr vanish at the surface, which constrains Cp. Our
solution must take the form

Ai = C1

(

1 − r2

a2

)

. (418)

The velocity vθ is then calculated to be:

vθ = −C1U

(

1 − 2r2

a2

)

sin θ (419)

5Don’t be mislead from the form of ω into thinking that the vorticity has the “same
sign” everywhere. A φ vector of course points in different directions, depending upon the
value of φ!
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Figure 12: Schematic diagram of flow around a spherical vortex. In the rest
frame of the vortex, flow enters from left and exits at right with velocity U .
The maximum vorticity path within the sphere is ABCA, with circulation
Γ = −5Ua, where a is the sphere radius.

At r = a, this must equal the slip velocity −3U sin θ/2 that we found above,
so C1 = −3/2, and

vr = −3U

2

(

1 − r2

a2

)

cos θ vθ =
3U

2

(

1 − 2
r2

a2

)

sin θ (420)

The vorticity in the sphere is calculated to be

ω = −15Ur

2a2
sin θ (421)

The streamlines are shown in figure (12). The curve of maximum circulation
goes over a great circle over a hemisphere of constant φ for θ going from 0
to π, then through the diameter of the sphere. Using Stokes’s theorem to
convert this into an area integral of ω gives

Γmax = −15U

2a2

∫ π

0
sin θ dθ

∫ a

0
r2 dr = −5Ua. (422)

The interior of the sphere is a collection of elliptical or hemispherical vortices,
embedded in meridional planes. (This is a plane inside a sphere with φ =
constant.) In a frame in which the ambient irrotational fluid is at rest, this
spherical vortex region propels itself through the fluid at a speed Γmax/5a! If
an obstacle or secondary flow impedes the motion of the spherical vortex, it
will tend to conserve its circulation, and increase its radius. Hence, isolated
vortices expand when they slow down and contract when they accelerate.
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6.2.3 Inertial Drag of a Sphere by an Ideal Fluid

This section contains optional advanced material, included for your interest.

We take a small digression to discuss a very interesting application of our
inviscid external spherical flow solution. In our discussion of d’Alembert’s
paradox, the flow was time-steady. But what if we had an external force on
the sphere that caused it to oscillate? Would there still be no drag force?

In fact there is such a force, caused by interaction between the fluid and
the moving body. Unlike the viscous drag force we shall encounter later, this
force is entirely nondissipative and proportional to the acceleration, not the
velocity! It thus acts to enhance the “effective mass” of the body. This idea,
that an effective mass can arise out of interactions with an extended field, is
a seminal concept of modern elementary particle physics.

Let us begin with a tangible problem: a sphere in an ideal fluid. The
velocity fields (410) are derivable from a potential function:

v = ∇Φ, Φ = U cos θ

(

r +
a3

2r2

)

(423)

The leading order behavior of Φ in a frame in which the fluid is at rest is

Φ(rest) = U cos θ
a3

2r2
= −u cos θ

a3

2r2
(424)

where we have replaced U , the fluid velocity in the frame in which the sphere
is at rest, with −u, where u is the velocity of the sphere in the fluid rest
frame. Note that the time dependence of r caused by the moving sphere is
negligible as r → ∞. In the remainder of this section, v will represent the
fluid velocity in the frame in which the fluid is at rest at infinity, u will be
the velocity of the sphere, Φ∞ will mean Φ(rest) above, and Φ will be the
exact velocity potential.

It is possible to calculate the total energy of the fluid with explicit knowl-
edge of its velocity only at ∞. The kinetic energy of the fluid is

E =
ρ

2

∫

v2 dV =
ρ

2

∫

u2 dV +
ρ

2

∫

(v + u) · (v − u) dV (425)

where the integration is over a large sphere of radius R (which will tend
to infinity at the end of the calculation), minus the volume V0 = 4πa3/3
occupied by the small sphere. Now

(v + u) · (v − u) = (v − u)·∇(Φ + u · r) = ∇·[(Φ + u · r)(v − u)]
(426)
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since the divergences of v and u both vanish. Notice now that Φ here is the
exact solution, not the dipole solution Φ∞.

The volume integral of v2 − u2 is therefore
∫

(v2 − u2) dV =
∫

(Φ + u · r)(v − u)·dA (427)

where the surface is now over the outer sphere of radius R and the small
surface of radius a. But the integral over the inner surface area vanishes
because the normal component of v is exactly the normal component of u
at the inner surface. (The fluid doesn’t penetrate the sphere, nor does it
separate and leave a vacuum!) Hence the dot product with dA vanishes.

We are left with only the surface at infinity. (The reason we did not
evaluate

∫

v2 directly is that it would not lead to an integral only over a
surface at infinity.) With

Φ∞ = −u cos θ
a3

2R2
, vr(R) = u cos θ

a3

R3
, (428)

and u · r = uR cos θ, we have

(Φ + u · r)(v − u)·dA =

(

3a3

2
−R3

)

u2 cos2 θdΩ (429)

where we have dropped the term Φ∞vr(R) (why?), and dΩ is a unit of spher-
ical solid angle. Since the average value of cos2 θ of the surface a sphere is
1/3, we find

∫

(Φ + u · r)(v − u)·dA = 2πa3u2 − 4πu2R3

3
(430)

and hence
∫

[u2 + (v2 − u2)] dV =
4πu2

3
(R3 − a3) + 2πa3u2 − 4πu2R3

3
=

2π

3
a3u2 (431)

and the kinetic energy is

E =
π

3
a3ρu2 (432)

The fluid therefore acts as though it had a mass of 2πρa3/3 and a momentum
of p = 2uπρa3/3! In particular, if outside force f acts on the sphere, the
equation of motion is

(

dp

dt

)

sphere

+

(

dp

dt

)

fluid

=

(

Msph +
2πρa3

3

)

du

dt
= f (433)
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We must add half the density of the liquid ρ/2 to the mass density of the
sphere to get the proper equation of motion.

The drag force we have just calculated is inertial, not dissipative, and
makes the sphere appear to be more massive then it really is. Of course
the word “really” is somewhat ambiguous. If we had no way to remove
the sphere from the water, it would not be possible to tell the difference
between the intrinsic mass of the sphere and the effective mass that is the
coefficient of du/dt in the above expression. Indeed, our result formally
yields a finite mass for the sphere even if the “bare mass” Msph were zero!
With this simple hydrodynamics example, we can get some sense of why, for
example, an electron migrating through a crystal acts as though it were a
considerably more massive particle. Elementary particles as well are thought
to acquire their mass as a consequence of interactions with a different sort
of a background medium: the vacuum itself, which in quantum field theory
is no longer an inert entity. In this case, the interactions are more complex,
and can either enhance or decrease the bare mass. It is thought that infinite
(or at least very large) bare masses transform themselves itself into finite,
measurable masses via these kinds of interactions.

6.3 Line Vortices and Flow Past a Cylinder

6.3.1 Vortex Pair

Back to vortices in the complex z plane.

In two dimensions, a vortex pair located at z = ±d, with equal and
opposite circulations ±Γ has the complex potential function

w(z) = − iΓ

2π
[ln(z − d) − ln(z + d)] (434)

As with a spherical vortex, a line vortex pair remains coherent but cannot be
at rest relative to the background medium. Each vortex core feels the induced
motion of the other, a velocity of Γ/(4πd) in the −y direction. Thus, the
flow in which the vortices remain stationary is given by:

w(z) = − iΓ

2π

[

z

2d
+ ln

(

z − d

z + d

)]

(435)

In general the propagation speed of an ensemble of vortices may be calculated
by choosing any one vortex, and superposing the contributions of the velocity
field from all other vortices at the chosen vortex core. For this technique to
work, the problem must be highly symmetric, with the calculated velocity
independent of the chosen vortex.
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Figure 13: Model of Von Kármán vortex street. Vortex cores are spaced
regularly with horizontal spacing a and vertical separation ib in the complex
plane. See text for further details.

6.3.2 Flow Past a Cylinder

A classic problem of fluid dynamics is the study of flow past a cylinder.
Viscous flows (the true, nonideal flows found in nature) form a boundary
layer near the surface of the cylinder. At high Reynolds number, this layer
detaches at the trailing end and wraps itself into two distinct regions of
differing vorticity, above and below the symmetry midplane of the cylinder.
If the Reynolds number Re is below ∼ 30, that is the end of the story, whereas
for Re beyond 2000, the vortices dissolve into a turbulent wake. In between,
at values of Re ∼ 200, the flow behaves in a remarkable way.

The vortices behind the cylinder are stretched behind the cylinder in the
direction of the flow as time goes on, and this extended tail oscillates above
and below the symmetry plane, even though the flow at infinity remains quite
steady. Moreover, vortices are shed alternately from the top and bottom sides
of the cylinder. They trail behind the cylinder, but NOT at the average
velocity of the downstream fluid. Instead, they form a regular pattern as
shown in figure (13) and chase after the cylinder, though they travel at a
smaller velocity, falling farther and farther behind. We seek to calculate the
velocity of this von Kármán vortex street.

6.3.3 A Model of the von Kármán Vortex Street.

We model the vortex street as an infinite plane of parallel line vortices, regu-
larly spaced, with a vortex at z = na, n = 0,±1,±2, etc. Another plane lies
parallel to the first, with vortices staggered at positions z = (n+ 1/2)a+ ib.
(See figure 13).

Pick a vortex. The contributions to the local velocity from the other
vortices in the same line (or plane, in three dimensions) as the chosen vortex
cancel out completely. The contributions of the vortices from the other plane
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also cancel out, but only in the y direction. In the x direction there is a
reinforcement, always in the direction of negative x.

Let us choose now a vortex in the upper x + ib plane. The sum of the
complex potentials from all the vortices in the bottom row at a point z in
the upper row is

w(z) = −i Γ

2π







n=∞
∑

n6=0

n=−∞

ln
(

1 − z

na

)

+ ln z





 (436)

We have replaced ln(z − na) with ln[1 − z/(na)], since the two forms differ
only by an additive constant, which of course vanishes when we take the z
derivative to obtain the velocity fields.

Now the term in square brackets is just

ln

[

z
n=∞
∏

n=1

(

1 − z2

n2a2

)]

. (437)

The infinite product that appears above can be evaluated with the following
elegant mathematical trick. When expanded, the product is a long polyno-
mial, a Taylor series in z2, as we include more and more terms. The value of
the product is 1 at z = 0. But there can be only one Taylor series that has
zeros at z = ±na and is equal to one at z = 0. Polynomials with exactly the
same roots and multiplicity of roots must be the same function, if they have
the same nonvanishing value at z = 0. This also holds true for a possibly
infinite Taylor series generated from the factored from of the polynomial.
The unique polynomial/Taylor series we seek is a familiar function:

n=∞
∏

n=1

(

1 − z2

n2a2

)

=
sin(πz/a)

(πz/a)
. (438)

The Taylor series for the right hand side must be the same polynomial as the
expanded product on the left hand side, because they both have the same
roots, the same multiplicity of roots (each root occurs once), and the same
nonvanishing value at z = 0. Our sum of complex potentials becomes

w(z) = −i Γ

2π
ln[sin(πz/a)] (439)

where once again we omit an additive constant from the argument of the
logarithm. Its z derivative is

dw

dz
= vx − ivy = −i Γ

2a
cot(πz/a) (440)
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Evaluating this at the representative vortex z = ib + a/2, we find that the
right side is real,

vx = − Γ

2a
tanh(πb/a), vy = 0. (441)

(The same result would be found at any vortex z = ib+(n+1/2)a, for integer
n.) The vortex street moves to the left, following the cylinder, at a velocity
of about Γ/2a, if a and b are comparable. In what frame is this velocity?
There is no uniform motion at infinity, so this must be the frame in which
the cylinder itself is moving. The vortex street therefore moves in the same
direction as the cylinder, but it trails behind.

6.4 Vorticity conservation in the Sun

This section contains optional advanced material, included for your interest.

6.4.1 The findings of helioseismology

By analyzing the vibrations of the surface of the Sun (due to acoustic modes
of oscillation), solar physicists have been able to determine in great detail the
interior state of this body. Not only is it possible to deduce such fundamental
hydrostatic equilibrium quantities as the density and pressure as a function
of radius r, it is also possible to determine something much more delicate:
the angular velocity Ω of the solar interior, which turns out to be a function
of both radius r and spherical angle θ. This achievement stands out as one
of the most remarkable of 20th century astronomy, the only flow known with
any accuracy inside an celestial body. An entirely new field of astronomy,
known as helioseismology, has come into being as a result of these studies. In
the future, astroseismology techniques will allow the interiors of other stars
to be studied by similar principles.

Figure (14) shows the results of the helioseismology studies. A meridional
section of the Sun (i.e., an rθ plane of constant azimuth φ) is depicted. The
outer circular arc is the solar surface. The black curves are contours of
constant angular velocity. In units of nHz (nano-Herz: 10−9 rotations per
second), the uppermost contour is about 320, and the equatorial rotation is
about 460; the contours are equally spaced. An average rotation rate is about
400 nHz, or 2.5 × 10−6 s−1. The Sun rotates rotates around its axis roughly
once a month, with variations of ±15% depending on the precise location.

The first item to note from the data is that the region of differential
rotation is restricted to the outer 30% of the Sun’s radius. The inner 70%
of the volume is in a state of nearly uniform rotation. Moreover, the zone
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Figure 14: Contours of constant angular velocity inside the Sun. The region
of strong differential rotation is limited to the region of convective turbulence
in the outer zone. The shape of the contours can be understood by vorticity
conservation in a nearly adiabatic, convective flow. See text for details.
(GONG data courtesy R. Howe [2009].)
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of differential rotation corresponds predominantly to the region of the Sun
that is convectively unstable (review section 4.5.1). Evidently, the onset
of thermal convection plays an important both in maintaining and possibly
creating the differential rotation.

The second item to note is that the rotation profile displays three distinct
morphologies. There are inner and boundary layers where the isorotation
contours change abruptly and are packed close together. In the bulk of
the solar convective zone (SCZ), the Ω contours are smooth and generally
dominated by the θ component of ∇Ω. We will not discuss the boundary
layers of rapid change here. Rather, we will focus on the question of why the
bulk of the SCZ looks as it does: a regular pattern of differential rotation
with Ω more strongly dependent on θ than upon r.

6.4.2 Vorticity generation

Recall the vorticity equation (73):

∂ω

∂t
+ ∇×(ω×v) =

1

ρ2
(∇ρ×∇P ) (442)

Under conditions in which the explicit time dependence may be ignored, this
equation may be written:

(ρv·∇)
ω

ρ
− (ω·∇)v =

1

ρ2
(∇ρ×∇P ) (443)

Note that we do note assume that the flow is incompressible here! The φ
component of this equation is (show; don’t forget unit vector derivatives):

(ρv·∇)
ωφ

ρr sin θ
− (ω·∇)Ω =

eφ

ρ2
·(∇ρ×∇P ) (444)

The SCZ is by definition convectively turbulent, but we shall assume that the
left side of this equation is dominated by pure rotation6. Then our equation
becomes

−R∂Ω
2

∂z
=

eφ

ρ2
·(∇ρ×∇P ), (445)

where the partial derivative on the left is taken at constant cylindrical radius
R.

6The turbulent fluctuations in vorticity and velocity that we ignore are likely to be
smaller than the rotation effects, and not particularly well correlated.
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It is convenient at this point to introduce the entropy variable

σ = ln(Pρ−γ),

where γ is the adiabatic index (≃ 5/3)of the gas. Then

1

ρ2
(∇ρ×∇P ) =

1

ρ
(∇ ln ρ×∇P ) = − 1

ργ
(∇σ×∇P ) =

1

γ
∇σ×g, (446)

where g is the effective gravity −(∇P )/ρ.

Now g is overwhelmingly radial, with only a tiny angular component due
to centrifugal effects. But the radial gradient of σ need not dominate its θ
counterpart to a similar extent: the effect of efficient convection is to almost
(but not quite!) eliminate the radial entropy gradient. As long as the r and
θ gradients of σ are not enormously disparate, our equation is fairly simple:

R
∂Ω2

∂z
=
g

γ
er×∇σ =

g

γr

∂σ

∂θ
(447)

where g is the gravitational force GM/r2. (Here GM is the product of the
Newtonian gravitational constant with the mass M of the Sun; the SCZ
contains only a tiny portion of the Sun’s total mass.)

Equation (447) is called the thermal wind equation. It is used most com-
monly in geophysical applications in which an entropy gradient, dominated
by its temperture component, generates wind shear. Here, we will use the
same equation to understand how entropy gradients produce the internal
solar rotation.

6.4.3 Reduction of the thermal wind equation to one unknown

Equation (447) is only one equation in two unknowns, Ω and σ. We will need
to be resourceful if we are to make progress!

We begin by noting that σ appears solely in the form of its θ gradient.
Hence, in the thermal wind equation, we are free to use any variant σ to which
an arbitrary function of r has been added. It is particularly useful to consider
the residual entropy σ′, which is the true σ(r, θ) minus the angle-averaged
σ ≡ σr(r):

σ′ = σ − σr (448)

When numerical simulations of the convective zone are performed, it is (very
nearly) σ′ that is actually calculated. The function σr is imposed by the
investigator, and the response σ′ is calculated in the code. Although there
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may be some small modification to the radial average of σ in the course of
the evolution, it is very helpful to think of σr as the adverse entropy profile
that is driving the convection, and σ′ as being the response.

The most important consequence of convective mixing is the elimination
of any entropy gradient within the mixing cell that is steeper than that of
the driving profile σr. In other words, σ′ within a convective cell should be,
at most, only very slowly varying.

But look once again at the data. In the bulk of the SCZ, the surfaces of
constant Ω are elongated just along the direction we would expect of con-
vective mixing, with a slight poleward bias present due to rotational effects.
Surfaces of constant σ′ and surfaces of constant Ω seem to be approximately
coinciding.

Motivated by this idea, we consider the residual entropy to have a func-
tional dependence of σ′(Ω, r), rather than to be a function of θ and r. Then,
expanding in a Taylor series, we find

σ′(Ω, r) = σ′(Ω, rc) − (1 − r/rc)(∂σ
′/∂ ln r)Ω + ... (449)

where rc is a fiducial central value of r in the SCZ. In the second term, the
factor (1−r/rc) is never much more than 10%, and the r gradient at constant
Ω should also, we have just argued, be a small quantity. This correction term
is, therefore, second order in small quatities.

We therefore seek solutions of the thermal wind equation in which σ′

depends on Ω only.

6.4.4 Solution of the thermal wind equation

Let us write σ′ = σ′(Ω2), since the sign of Ω should not be important and
the algebra is less cumbersome. Let us also convert both the R and z deriva-
tives in the themal wind equation (447) to spherical coordinates. Finally we
introduce the notation f ′ = dσ′/dΩ2, a function of Ω2 only. Then, (447)
becomes

∂Ω2

∂r
−
(

tan θ

r
+

gf ′

γr2 sin θ cos θ

)

∂Ω2

∂θ
= 0 (450)

The vorticity-generating entropy gradient term has become part of the coeffi-
cient of the θ gradient of Ω2. The solution of this partial differential equation
is that Ω2 is constant along the characteristic curves

dθ

dr
= −

(

tan θ

r
+

gf ′

γr2 sin θ cos θ

)

(451)
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Note that although we don’t know f ′, we do know that it must be constant
along a curve! Hence, this ordinary differential equation for the characteris-
tics is well-posed, and it describes the Ω isorotation contours we are looking
for.

The characteristic equation is

d(sin2 θ)

dr
+

2 sin2 θ

r
= −2gf ′

γr2
(452)

With R2 = r2 sin2 θ, this becomes

dR2

dr
= −2gf ′

γ
(453)

The solution is
R2 = A− B/r (454)

where A is an integration constant, and

B = −2GMf ′

γ
(455)

B is expected to be positive (f ′ < 0) since the entropy is higher near the
poles due to less Coriolis interference with convection, and Ω2 is largest at
the equator.

What a simple solution equation (454) is! We needed no information
about Ω to extract this functional form for the isorotation contours, which
are identical to the characteristics of equation (450). In dimensionless form,
the isorotation contours are given by

sin2 θ =
r2
0

r2

[

sin2 θ0 − β
(

1 − r0
r

)]

(456)

where r0 and θ0 are contour’s starting radius and starting colatitude angle
respectively. β is a number of order unity that is determined in principle
by detailed knowledge of the functional relationship between σ′ and Ω. But
since it is a constant along the contour, it can be fit, say, by matching the
initial slope of the measured curve from the data. The question is, how well
to these solutions conform to the data?

Very well indeed. In figure (15), we show an overlay of the solutions (456)
in white and the helioseismology data in black. The data were fit at r0 = 0.94
of the Sun’s radius. The parameter β is a very simple polynomial:

β = 2.5 sin2 θ0 − 2.113 sin θ0 + .8205.
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Figure 15: An overlay of the solutions (456) with the helioseismology isoro-
tation contours. In the bulk of the zone, the fit is excellent. At inner and
outer boundary layers, boundary conditions force departures from this simple
solution.
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The Sun’s contours are reproduced at all starting angles throughout the bulk
of the SCZ. The departure at the boundaries of our analytic solutions from
the simple form (456) is expected, since the functional relation between σ′

and Ω will be strongly influenced by the conditions at the inner and outer
boundary layers of the convective zone. These are regions where additional
dynamics becomes important.

One might have thought that since the SCZ is very nearly adiabatic, the
isorotation contours should be very nearly on cylinders of constant R (since
P would be a function of ρ only). This line of argument is incorrect. The
thermal wind equation may be written

R
∂ ln Ω2

∂z
=

(

g

γrΩ2

)

∂σ′

∂θ
(457)

The left side of this equation is a number of order 10%. The first factor
in parantheses on the right is huge, however, about 105, a measure of the
ratio of the gravitational to rotational forces in the Sun. Hence, an angular
entropy gradient of order 10−6 is enough to make a net 10% contribution to
the rotation profile!

This is an elegant example of how modern astrophysical data analysis can
both illuminate and illustrate fundamental fluid mechanics.

7 Viscous Flow

The most important way that real fluids differ from ideal fluids is that real
fluids are viscous. Water is wet because it is viscous. Without viscosity, you
would be completely dry when you emerged from a swimming pool! We have
already seen the fundamental role viscosity plays in forming boundary layers
and in generating vorticity, and it is now time to understand the details.

Consider a simple gas shear flow, with zero mass flux. The gas particles
have no internal degrees of freedom in our approximation. The velocity is in
the y direction, but depends linearly on x: vy = Ax where A = dvy/dx is
constant. Since the fluid is a gas, there is a finite mean free path λ between
collisions of gas particles. Thus, at any point in the flow x, there will be
particles scattered from x−λ, and some from x+ λ as well. The − particles
will, on average, have a value of their y velocity ∼ vy(x − λ) (read “vy at
x − λ”), since x − λ is where the particles were most likely to have been
scattered from. Similarly, the + particles will have y velocity of ∼ vy(x+λ).

Since there is no net flow of mass induced by the existence of a finite
free path and a shear velocity gradient, the mass flux µ from either direction
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must be same. We estimate µ in each direction to be ∼ ρc/6, where ρ is a
local mass density and c a local thermal speed. The factor of 1/6 comes from
the approximation that 1/3 of the particles will be moving predominantly
along the x direction at some instant of time, and of these only 1/2 will be
moving toward the + (or −) direction. This gives a net y momentum flux in
the x direction of

1

6
ρc[vy(x− λ) − vy(x+ λ)] ≃ −1

3
ρcλ

dvy

dx
(458)

The coefficient

η =
1

3
ρcλ (459)

is known as the dynamical viscosity, as distinguished from the kinematic
viscosity

ν ≡ η

ρ
=

1

3
cλ (460)

Our explicit expressions for η and ν are only approximations (the factor of
1/3 is not very trustworthy), but they are roughly correct and in accord with
laboratory data for fluids. The kinematic viscosity ν has units of (length)2

(time)−1, and is thus a classical diffusion coefficient.

The mean free path λ is calculated by assuming that each particle has
a cross section σ for interacting with another particle. Moving through the
fluid, a particle that is about to be scattered “sees” an effective area of σ
presented by each target particle. The particle to be scattered is said to have
moved a distance of one mean free path λ when the volume σλ contains one
target:

nλσ = 1, (461)

where n is the total number density of gas particles. Therefore, λ = 1/(nσ),
and the viscosity η, which is proportional to nλ does not depend on the
density of the gas!

Maxwell was the first to estimate the viscosity of a gas in this manner, and
was very surprised to find that η is independent of the density. This means
that the drag force on a small mass is the same in a diffuse or dense gas!
He checked his results experimentally. In other types of diffusion problems,
however, the kinematic viscosity is more relevant than the dynamic viscosity.
Kinematic viscosities for water and air at 20 ◦C are 0.01 and 0.15 cm2 s−1

respectively. In this sense, air can be more viscous than water. Other values
(all in cm2 s−1) for for common liquids are 1.2× 10−3 (for mercury), 1 (olive
oil), 18 (glycerine), and 1200 (treacle).

Notice that our estimate is sensitive to the fact that the background
velocity is in a direction orthogonal to the direction in which the momentum
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is transported. If we were to try this argument with an x velocity propagating
a momentum flux in the x direction, we would find that the momentum flux
is just the pressure! The argument would go as follows:

Go into the fluid rest frame. One mean free path away, the bulk velocity
would be ±λdvx/dx. A particle coming from one mean free path “below”
would have velocity cx−λdvx/dx, where cx is a random thermal velocity com-
ponent. The momentum flux would be (1/2)mn(cx − λdvx/dx)

2, the factor
of 1/2 coming from the fact that only half the particles would have random
velocities with positive x. The dominant momentum flux is (1/2)mnc2x, if, as
we must assume, the mean free path is small. From “above”, there is a sim-
ilar contribution, and the total momentum flux is nmc2x, which on averaging
becomes the pressure, nkT . This nkT momentum flux is not associated with
a direction because the problem is symmetric with respect to + and − x.
Only a standard pressure emerges, and this has already been included in the
equations of motion.

You might argue that there is a contribution at the next level of approx-
imation, linear in λ, and that this should be the viscous stress contribution.
But care must be taken. The actual distribution function of particle velocites
also changes at different locations (no longer Maxwellian), and the variable
cx itself is also slightly changing, and all of these changes must be taken into
account. Our simple and intuitive procedure is not rigorous enough to be
trusted beyond the leading order term! In fact, viscous stresses proportional
to to ∇·v can occur, but this requires that the molecules have internal de-
grees of freedom, or that there is a mixture of gases with different response
times. At this level of analysis, the subject becomes very complex. For more
information, see the texts by Batchelor or Landau and Lifschitz.

7.1 The Viscous Stress Tensor

How do we generalize to an unrestricted geometry from the proceeding dis-
cussion? Clearly, some care is required. The most general expression for the
momentum flux would include an isotropic pressure term plus nonisotropic
viscous terms proportional to velocity derivatives. But which combination of
velocity derivatives should we include for the most general viscous stress?

The momentum flux takes the form of a tensor, with two indices, Tij .
i indicates the component of the momentum of interest, and j indicates
the direction of transport of this momentum component. The pressure is
isotropic, hence it must make a contribution to Tij of −Pδij. (The minus
sign is included because it is −∇P that appears in the usual Euler equation.)
We also expect that the viscous contribution will be proportional to a linear
combination of velocity derivatives. The most general combination which
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acts like a tensor will be of the form

σij ≡ η

[

∂vi

∂xj

+ α
∂vj

∂xi

+ βδij
∂vk

∂xk

]

(462)

where, as usual, we sum over repeated indices, and η is by definition the
dynamical viscosity. (For a simple shear flow, this reduces to our earlier
result.) To determine α and β, we require that the viscous stress vanish for
(1) isotropic, uniform expansion; and (2) uniform rotation. Isotropic, uniform
expansion (v ∝ r) has no unique direction to define the orientation of a flux:
the velocity field recedes homogeneously from any point chosen as the origin.
If the mean flow is exactly isotropic, then the random particle velocities
will also be exactly isotropic (because collisions cannot create anisotropies),
and isotropic random flow cannot lead to a systematic viscous stress. The
momentum flux can be described only by an isotropic pressure term, which
is already in our equations. On the other hand, a uniformly rotating flow has
no shear at all. There can be no viscous stress under these circumstances.

Consider the flow vx = y and vy = −x. (Any uniform rotation will just
be a multiple of this flow.) Then

σxy = η(1 − α) (463)

Hence α = 1. (It is easy to show that all other σ components will vanish as
well.) For uniform expansion, take

vx = x, vy = y, vz = z.

Then,
σxx = η(2 + 3β) (464)

Hence β = −2/3. (One again, it is easily shown that all other σ components
are then zero as well.) We have thus shown that

σij = η

[

∂vi

∂xj

+
∂vj

∂xi

− 2

3
δij
∂vk

∂xk

]

(465)

This form of the viscous stress was first derived by Navier, and more rigor-
ously by Stokes.

Although our discussion has focused on a dilute gas, this form of the stress
holds for most ordinary liquids as well.7 The basic reason for this is that

7Manufactured liquids containing large chain molecules, like polymers or paints, can
have very different viscous properties because of preferred directions. Such fluids are said
to be non-Newtonian.
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viscous stresses tend to oppose deformation of the shape of a local volume
of fluid elements. For a liquid, the divergence of v vanishes, and the viscous
stress is then the most general linear superposition of velocity gradients that
vanishes for uniform rotation. All other velocity profiles distort the shape of
a volume moving with the flow.

The total stress tensor is defined to be

Tij = −Pδij + σij (466)

The equation of motion for a viscous fluid is then

ρ

(

∂vi

∂t
+ vj

∂vi

∂xj

)

=
∂Tij

∂xj

(467)

For an incompressible fluid, the equation of motion becomes

∂v

∂t
+ (v·∇)v = −1

ρ
∇P + ν∇2v (468)

This is the classical Navier-Stokes equation. Be careful of the ∇2v term in
non-Cartesian coordinates! If eu is a unit vector,

∇2(aeu) = eu∇2a+ a∇2eu + 2 [(∇a)·∇] eu (469)

Alternatively, note that if ∇·v = 0,

∇2v = −∇×(∇ × v). (470)

Finally, let us note the force dfj in the j direction on a differential surface
area element with normal components dSi due to the motion of a viscous
fluid:

dfj = TijdSi = −PdSj +σijdSi = −
(

P +
2η

3
∇·v

)

dSj +η

(

∂vi

∂xj

+
∂vj

∂xi

)

dSi.

(471)

Exercise. Derive the explicit Navier-Stokes equation in cylindrical coordi-
nates:

(

∂

∂t
+ v·∇

)

vR − v2
φ

R
= −1

ρ

∂P

∂R
+ ν

(

∇2vR − vR

R2
− 2

R2

∂vφ

∂φ

)

, (472)

(

∂

∂t
+ v·∇

)

vφ +
vRvφ

R
= − 1

ρR

∂P

∂φ
+ ν

(

∇2vφ − vφ

R2
+

2

R2

∂vR

∂φ

)

, (473)

(

∂

∂t
+ v·∇

)

vz = −1

ρ

∂P

∂z
+ ν∇2vz. (474)
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7.2 Poiseuille Flow

The flow of a viscous liquid through a tube was first studied experimentally by
the physician Jean-Louis Poiseuille in connection with blood circulation. The
problem has been one of the most important in fluid mechanics: though the
flow itself is simple, its stability properties have been extremely challenging
to unravel.

A tube containing a fluid with kinematic viscosity ν is subject to a fixed
pressure gradient dP/dz = P ′. The one-dimensional flow vz depends only on
radius R. We wish to calculate the velocity profile and mass flux through
the tube.

As formulated, the flow automatically satisfies ∇·v = 0. The boundary
condition for a viscous flow is that all velocity components vanish at a fixed
surface. This is true for any finite viscosity no matter how small, even though
the boundary condition for η = 0 is that only the normal velocity component
vanishes. The fact that boundary conditions change discontinuously when an
infintesimal viscosity is added to the flow is what gives the study of real flows
their fascinating complexity and richness. It is responsible for the formation
and detachment of boundary layers and the complexity associated with the
onset of turbulence. This abrupt change of boundary condition is a result
that deserves a small digression.

The viscosity is an internal physical property of the fluid, whereas the
boundary conditions involve the interaction between the flow and the wall.
So why is it that presence of a fluid viscosity influences how a flow interacts
with the wall? What happens is that on the microscopic scale of the solid
surface the bumps and irregularities trap fluid in contact with the surface.
But in a viscous fluid, that trapped surface layer communicates via shear
stresses with the adjacent fluid layers, which then must also cease flowing.
In an inviscid flow, the rest of the fluid would not care what the layer in
contact with the wall is doing. In fact, in superfluids with a truly vanishing
viscosity (e.g. liquid Helium), shear velocities can persist indefinitely along
ordinary surfaces.

Since the v·∇v term vanishes, the equation of motion is

0 = −P
′

ρ
+
ν

R

d

dR

(

R
dvz

dR

)

, (475)

subject to the boundary condition vz = 0 at the radius of the tube R = l.
Integrating once gives

ν
dvz

dR
=
C

R
+
P ′R

2ρ
, (476)
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where C is an integration constant. Clearly C = 0 if the velocity is nonsingu-
lar at R = 0. Integrating again, and applying the no-slip boundary condition
at the outer radius R = l leads to

vz = −P
′

4η
(l2 −R2), (477)

where η = ρν. The integrated mass flux µ is

µ =
∫ l

0
2πRvz dR = −πP

′l4

8η
, (478)

where the minus sign means that the velocity and the mass flux have the
opposite sign of P ′. The flow is proportional to the fourth power of the size
of the opening l! (This could have been deduced on the basis of dimensional
analysis.) For a healthy circulation, keep your blood viscosity low and your
arteries clear.

Exercise. Consider Poiseuille flow between two concentric cylinders of
inner and outer radius l1 and l2 respectively. Solve for the velocity profile
vz(R). Show that the integrated mass flux µ is

µ =
∫ l

0
2πRvz dR = −πP

′l4

8η

(

l42 − l41
)

[

1 − l22 − l21
l22 + l21

1

ln(l2/l1)

]

What is formal value of the “correction factor” in square brackets if l1 is
0.01 of l2? 10−8 of l2 (one atomic radius if l2 is 1 cm)? Notice the exquisite
sensitivity of the flow to the presence of any central cylinder of almost any
finite radius.

7.3 Flow down an inclined plane

Consider the flow of a viscous fluid down an inclined plane. The upper surface
is free. (The flow of hot lava down the side of a mountain comes to mind.)
Let x be the Cartesian coordinate pointed downward, parallel to the slope,
and z is upward, normal to the inclined surface. The inclination angle of the
slope is α (see figure 16). We seek solutions of the form v = vx(z)ex. The
pressure P is also only a function of z, since there is symmetry in x. The
height of the fluid is h. The equations of motion in the x and z directions
are therefore respectively

0 = ν
d2vx

dz2
+ g sinα (x component,) (479)
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Figure 16: Geometry for viscous flow down an inclined plane.

0 = −1

ρ

dP

dz
− g cosα (z component.) (480)

The boundary conditions are as follows. At z = 0, the viscous no-slip
condition is vx = 0. At z = h, the free surface, we must have pressure
balance between the fluid and the atmosphere, but there is also a viscous
constraint. In a viscous fluid, a velocity gradient of the form dvx/dz would
lead to momentum transport in the x direction across a z = constant surface.
There is no such momentum flux in the layer just above the fluid. Hence
dvx/dz = 0 at z = h. This is known as a stress-free boundary condition.

The problem is easily solved, since the equations decouple. The solution
to the velocity equation with the above boundary conditions is

vx =
g sinα

2ν
z(2h− z) (481)

and the pressure is
P = ρg(h− z) cosα (482)

taking the atmospheric pressure to be zero (to first order). The mass flux
∫

ρvxdz is a quantity of some interest:
∫ h

0
ρvxdz =

ρgh3

3ν
sinα (483)
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Note the sensitive dependence on h.

7.4 Time-dependent diffusion

The presence of viscosity gives the equations of motion a diffusive character.
It is of interest to understand how viscous stresses can impart shear motion
to a gas that is initially at rest. We seek in this section a time-dependent
solution to the viscous equations of motion.

As before, we investigate one-dimensional spatial motions, with velocity
vx(z, t). The x equation of motion is, in the absence of all forces but viscosity,

∂vx

∂t
= ν

∂2vx

∂z2
(484)

which is the classical diffusion equation. We assume that the fluid is bounded
from below by a wall, which at t = 0 suddenly moves in the x direction at
velocity U. In the frame of the wall, the adjacent fluid must be at rest, which
means that in the “lab” frame this fluid moves with velocity U : the boundary
condition is v(0, t) = U , and of course v(∞, t) = 0.

To solve the partial differential equation, we search for what is known as
a self-similar solution. This is a technique that works very smoothly when
it is applicable, but in general it requires very special circumstances. In our
case, we observe that the problem is so simple, there is only one parameter
with dimensions that is present: ν. You might object that U is a dimensional
parameter, but it just scales out of the problem. If we define a new variable
f ≡ vx/U , we have the same differential equation for f , and the boundary
condition at z = 0 is f = 1. U is gone!

Since ν is the only dimensional parameter that really enters, there is only
one dimensionless parameter we can construct from z, t, and ν: ξ = z/(νt)1/2.
We seek a solution of the form f(ξ), a function that is mathematically depen-
dent on one variable only, but that satisfies our partial differential equation
in two variables. This is the trick of a self-similar solution. The name comes
from the fact that the solution looks identical along curves in the zt plane
for which (in this case) t ∝ z2. At time t, therefore, the viscous “boundary
layer” near the wall has a thickness of order (νt)1/2.

Self-similarity requires that only one, or at most two, dimensionless pa-
rameters be present in a problem, which is why it is not a general technique.
In particular, both the equations and the boundary conditions must be con-
sistent with self-similarity. When this is so, the problem is reduced from
trying to find the solution of a partial differential equation to finding the
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solution of an ordinary differential equation, which is usually a far simpler
task.

Noting
∂f

∂t
=
∂ξ

∂t
f ′(ξ) = −1

2

ξ

t
f ′(ξ), (485)

∂f

∂z
=
ξ

z
f ′(ξ),

∂2f

∂z2
=

(

ξ

z

)2

f ′′(ξ) (486)

our diffusion equation becomes

−1

2

ξ

t
f ′(ξ) = ν

(

ξ

z

)2

f ′′(ξ) → f ′′ +
ξf ′

2
= 0. (487)

This is easily solved:

f = A+B
∫ ξ

0
e−s2/4 ds (488)

Since
∫

∞

0 e−s2/4 ds = π1/2, the boundary conditions are satisfied when

f(ξ) = 1 − 1

π1/2

∫ ξ

0
e−s2/4 ds (489)

which completes our problem. (The integral may be expressed in terms
of the special function known as the “error function”. See, for example,
Abramowicz and Stegun, Handbook of Mathematical Functions, page 297.)

The vorticity ∂vx/∂z is particularly revealing,

∂vx

∂z
= − U

(πνt)1/2
exp(−z2/4νt) (490)

This is highly concentrated at t = 0 in manner similar to a Dirac delta
function, and then spreads with time. In particular, it shows the scaling,
which is true in general, that vorticity spreads over a distance L in a time of
order L2/ν.

7.5 Cylindrical Flow

In cyclindrical geometry, the Navier-Stokes equation takes on a particularly
simple form for a flow of the form v = vφ(R)eφ. Taking care to include the
effects of differentiation upon eφ, the equation of motion is

∇2(vφeφ) =
1

R

∂

∂R

(

R
∂vφ

∂R

)

− vφ

R2
= 0. (491)
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This is homogeneous in R and must have power law solutions. It is a simple
matter to show that

vφ = AR +
B

R
(492)

where A and B are integration constants. In what is known as Couette flow,
a viscous fluid is confined between two coaxial rotating cylinders, and A
and B are determined by the no-slip condition on each cylindrical surface.
The stability of Couette flow is a classical laboratory experiment in fluid
mechanics. We shall speak more about it when we discuss fluid instabilities.

Note the form of our solution. vφ = constant is definitely not a solution,
whereas in Cartesian coordinates a constant velocity component would sat-
isfy the viscous equation of motion. For rotational flows, we find that our
solutions is a superposition of two very distinctive flows: solid body rotation,
for which the vorticity ω is constant, plus zero-vorticity rotation. Both of
these solutions obviously satisfy

−∇2v = ∇×ω = 0,

where ω = ∇×v.

Exercise. What are A and B when the inner cylinder has radius R1 and
rotates at Ω1 and the outer cylinder has radius R2 and rotates at Ω2?

7.6 The Stokes Problem: Viscous Flow Past a Sphere

A simple way of determining the viscosity of a fluid is to take a small solid
sphere, and let it sink in a big container of the fluid in question. Measure the
terminal velocity of the sphere. If the drag force on the sphere is known, the
viscosity may be determined by measuring the constant terminal velocity of
the sphere. The problem of determining the viscous drag force on a sphere
was solved by Stokes in 1845, but mathematical subtleties plagued the sub-
ject until the 1950’s! It was definitively resolved by the development of an
advanced analytic technique known as asymptotic matching, which has found
widespread applications in many areas of applied mathematics. Clearly this
is a rich problem.

Of course, the problem is of interest for physicists as well. The classical
Milikan oil drop experiment measured the charge of an electron by applying a
electric field to a charged spherical small sphere of oil and noting its terminal
velocity. This required a knowledge of the Stokes drag force on the drop due
to the viscosity of air.

What is the drag force on a sphere moving through a viscous medium?
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7.6.1 Analysis

In the low Reynolds number approximation for incompressible flow, the gov-
erning flow equations are

−∇P + η∇2v = 0 (493)

∇·v = 0 (494)

We may immediately conclude that

∇2P = 0, ∇2ω = 0 (495)

where ω is the vorticity ∇×v. The flow is axisymmetric and we work in
a frame in which the sphere is at rest. Then at large distances from the
sphere, the flow is uniform with velocity V along the z-axis. We shall work
in spherical r, θ, φ coordinates, with origin at the center of the sphere. The
flow is independent of φ, and ω = ωeφ has only a φ component.

As r → ∞,
v → V ez = V (cos θer − sin θeθ) (496)

Since the flow satisfies simple linear differential equations, we expect this
angular dependence to remain valid for all values of r, and this suggests
trying a solution of the form

v = V [A(r) cos θer −B(r) sin θeθ] (497)

where A and B approach unity as r → ∞. The flow must also vanish at the
sphere; the no-slip boundary condition requries that both A and B vanish at
the spherical radius r = a.

Substituting equation (497) into ∇·v = 0 yields

cos θ

r2

∂(r2A)

∂r
− B

r sin θ

∂(sin2 θ)

∂θ
= 0 (498)

which requires

B =
1

2r

d(r2A)

dr
. (499)

Note that the angular dependence of both terms in the divergence is the same
(as it must be if our assumption for the form of v was correct), and that if
A→ 1 at large r, then B will behave the same way, as required. We have,

vr = V A cos θ, vθ = −V sin θ

2r

d(r2A)

dr
. (500)
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From these expressions, we may calculate the φ component of ω,

ωφ =
1

r

(

∂(rvθ)

∂r
− ∂vr

∂θ

)

=
V sin θ

r

[

A− d2

dr2

(

r2A

2

)]

(501)

What we really need is the vector ω = ωφeφ. Using the Cartesian represen-
tation for eφ = (− sinφ, cosφ, 0), ωφeφ has components

ω = V

[

A

r
− 1

r

d2

dr2

(

r2A

2

)]

(− sin θ sinφ, sin θ cosφ, 0). (502)

Each of the nonvanishing Cartesian components must individually satisfy
the Laplace equation, and we are in luck: both sin θ cosφ and sin θ sinφ
are indeed the correct angular dependence of elementary solutions of this
equation. sin θ cosφ and sin θ sinφ are both solutions of the Laplace equation
when each is multiplied by a function of r that is a simple linear superposition
of r and 1/r2. Hence, the term in square brackets must be proportional to
this linear superposition of r and 1/r2. But we may immediately rule out the
solution proportional to r, since it clearly would require A to grow at large
r, whereas A must approach one. The 1/r2 function is acceptable for both
Cartesian components of ω, hence we require

[

A− d2

dr2

(

r2A

2

)]

=
const.

r
, (503)

where the constant on the right is as yet undetermined.

Equation (503) is easily solved. The general solution consists of a super-
position of the solution to the homogeneous equation (Ah) plus a particular
solution (Ap) to the inhomogeneous equation. The latter is obviously a con-
stant times 1/r. For Ah, note that the equation must have simple power
law solutions. These are found to be Ah = constant, and Ah ∝ 1/r3. Since
A→ 1 at large r, we have:

A = 1 +
β

r3
+
γ

r
(504)

where β and γ are constants to be determined. The corresponding B function
is

B =
1

2r

d(r2A)

dr
= 1 − β

2r3
+

γ

2r
(505)

Both A and B must vanish at the radius of the sphere r = a. This is sufficient
to determine β and γ, and one finds

A = 1 +
a3

2r3
− 3a

2r
, B = 1 − a3

4r3
− 3a

4r
(506)
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This completes are solution for vr and vθ:

vr = V cos θ

(

1 +
a3

2r3
− 3a

2r

)

, vθ = −V sin θ

(

1 − a3

4r3
− 3a

4r

)

. (507)

There remains the pressure P . Since ∇2P = 0, it makes sense for this
linear problem to search for a solution with the same periodicity as the
velocity. There is only one such solution to the Laplace equation that is
independent of φ and approaches a uniform pressure at infinity:

P = P∞ +
α cos θ

r2
(508)

where P∞ is the pressure at infinity and α is a constant to be determined.

Determining α is the most difficult part of this problem. Though it can
be done by using just one component of the Navier-Stokes equation, care
must be taken. To avoid the complications of operating with the Laplacian
on the unit vectors, we will take the z component:

0 = −∂P
∂z

+ η∇2vz (509)

Now,
∂

∂z
= ez·∇ = cos θ

∂

∂r
− sin θ

r

∂

∂θ
(510)

and
vz = cos θvr − sin θvθ = V (A cos2 θ +B sin2 θ) (511)

We find for the pressure gradient,

∂P

∂z
=
α

r3
(1 − 3 cos2 θ) (512)

while for vz:

vz

V
=

(

1 +
a3

2r3
− 3a

2r

)

cos2 θ +

(

1 − a3

4r3
− 3a

4r

)

sin2 θ (513)

Before we take the Laplacian of vz/V , note the identities

∇2(1/r) = ∇2[(3 cos2 θ − 1)/r3] = ∇2[(2 cos2 θ − sin2 θ)/r3] = 0 (514)

since the first is the “point charge” solution of the Laplace equation, and
the latter are two different forms of the quadrupole solution. Of course, the
Laplacian of any constant vanishes trivially.
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With the above identities, it is found that all constant and 1/r3 terms
vanish with the application of ∇2, and only the terms proportional to 1/r
remain. These are

−3a

2r

(

cos2 θ +
sin2 θ

2

)

= −3a

4r

(

1 + cos2 θ
)

(515)

The term −3a/4r vanishes when hit with ∇2, leaving us with

−3a

4r
cos2 θ = −3a

4r
(cos2 θ − 1/3) − a

4r
(516)

Again, we ignore the final a/4r term, since it vanishes with the Laplacian
operation. In the end, we are left with evaluating

−(3a/4)∇2[(cos2 θ − 1/3)/r]. (517)

The radial derivatives of ∇2 vanish (since they operate on 1/r), and cos2 θ−
1/3 is a quadrupole eigenfunction of the angular derivatives. The operation

∇2
angular(cos2 θ − 1/3) ≡ 1

r2 sin θ

∂

∂θ

(

sin θ
∂

∂θ
(cos2 θ − 1/3)

)

returns −6/r2 × (cos2 θ−1/3), i.e. multiplication by a factor of −l(l+1)/r2,
which is expected for this l = 2 Legendre polynomial. Putting everything
together, we find that η∇2vz =

−6η

r2
×
(−3aV

4r

)

[cos2 θ− 1

3
] =

3aηV

2r3
(3 cos2 θ− 1) =

∂P

∂z
= − α

r3
(3 cos2 θ− 1)

(518)
or

α = −3a

2
ηV (519)

The pressure is

P = P∞ − 3aηV cos θ

2r2
(520)

This completes the determination of the pressure and the velocity for low
Reynolds number flow around a sphere.
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7.6.2 The drag force.

The stress tensor Tij written in Cartesian form is

Tij = −Pδij + η

(

∂vi

∂xj
+
∂vj

∂xi

)

(521)

In spherical coodinates, there are additional terms originating with the deriva-
tives of unit vectors, but these terms are all proportional to the velocity. We
shall be evaluating the stress at the surface of the sphere, where the velocity
vanishes. Hence these additional terms may be ignored, and we may use this
Cartesian form, even for our spherical problem. Moreover, the reader may
verify that ∂vr/∂r and ∂vr/∂θ both vanish at the sphere’s surface.

To calculate the force exerted by the fluid on the sphere, recall that the
stress tensor is the momentum flux at a given point and that local force on a
differential surface area dSi is then TijdSi, where we sum over the repeated
index i, as usual. This gives the force in the j direction.

The above considerations imply that the local radial force per unit area
exerted by the fluid on the sphere is

Fr = Trr = −P = −P∞ +
3ηV cos θ

2a
(522)

and the local θ force is

Fθ = Trθ = η
∂vθ

∂r
= −3ηV sin θ

2a
(523)

The net force must be in the direction of the oncoming flow, that is, along
the z axis:

Fz = cos θFr − sin θFθ = −P∞ cos θ +
3ηV

2a
(524)

The pressure at infinity has no effect when integrated over the surface area of
the sphere, and the last term is constant. The net drag force is then simply

Fdrag =
3ηV

2a
× 4πa2 = 6πηV a (525)

This is the classical formula derived by Stokes in 1845.

Exercise. Show that a solid sphere of density ρs will drift through a viscous
liquid of density ρl and kinematic viscosity ν in a gravitational field g at a
terminal velocity of

v =
2a2g

9ν

(

ρs

ρl

− 1

)

.
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Calculate this number for a steel sphere (ρ = 8 g cm−3, a = 1 cm) in glycerine
at 0◦ C (η = ρlν = 120 p, ρl = 1.26 g cm−3). Here, 120 p means 120 poise,
which is the cgs unit of dynamic viscosity. The cgs unit of kinematic viscosity
is one stoke.

Exercise. The Stokes formula can be used to determine Avogadro’s number,
N = 6.023× 1023, the number of molecules in one mole of gas! The result is
due to Einstein, from his study of Brownian motion. Consider a tiny sphere
of radius a ∼ 10−4 cm, which is still huge compared with a molecule. (In
practice, these spheres were grains of pollen.) The sphere is in water, and
subject both to the random forcing of the water molecules and to the viscous
Stokes drag force. In this way, the sphere acquires a random kinetic energy
kT/2 in one dimension. (Remember that k = R/N , where R is the classical
gas constant 8.3 J per K-mole, and N is Avogadro’s number.) Show that the
sphere’s motion in one dimension x satifies the equation

mẍ+ 6πaηẋ = f(t)

where m is the mass of the sphere and f(t) is a rapidly varying random
function of time t with zero mean value. Multiply this equation by the
displacement x and show that the long term average displacement of the
sphere satisfies

〈x2〉 = (kT/3πaη)t.

(Hint: m〈ẋ2〉 = kT .) Estimate 〈x2〉1/2 for t = 100 seconds. Explain how to
determine Avogadro’s number with an ordinary microscope, a watch, and a
grain of pollen. Note that as t→ ∞, the rms displacement becomes infinite,
whereas the systematic velocity is zero.

7.6.3 Self-consistency

There is a potential problem with the result of equation (525). We have
neglected the terms (v·∇)v in our analysis in favor of ν∇2v. But if we now
go back and check whether this is self-consistent, we find that the assumption
breaks down at large radii, r > ν/U . One might argue that since the trouble
is far from the sphere it can’t be important, but in fact making a small change
at large distances can, in principle, have much larger consequences at small
radii near the sphere.

The problem was not fully resolved until 1957, when Proudman and Pear-
son applied what is known as matched asymptotics to the problem. A detailed
discussion would take us too far afield, but here is the idea.

When the Reynolds number is very small, the solution near the sphere
can be treated with the neglected (v·∇)v as a small perturbation. What
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does “near the sphere mean?” It turned out that the solution obtained was
valid provided that r/a≪ 1/R1/2 as R → 0. So, in fact, the solution is valid
rather far away from the sphere, but not at infinite distances.

Another solution was found to be valid at large r. What does “large”
mean? Large in this case meant r/a ≫ 1. But that means if, for example,
r ∼ 1/R1/3, both solutions would have to be valid at once! The existence
of an intermediate asymptotic zone satisfying both restrictions is a powerful
constraint, because the two different solutions (r/a≪ 1/R1/2, r/a≫ 1) must
be identical where they overlap. Thus, although the entire solution cannot
be found at once, it can be found in pieces, and then patched together. All
integration constants are fixed by this matching prescription.

What is the outcome of this mathematical procedure? Rest assured.
Stokes’s drag force is only modified by a factor of 1+3R/8 when R is small.
Our relatively simple solution captures the essence of the problem nicely. The
existence of matched asymptotic region not only allows the problem to be
solved precisely, it also indicates why our original solution is as good as it is.
What we have called the “near” solution actually extends quite far out, and
its region of validity gets larger and larger at smaller and smaller Reynolds
number. Though it is technically invalid at arbitrarily large distances, it
“knows” about radii very far from the sphere r = a.

7.7 Viscous Flow Around Obstacles

This section contains optional advanced material, included for your interest.

When a viscous fluid passes over a smooth surface around an obstacle
in its path, if the deflection does not occur at too steep an angle, the flow
remains smooth and follows the contours of the obstacle. If the obstacle
makes a steep angle with respect to the flow, however, something interesting
happens. Where the obstacle rises from the smooth surface, the intersection,
or “corner,” that is formed is characterized by the formation of embedded
vortices. The question is at what angle can a viscous flow be deflected before
it starts to form internal vortices?

We can simplify our problem by looking at the very local properties of
the flow. Consider viscous flow in a wedge of opening angle 2α. We use
cylindrical coordinates R and φ; the flow is assumed to be independent of z.
For φ > 0, the radial velocity vR is inwards, for φ < 0 it is outwards. By
contrast, the azimuthal velocity vφ is symmetric with respect to φ. As usual,
no-slip boundary conditions are enforced at φ = ±α.
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Let us begin by considering solutions of the form

v = eRA(R) cos(pφ) + eφB(R) sin(pφ) (526)

where A and B are to be determined. Clearly, this solution is compatible
with the symmetry of the problem, and the general solution will be a Fourier
superposition of such functions, since the governing equations are linear in
v. Mass conservation

1

R

∂(RvR)

∂R
+

1

R

∂vφ

∂φ
= 0 (527)

yields immediately

B =
1

p

d(RA)

dR
(528)

The vorticity ̟ has only a z component for this problem, which we denote
̟. As is familiar from the last section, the equation of motion for a viscous
fluid is

∇2̟ = 0, (529)

so that a solution proportional to cos pφ or sin pφ must be of the form
Rp cos pφ (or sin pφ). The general solution is a superposition of solutions
of this form with p positive or negative. If we next evaluate

̟ =
1

R

[

∂(Rvφ)

∂R
− ∂vR

∂φ

]

(530)

we obtain

̟ =
cos pφ

pR

(

d

dr

(

R
d(RA)

dR

)

− p2A

)

(531)

This is consistent with our Laplace equation solution provided that

1

pR

[

d

dr

(

R
d(RA)

dR

)

− p2A

]

= constant ×Rp (532)

This is readily solved:

A(R) = C1R
p+1 + C2R

p−1 (533)

where the first term is the particular solution to the inhomogeneous equation,
and the second is a solution to the homogeneous equation. (Remember that
p could be positive or negative.)

Thus far, we have grouped together all the terms proportional to cos(pφ)
or sin(pφ). To implement the boundary conditions, which depend only upon
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φ, it is better to group together all of the trignometric terms that have the
same power-law dependence in R. Notice that each trig function of pφ is
associated with one power of p higher in R and one power of p lower. Thus,
we consider a solution of the form

vR = Rp−1 (β1 sin[(p− 2)φ] + β2 sin(pφ)) (534)

Mass conservation ∇·v = 0 then gives

vφ = Rp−1

(

pβ1

p− 2
cos[(p− 2)φ] + β2 cos(pφ)

)

(535)

The no-slip boundary conditions at φ = ±α are satisfied if

β1 cos(pα) + β2 cos[(p− 2)α] = 0 (536)

pβ1 sin(pα) + (p− 2)β2 sin[(p− 2)α] = 0 (537)

A solution is possible only if

p tan(pα) = (p− 2) tan[(p− 2)α] (538)

This is equivalent to

sin x

x
= −sin 2α

2α
, x = 2(p− 1)α (539)

which is most easily derived by replacing the tangent functions in terms of
their representation in terms of complex exponentials eipα, etc. In this form,
it is easy to see when there are real solutions for p and when there are not.

Plot the function (sin x)/x. Note that it has a minimum value of −0.217
at x = 4.4934 radians. Thus, if sin(2α)/2α is small, less than 0.217 there
is no difficulty finding a solution. But this implies a rather large angle for
α, in excess of 146.3◦. In other words, α cannot be very far from an open
180◦ straight line. If α is less than 146.3◦, there are no real solutions for p.
There are, however, complex-valued solutions for p. Since our fundamental
equations are real and linear, the real and imaginary parts of v will each
satisfy the equations separately. When p is complex, Rp becomes infinitely
oscillatory as R → 0, and along a ray of fixed φ, this suggests a sequence
of smaller and smaller eddies. The formation of these eddies is in fact seen
in the laboratory, though the amplitudes become sufficiently small that only
first two can be measured.
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7.8 Theory of Thin Films

One of the most important applications of viscous flows occurs when the
fluid is trapped between two rigid boundaries at z = 0 and z = h(x, y).
(In principle, the lower boundary could also depend upon x and y, but here
we restrict ourselves to this simpler case.) Lubrication theory, for example,
involves the study of a viscous fluid between two very closely spaced surfaces,
such as the cylinder wall and piston of an automobile engine. If L is a
characteristic horizontal length scale, we assume that h ≪ L. If U is a
typical value of the vx or vy scale, then since

∂vx

∂x
+
∂vy

∂y
+
∂vz

∂z
= 0, (540)

we find that

vz ∼ h

L
U ≪ U. (541)

Vertical velocities are thus very small compared with vx or vy and will be
ignored to leading order.

Because of the no-slip boundary conditions, the vertical gradient of hor-
izontal velocities will be ∼ U/h, much larger than the U/L scaling for the
horizontal gradients. Hence, to an excellent approximation, for horizontal v

ν∇2v ≃ ν
∂2v

∂z2
, (542)

the error being of order h2/L2. Because of the great difference in horizontal
and vertical scales, the inertial term in the equation of motion (v·∇)v can
be negligible even if the Reynolds number R ∼ UL/ν is large. In fact the
condition

(v·∇)v ≪ ν
∂2v

∂z2
(543)

requires only that
R ≪ (L/h)2, not R ≪ 1. (544)

This is what makes thin film theory interesting: it applies to both very small
as well as to very large Reynolds numbers. Moreover, the simplified equation
of motion

∇P = η
∂2v

∂z2
(545)

shows that to order h/L, the z dependence of P may be ignored. (Recall
the η = ρν.) The horizontal equations of motion may then be immediately
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integrated with respect to z:

vx =
1

2η

∂P

∂x
z2 + Az +B (546)

vy =
1

2η

∂P

∂y
z2 + Cz +D (547)

where the pressure gradients and A,B,C,D all could depend upon both x
and y.

7.8.1 The Hele-Shaw Cell

The simplest application of the above equations is to the problem where h is
a constant, say the space between two plates of glass. The no-slip conditions
give

vx =
1

2η

∂P

∂x
z(z − h) (548)

vy =
1

2η

∂P

∂y
z(z − h) (549)

Notice that since the horizontal velocity may be written as an exact nonsin-
gular gradient, the circulation must always satisfy

∫

v·dS = 0 (550)

Unlike two-dimensional “irrotational” flows in nature with hidden boundary
layers, this so-called Hele-Shaw flow cannot develop a non-zero circulation
integral by adding the equivalent of a line vortex vφ = Γ/2πr. Instead, the
horizontal flow is exactly that of an inviscid flow with zero circulation and
zero curl. This was Hele-Shaw’s motivation for developing this experimental
technique in 1898. Recall that two-dimensional flow past an airplane wing
must develop circulation to avoid singular points, as we have seen. In a Hele-
Shaw cell, non-zero circulation is forbidden, and the flow struggles valiantly
to accommodate the singularities of zero circulation! Inevitably, the thin flim
approximation breaks down when the horizontal gradients become compara-
ble to 1/h, but it is an excellent assumption over all larger scales. See the
striking photographs in Van Dyke, An Album of Fluid Motion, pp. 8-11.
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7.9 Adhesive Forces

You have probably noticed that if you wet a rubber disk and stick it on a
surface that it is very difficult to pull it away. The reason for this can be
examined quantitatively.

Consider a viscous fluid between two surfaces that are separated by a
distance h(t), a function of time only. For all times of concern, h≪ a, where
a is the radius of the upper surface. We shall assume, and verify a poste-
riori, that the explicit time derivative term ∂v/∂t is small compared with
ν∇2v. Thus, hydrostatic equilibirum is always instantaneously maintained
as the upper surface is lifted. (Any departures from hydrostatic equilibrium
would be corrected on the very rapid time scale h2/ν.) The time dependence
appears only implicitly via the boundary conditions at z = h(t).

What are the boundary conditions for this problem? The radial velocity
vR must vanish at z = 0 and z = h(t) by the no-slip constraint. The vertical
velocity vz must vanish at z = 0, and follow the surface at z = h(t):

vz = dh/dt at z = h(t). (551)

The radial velocity is the exact analog of the Hele-Shaw planar velocity
components:

vR =
1

2η

∂P

∂R
z(z − h) (552)

where P depends only upon R and t. The vertical velocity is given by the
integrated form of the mass conservation equation, with vz = 0 at z = 0:

vz = −
∫ z

0

1

2ηR

∂

∂R

(

R∂P

∂R

)

z(z − h) dz = − 1

2ηR

∂

∂R

(

R∂P

∂R

)(

z3

3
− z2h

2

)

(553)
Applying the boundary condition vz = dh/dt at z = h gives

∂

∂R

(

R∂P

∂R

)

=
12ηR

h3

dh

dt
, (554)

which is valid everywhere since the pressure is independent of z, and a vertical
velocity of

vz =
dh

dt
ζ2(3 − 2ζ), (555)

where ζ(t) = z/h(t). The pressure may be found from integrated equation
(554). Integrating once yields

∂P

∂R
=

6ηR

h3

dh

dt
+
C(t)

R
(556)
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Clearly, C(t) must vanish since the pressure is nonsingular at the origin.
From equation (552), the radial velocity is

vR = 3ζ(ζ − 1)R
d lnh

dt
(557)

which is, as expected, larger than vz by a factor of R/h. (Notice that it is
negative, or inward, if dh/dt > 0.) The pressure is obtained from a final
integration of equation (556):

P =
3η

h3

dh

dt
(R2 −D(t)) (558)

where D(t) is a time-dependent integration constant. Taking an atmospheric
pressure of zero at R = a then gives

P =
3η

2h3

dh

dt
(R2 − a2) (559)

The force exerted by the fluid on the upper surface is

2π
∫ a

0
P RdR = −3πηa4

h3

dh

dt
(560)

This is negative (dh/dt > 0), therefore adhesive, and in general very large,
especially for an extended upper surface and a tight seal (a4/h3 ≪ 1).

The last task is to justify the neglect of the ∂/∂t term in the equation of
motion. If we compare this with ν∇2, and use

∂/∂t ∼ (d lnh/dt), ∇2 ∼ (1/h2), vR ∼ a(d lnh/dt), (561)

we find that the criterion for neglecting the time derivative is identical to the
Reynolds number criterion (544).

Exercise. At fixed R, compute the z-averaged value for vR. Show that at
R = a, this average value is −(a/2)d lnh/dt. Interpret this physically. (Hint:
think in terms of mass conservation.)

8 Boundary Layers

A smooth flow with no solid boundaries generally makes the transition from
inviscid ν = 0) to viscous (finite ν) continuously. When the viscosity is small,
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it introduces small perturbations throughout the flow. When a bounding wall
is present, however, the no-slip boundary conditions introduce themselves
discontinuously: the introduction of an arbitrarily small viscosity changes the
flow by a finite amount near the wall. What changes continuously as a very
small ν is introduced is not the velocity field of the flow, but the thickness of
the layer over which there is a finite velocity change. This layer, which defines
the region in which the no-slip boundary conditions have changed the velocity
by “order unity” compared with inviscid flow, is known as the boundary layer.
Boundary layer theory remains an active area of fluid research.

The simplest manifestation of a mathematical boundary layer is provided
by the equation

ǫy′ + y = 1, y(0) = 0, ǫ→ 0. (562)

When ǫ = 0 exactly, the solution is y = 1, end of story. The boundary
condition cannot be satisfied. The exact solution is

y = 1 − e−x/ǫ (563)

As ǫ → 0, it is not possible to find a solution of the form y(x; ǫ) = y0(x) +
ǫy1(x). The limit ǫ → 0 of y(x; ǫ) is an essential singularity in ǫ and has no
Taylor Series expansion.

Note that it matters in what order the limits x→ 0 and ǫ→ 0 are taken.
In boundary layer theory, we always take the ǫ parameter to be small but
finite, letting it tend to zero only at the very end of the calculation.

If, however, we define a new variable, the so-called inner variable X =
x/ǫ, the equation becomes

dy

dX
+ y = 1, y(0) = 0 (564)

and the boundary layer appears to have vanished! This too is typical of
boundary layer problems. When the independent variable is rescaled in this
way, the inner solution becomes a non-singular differential equation as ǫ→ 0.

Here is an interesting example with a second order differential equation:

ǫy′′ + a(x)y′ + b(x)y = 0, y(0) = A, y(1) = B (565)

It is not possible to solve this problem analytically for arbitrary a(x) and
b(x), but we can obtain a general solution in the limit ǫ→ 0. Let us assume
that there is a boundary layer near x = 0. Then, our outer equation is

ay′o + byo = 0 (566)

149



which has the solution

yo = B exp
[
∫ 1

x
b(t)/a(t) dt

]

(567)

We have used the boundary condition at x = 1, but not the boundary con-
dition at x = 0, which is part of the inner solution in the boundary layer.
The use of only one boundary condition is mathematically consistent with
the equation becoming first order. (We require that a(x) does not vanish
over the interval [0, 1].)

Inside the boundary layer we expect the solution to be rapidly varying,
so that y ≪ y′. Our inner equation is taken very near x = 0, so we may
replace a(x) by α = a(0):

ǫy′′i + αy′i = 0. (568)

which has the solution

yi = A+ C [exp(−αx/ǫ) − 1] . (569)

C is an integration constant, and we have used the boundary condition y(0) =
A. To have a self-consistent boundary layer, we require α > 0, and since a(x)
cannot change sign, a(x) > 0 over the interval [0, 1].

The trick now is to note that the inner solution remains valid when x/ǫ
is large, provided that x itself small! For example, if exp(−αx/ǫ) is of order
ǫ1/2, all of the approximations of the inner zone are still valid as ǫ → 0.
This corresponds to x ∼ |ǫ ln ǫ| ≫ ǫ. Since x ≪ 1, we may still replace the
functions by their values at x = 0, and we are still justified in neglecting
the final term in the equation, by, since it is smaller than the other terms
by a factor of order ǫ1/2. In other words, our inner solution is also valid just
outside the boundary layer of rapid change, provided that we keep x small.

The outer solution, on the other hand, remains valid provided that we
stay away from the inner boundary layer of rapid change. The outer solution
certainly can, in principle, remain valid in a region where the inner solution
also happens to be valid. Indeed, we can see that there will be a region
of small x but large x/ǫ where both the inner and outer solutions must be
simultaneously valid, and they must give the same answer! For large x/ǫ,

yi → A− C, (570)

and for small x

yo → B exp
[
∫ 1

0
b(t)/a(t) dt

]

(571)

These two solutions will agree provided that

C = A− B exp
[
∫ 1

0
b(t)/a(t) dt

]

(572)
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or

yi = Ae−αx/ǫ +Be
∫

1

0
(b/a)dt

(

1 − e−αx/ǫ
)

. (573)

Finally, we may construct a single expression that is valid everywhere:

y = yo + yi − B exp
[
∫ 1

0
b(t)/a(t) dt

]

(574)

This works in the inner region because yo is canceled out by the final term.
This works in the outer region because yi is canceled out by the final term.
And this works in the matching region, because all three terms are the same,
and twice the solution minus the solution is the solution! Our final expression
for y is therefore:

y =
(

A−Be
∫

1

0
(b/a) dt

)

e−αx/ǫ +Be
∫

1

x

(b/a) dt (575)

This completes our solution to the differential equation. We were able to
obtain an analytic solution to this problem in the limit of small ǫ, essentially
because the problem breaks up into two solvable differential equations: one of
lower order, the other with locally constant coefficients. The matched asymp-
totic expansion then joined the two separately obtained solutions smoothly.
(See Bender & Orszag, Advanced Mathematical Methods for Scientists and
Engineers, for details of how to carry this to higher order accuracy.)

Let us see how our mathematics applies to high Reynolds number fluids
near boundary layers.

8.1 The Boundary Layer Equations

Consider the flow of a viscous fluid across a planar surface, y = 0. In this
section and the next, y will indicate the vertical direction. The horizontal
direction is x. There is a thin boundary layer near y = 0 where the flow
changes rapidly to satisfy the no-slip boundary conditions. The fundamental
fluid equations for steady flow are

vx
∂vx

∂x
+ vy

∂vx

∂y
= −1

ρ

∂P

∂x
+ ν

(

∂2vx

∂x2
+
∂2vx

∂y2

)

(576)

vx
∂vy

∂x
+ vy

∂vy

∂y
= −1

ρ

∂P

∂y
+ ν

(

∂2vy

∂x2
+
∂2vy

∂y2

)

(577)

along with mass conservation:

∂vx

∂x
+
∂vy

∂y
= 0 (578)
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Boundary layer theory enjoys some of the simplifications we found in thin
film theory. Boundary layers are also thin, in the sense that the character-
istic length scale in the x direction (L), is much larger than the boundary
layer thickness and characteristic scale in the y direction (δ). The mass
conservation equation implies

vy ∼ δ

L
vx ≪ vx, (579)

an important simplification. From this we may deduce two more simplifica-
tions: (i) ∂P/∂y ≪ ∂P/∂x, which follows from comparing the y equation of
motion with the x equation; and (ii) ∂2/∂y2 ≫ ∂2/∂x2 in all viscous terms.
These simplifications mean that there are two equations to be solved for vx

and vy,

vx
∂vx

∂x
+ vy

∂vx

∂y
= −1

ρ

dP

dx
+ ν

∂2vx

∂y2
(580)

∂vx

∂x
+
∂vy

∂y
= 0 (581)

with dP/dx smoothly continuous through the boundary layer, given by its
value in the inviscid flow just adjacent to the boundary layer. This is our
fundamental set of equations.

The scale for the thickness of the boundary layer δ is obtained by setting

vx
∂vx

∂x
∼ ν

∂2vx

∂y2
(582)

This gives
δ

L
∼
(

ν

vxL

)1/2

∼ R−1/2 (583)

where L is a typical x scale and R is the Reynolds number of the flow. In
the case of flow passing over a semi-infinite plane whose edge is at x = 0,
the “typical x scale” L is just x itself, the horizontal distance from the edge.
We then expect the thickness of the boundary layer to be a function of x,
δ ∼ √

νx. The viscous boundary layer grows as we move farther into the
region x > 0, because viscous diffusion (really vorticity diffusion) has had
more time to establish itself through the body of the flow. In the absence
of external forces, any fluid element, no matter how distant from the plane,
would eventually come to rest, as the no-slip boundary condition is propa-
gated through the flow. Let us see how this works in detail.
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8.2 Boundary Layer Near a Semi-Infinite Plate

Consider steady flow in the semi-plane y > 0. At the origin, a surface at
y = 0, x ≥ 0 enforces no-slip boundary conditions in the flow immediately
adjacent to it. Before the flow encounters this surface, it moves with constant
vx = U and vy = 0, and there is no pressure gradient. What is the flow profile
in the region x ≥ 0?

The comments at the end of the last section suggest looking for a solution

in which the velocities depend upon the combination y/δ, where δ =
√

νx/U .
With the advantage of hindsight, it proves convenient to insert a factor of 2.
Define

η = y (U/2νx)1/2 . (584)

Then
∂

∂y
=
η

y

d

dη
,

∂

∂x
= − η

2x

d

dη
. (585)

We search for a solution of the form vx = UF (η). To satisfy the equation of
mass conservation, we introduce the stream function ψ:

vx =
∂ψ

∂y
, vy = −∂ψ

∂x
(586)

Integration of the first of these gives

ψ = (2νx/U)1/2
∫ η

0
UF dη (587)

where we have used the fact that ψ should be constant along the stream line
y = 0. (Remember that ψ is constant along streamlines!). Hence, we define

f(η) =
∫ η

0
F dη (588)

so that
ψ = (2Uνx)1/2f, vx = Uf ′ (589)

and

vy = −∂ψ
∂x

= (Uν/2x)1/2(ηf ′ − f) (590)

where f ′ denotes df/dη. The equation of motion (580) is then remarkably
concise:

f ′′′ + ff ′′ = 0 (591)

The boundary conditions are

f(0) = f ′(0) = 0, (592)
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since vx and vy must vanish at y = 0, and

f ′(∞) = 1, (593)

since the flow approaches vx = U at large y outside the boundary layer.

The boundary conditions at η = 0 suggest that f ≃ Aη2 near the origin,
with A to be determined. Then,

f ′′′ = −2A2η2, (594)

which would give the next term in the Taylor series as −A2η5/24. Evidently,
f is very nearly quadratic near the surface. A numerical solution that satisfies
the boundary condition at ∞ gives A = 0.2348.

The solutions near the η = 0 take the form

vx = Uf ′ = 2UAη, vy = (Uν/2x)1/2(ηf ′ − f) = (Uν/2x)1/2(Aη2) (595)

A quantity of interest is the viscous stress

ρν

2

∂vx

∂y
= ρνUA

(

U

2νx

)1/2

, (596)

the term ∂vy/∂x being negligible by comparison. (This is in accord with
the boundary layer approximations.) This is the x component of the force
imparted to the plate per unit surface area (with normal in the y direction)
by the flow. Let us assume that this formula, which is derived for a semi-
infinite half-plane, is true for a very large surface of extent L≫ (UL/2ν)1/2.
(Why? What does this mean?) Then the drag force per unit length is

2
∫ L

0
ρνUA

(

U

2νx

)1/2

dx = ρ2A(2U3Lν)1/2 (597)

where the initial factor of 2 comes from two sides of the plate. This can be
measured in the laboratory, and the agreement with theory is good. Note that
the drag force is proportional only to L1/2, not to L, because the velocity
gradients diminish at large distances along the surface, and that the drag
vanishes at large Reynolds numbers. In reality, it is found that the boundary
layer becomes turbulent beyond R ∼ 105 or so, and the drag force does not
vanish.
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8.3 Ekman Layers

When a rotating fluid is confined from above by fixed walls, the resulting
boundary layer, in which the rotation is brought to a halt, is known as an
Ekman layer. Unlike the flows we have been studying until now, an Ekman
layer can exert an influence throughout the entire flow even when it remains
firmly attached to the surface and nonturbulent. Let us see how this comes
about in a relatively simple example.

The Navier-Stokes equation in a frame rotating at angular rate Ω is

Dv

Dt
+ 2Ω × v = −∇H + ν∇2v (598)

where D/Dt is the Langrangian derivative, and H is a sort of generalized
enthalpy function:

dH =
dP

ρ
+ dΦ − d(RΩ2/2) (599)

where Φ represents external potential forces (e.g., gravity), and the final
term is the centrifugal force. We shall assume throughout our discussion of
Ekman layers that the flow is dominated by rotation, i.e., v ≪ RΩ. Hence
we ignore the inertial term (v·∇)v compared with the Coriolis force 2Ω × v.
For steady, inviscid flow, conditions for the Taylor-Proudman theorem hold,
and the flow velocity v will be independent of z.

Consider the problem in which a rotating fluid has boundaries at z = 0
and z = L that are rotating at angular velocities Ω and Ω(1+ ǫ) respectively.
These boundary conditions are not consistent with the Taylor-Proudman
theorem, since the rotation rate changes with height, and we expect boundary
layers to form at one, or possibly both ends. (See figure [17].)

Away from the boundary layers, the inviscid equations are valid. We
denote these quantities with the subscript I. In Cartesian coordinates,

−2ΩvIy = −∂H
∂x

(600)

2ΩvIx = −∂H
∂y

(601)

while in cylindrical coordinates,

−2ΩvIφ = −∂H
∂R

(602)

2RΩvIR = −∂H
∂φ

= 0 (603)
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Ekman

Ekman

Ω

Ω(1+ε)

Inviscid

Figure 17: A schematic diagram of the secondary flow induced by Ekman
layers. The flow is nearly horizontal in the boundary layers, and nearly
vertical in the inviscid interior. The flow moves toward the center at the
bottom, where its rotation is slowed, and toward the exterior at the top,
where the rotation is increased.

(The last equation holds since the flow is axisymmetric.) Hence, the interior
flow depends only upon R, has no radial component, and as we shall see, is
determined entirely by matching to the boundary layers above and below.

Within the very narrow boundary layers, the equations of motion in
Cartesian coordinates are

−2Ωvy = −∂H
∂x

+ ν
∂2vx

∂z2
(604)

2Ωvx = −∂H
∂y

+ ν
∂2vy

∂z2
(605)

0 = −∂H
∂z

+ ν
∂2vz

∂z2
(606)

∂vx

∂x
+
∂vy

∂y
+
∂vz

∂z
= 0 (607)

The final equation of mass conservation combined with the assumption that
the boundary layer is very narrow implies that vz is much smaller than vx

or vy, by a factor of order δ/L where δ is the boundary layer thickness and
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L is a horizontal scale. The first three equations of motion then lead to the
conclusion that H depends much more strongly upon x and y than upon
z, and its vertical gradients may be ignored. If H does not depend upon
z, its horizontal gradients are determined in the boundary layer by their
value in the inviscid flow, equations (600) and (601). Therefore, the first two
boundary layer equations of motion may be written

−2Ω(vy − vIy) = ν
∂2vx

∂z2
(608)

2Ω(vx − vIx) = ν
∂2vy

∂z2
(609)

A nice trick is to combine these two equations into a single complex-valued
differential equation:

ν
∂2(vx + ivy)

∂z2
= 2Ωi[(vx − vIx) + i(vy − vIy)] (610)

Since the vI do not depend upon z, this is simply

ν
∂2f

∂z2
= 2Ωif (611)

where
f = (vx − vIx) + i(vy − vIy) (612)

This has the solution

f = A(x, y) exp[(Ω/ν)1/2z(1 + i)] +B(x, y) exp[−(Ω/ν)1/2z(1 + i)] (613)

where A and B are functions of x and y. We introduce the scaled z variable

Z = z(Ω/ν)1/2 (614)

The thickness of the boundary layer is thus of order (ν/Ω)1/2.

Consider first the boundary condition at z = Z = 0. We shall assume
that the surface rotates at a rate Ω0 relative to the frame rotating at Ω. We
will later set this equal to zero, but let us keep it general for the moment.
Since the function f must vanish as Z → ∞, A = 0. The function B is then
determined by the Z = 0 boundary condition of solid body rotation

f = B(x, y) = (−yΩ0 − vIx) + i(xΩ0 − vIy) (615)

This implies

(vx − vIx) + i(vy − vIy) = e−Z(1+i) [(−yΩ0 − vIx) + i(xΩ0 − vIy)] (616)
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If we sort this equation into its real and imaginary parts, we obtain

vx = vIx + e−Z [(xΩ0 − vIy) sinZ − (yΩ0 + vIx) cosZ] (617)

vy = vIy + e−Z [(yΩ0 + vIx) sinZ + (xΩ0 − vIy) cosZ] (618)

The vertical velocity is obtained from

−∂vz

∂z
≡ −

(

Ω

ν

)1/2 ∂vz

∂Z
=

(

∂vx

∂x
+
∂vy

∂y

)

(619)

Since (∂vIx/∂x) + (∂vIy/∂y) = 0 (why?), we find

∂vx

∂x
+
∂vy

∂y
= e−Z sinZ

(

2Ω0 +
∂vIx

∂y
− ∂vIy

∂x

)

= e−Z sinZ(2Ω0 − ωI) (620)

where ωI is the vorticity of the inviscid flow. The vertical velocity vz at the
outer edge of the Ekman layer is then

−
(

Ω

ν

)1/2

vz(out) = (2Ω0 − ωI)
∫

∞

0
e−Z sinZ dZ (621)

or,

vz(out) =
(

ν

Ω

)1/2 (ωI

2
− Ω0

)

(622)

At the top Ekman layer, we do exactly the same calculation (with Ω = ΩL,
say). Now it is the B function that must be zero in equation (613), since Z
is decreasing as we move from the boundary layer into the inviscid zone. We
find exactly the same result (do it!), except for a minus sign:

vz(out) =
(

ν

Ω

)1/2 (

ΩL − ωI

2

)

(623)

We have used the same notation for vz(out) in the last two equations, because
they must in fact be the same! The vertical velocity in the inviscid zone must
join smoothly to the Ekman layers; it cannot be a function of z. With Ω0 = 0,
and ΩL = ǫΩ,

ǫΩ − ωI

2
=
ωI

2
→ ωI = ǫΩ, and vz(out) =

(

ν

Ω

)1/2 ǫΩ

2
. (624)

Knowing the vorticity ωI of the inviscid zone, it is a simple matter to find
the angular velocity vIφ. It cannot depend upon z or φ, hence

ωI ≡
1

R

d(RvIφ)

dR
= ǫΩ, (625)
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and
vIφ =

ǫ

2
RΩ (626)

is the nonsingular solution.

To summarize: in a steady rotating flow in which end caps at z = 0
and z = L rotate respectively at Ω and Ω(1 + ǫ)Ω, there is a nearly inviscid
interior solution rotating at the average angular velocity of the two endcaps,
and two Ekman layers at either end. Within the Ekman layers the flow is
primarily in the horizontal plane, and satisfies no-slip boundary conditions.
Emerging from the layers, there is a small (order δ/R) vertical flow from
bottom to top that slowly mixes the upper and lower ends.

Exercise. Where have we used the fact that ǫ is small?

Exercise. Show that within the lower Ekman layer, the radial and azimuthal
velocities are

vR = − ǫ

2
RΩe−Z sinZ (627)

vφ =
ǫ

2
RΩ(1 − e−Z cosZ) (628)

Notice that vR is directed inwards near the Z = 0 boundary: the decrease
in the angular velocity near the inner no-slip boundary drains the rotating
fluid of angular momentum, which then slowly drifts inwards. (Remember
this as you read the next section.)

8.4 Why does a teacup slow down after it is stirred?

You’ve been working hard reading these notes, so make yourself a cup of tea
and come right back.

Good, now that you’ve got a cup of tea in your hands, we can do some
more fluid mechanics. Stir your tea, and notice how long it continues to
rotate after you stop. It should be several seconds. Now, the kinematic
viscosity of water is 0.01 cm2 s−1. If viscous diffusion were the sole reason
that your tea slowed down, the associated time scale would be τ ∼ R2/ν.
With R = 2 cm, this is a slow down time of 400 seconds, or almost 7 minutes!
This estimate is off by two orders of magnitude from the experimental result.
Clearly, something else is going on here.

Here is a clue. Look at the bottom of your teacup. If you are using loose
tea, you’ll notice that the tea leaves have been pushed to the center. That
is the key to the solution!
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You may be feeling a bit like Dr. Watson after Sherlock Holmes announces
that all is clear. It is time to do an analysis.

8.4.1 Slow down time for rotating flow.

Consider a flow rotating with angular velocity Ω(1 + ǫ) in the presence of
two endcaps at z = ±L/2, each rotating at the same angular velocity Ω. We
wish to study the induced flows and to calculate how long it takes for the
flow to come to rest relative to the endcaps.

Very quickly, two time-steady Ekman layers will establish themselves at
z = ±L/2. This happens on a diffusion time scale across the narrow bound-
ary layer itself, and this time scale is just 1/Ω. The bulk of the interior will
continue, for the time being, to rotate at Ω(1 + ǫ). Both of the endcaps are
now rotating more slowly than the fluid, and the results of the last section
show that there will be a vertical velocity of

|vz| =
(

ν

Ω

)1/2 (ωI

2

)

(629)

emerging from each boundary layer. Here, as before, ωI is the inviscid vortic-
ity. Because the flow is now time-dependent, the Taylor-Proudman theorem
now longer holds, and vz may depend upon z, even in the inviscid interior.
Indeed, it must, since vz changes sign from one endcap to the other!

The equations of motion in the frame rotating at Ω of the inviscid interior
are

∂vR

∂t
− 2Ωvφ = −∂H

∂R
(630)

∂vφ

∂t
+ 2ΩvR = 0 (631)

1

R

∂(RvR)

∂R
+
∂vz

∂z
= 0. (632)

Notice that we use cylindrical coordinates. (To keep the notation simple, we
drop the subscript I on the velocities, but will retain it on ωI .) Multiplying
the azimuthal equation of motion by R and differentiating ∂/∂R gives

∂

∂t

(

∂(Rvφ)

∂R

)

= −2Ω
∂(RvR)

∂R
= 2RΩ

∂vz

∂z
(633)

where the last equality follows from mass conservation. This equation is
equivalent to

1

R

∂

∂t

(

∂(Rvφ)

∂R

)

≡ ∂ωI

∂t
= 2Ω

∂vz

∂z
(634)
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Now, since the vertical velocity vz is very small and by assumption Ωτ ≫ 1,
vertical hydrostatic equilibrium (∂H/∂z ≪ ∂H/∂R) is an excellent approxi-
mation. Therefore, we seek solutions in which neither vR nor vφ depend upon
z. If we now integrate from z = −L/2 to z = +L/2, we obtain

L
∂ωI

∂t
= 2Ω[vz(L/2) − vz(−L/2)] = −2(νΩ)1/2ωI (635)

With the initial condition of solid body rotation (at a rate of ǫΩ in the
rotating frame), this equation has the simple solution

ωI = 2ǫΩe−t/τ (636)

where the spin down time τ is

τ =
L

2(νΩ)1/2
(637)

This is clearly the time scale that is relevant for out tea cup problem, though
a tea cup has sides, but no top. Notice that τ is the geometric mean of the
viscous time L2/ν, and the rotation time, 1/Ω. With L = 2 cm, Ω = 2π, we
obtain τ = 4 s, which is a much better agreement with reality. Notice that
it is the vertical height L that enters, even if the radius is infinite!

But we still don’t really understand the physical process. Why is it so
much faster than viscous dissipation? And what about the tea leaves?

Let us look at the induced radial and azimuthal flow components. Since

ωI =
1

R

∂(Rvφ)

∂R
= 2ǫΩe−t/τ (638)

we find immediately that
vφ = RǫΩe−t/τ , (639)

the solution that is finite at R = 0. This shows the decay of the dominant
rotation velocity in excess of Ω. The azimuthal equation equation of motion
immediately gives the radial velocity component,

vR = − 1

2Ω

∂vφ

∂t
= ǫ(νΩ)1/2(R/L)e−t/τ , (640)

while vz follows immediately from integration of the mass conservation equa-
tion (632):

vz = −2ǫ(νΩ)1/2(z/L)e−t/τ , (641)

161



Note that vz depends upon z (and agrees with equation [629]), while vR and
vφ depend only upon R and t.

We may now put together the whole picture. In the Ekman layer the
radial velocity drifts inward (bringing the tea leaves along!), while the fluid
is losing angular momentum to the sides of the cup. There is a tiny but
macroscopic boundary layer of thickness (ν/Ω)1/2 ∼ 0.04 cm at the bottom
of the cup. Outside this boundary layer, the radial velocity is outward, and
since this flow is inviscid, vorticity conservation lowers the angular velocity
of a given fluid element. The fluid element eventually reaches the sides of
the cup (at “infinity” in this calculation), moves downward, and then back
along the bottom toward the center. In this return process, its vorticity
is not conserved because of viscous effects. Expansion of the vortex in the
inviscid interior is the slow-down mechanism in the bulk of the flow, and is
the dynamical behavior that leads to the damping time τ in the equations.
Notice how both dissipation (the presence of vz) and vorticity conservation
(outward vR) play critical roles, which is why in the expression for τ they
appear in a geometric mean.

What a marvelous, surprisingly rich problem this has been! It is well-
posed, simple to describe, but remarkably subtle and requiring ingenuity to
solve. It is a good example of why many people are fascinated by fluids.

9 Instability

9.1 Introduction

Take a glass of water, and fill it to the edge, perhaps even slightly over the
edge (surface tension will help). Now take a piece of cardboard, a little
larger than the area of the circular opening, and cover the glass. Keeping
the cardboard firmly pressed against the glass, turn the glass over and slowly
relax the tension you have been placing on the cardboard. You should find
that the water in the glass happily remains inside, even without pressure on
the cardboard cover. (By the way, do this over a sink.)

Why does the water remain in the glass? Well, why shouldn’t it remain
in the glass? After all, the atmosphere exerts a pressure on the water which
is more than sufficient to prevent it from falling out. But fall out is just what
the water does, if we so much as tap the cardboard even very lightly.

The piece of cardboard seems to be key this process. In fact, if we tried
to do this without it, no matter how careful we were, we could not prevent
the water from emptying out of the glass. This is not because the force of
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gravity is unbalanced when the glass in upside down, it is because we are
trying to support a dense fluid (the water) by one that is considerably less
dense (the air). This is an unstable configuration. The smallest perturbation
to the water surface becomes exponentially magnified with time, and a new
equilibrium is then produced: water on the floor, an equilibrium solution no
doubt well-known to the reader.

This process is an example of a fluid instability. Even an exact solution
to the equations of motion may never be realized in nature. The solution
must also be stable in the sense that small disturbances to the fluid remain
small. The instability that we have been discussing, in which a light fluid
supports a heavier one, is called the Rayleigh-Taylor instability. It is one of
several classical fluid instabilities that have important applications and have
been intensively studied in the laboratory and in numerical simulations. In
astrophysics, the shock wave produced by a supernova can be decelerated
by a much more rarified gas in the interstellar medium. The deceleration is
equivalent to a gravitational field pointing from the denser to the less dense
gas. This leads to a Rayleigh-Taylor instability, and the shock wave loses its
coherence and can become turbulent.

9.2 Rayleigh-Taylor Instability

Consider a fluid of density ρ2 on top of a fluid of density ρ1. There is a
gravitational field g present pointing downward from region 2 to region 1.
At the interface z = 0 between the two regions, the surface is rippled with a
vertical displacement ξ satisfying

ξ ∝ exp(ikx) (642)

where k is a real constant. What is the subsequent development of the
interface?

This problem is very analogous to the problem of surface water waves,
and in fact, the basic equations applied separately in fluid 1 and fluid 2 are
identical to the water wave problem. Only the surface interface boundary
condition differs.

Let us assume a time dependence exp(−iωt) in all variables. The x de-
pendence will follow that of the interface, exp(ikx), and from section (4.2)
we know that the z dependence will be of the form exp(−|kz|) where the sign
is determined by demanding regular behavior at large |z|.

The equations of motion in each of the fluids are

−iωδvx = −ik δP
ρ

(643)
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−iωδvz = −1

ρ

∂(δP )

∂z
(644)

The boundary conditions at large |z| imply that the fluid variables have
a dependence of exp(|k|z) for the bottom fluid (1), and a dependence of
exp(−|k|z) for the top fluid (2). The equations of motion then assure us that
∇·δv = 0.

At the interface we have two boundary conditions. First, the fluid dis-
placements (and in this case, the velocities) must be continuous at z = 0.
Second, the force exerted on fluid 1 by fluid 2 must be equal to the force
exerted by fluid 1 on fluid 2. In the absence of surface tension, this means
that the pressures of the displaced fluid elements must be the same; the pres-
ence of surface tensions adds a restoring force of the form −T∂2ξ/∂x2. (See
section 4.21 on capillary waves.) The force equation at the interface is then

∆P1 = ∆P2 − T
∂2ξ

∂x2
(645)

where the Lagrangian perturbation ∆P is defined by

∆P = δP + ξ
∂P

∂z
(646)

(Can you give a physical argument why we need to use the Lagrangian
perturbation and not the Eulerian?) Since the perturbed vertical velocity
δvz = −iωξ is continuous at z = 0, the z equations of motion for regions 1
and 2 state that

−iωδvz = −|k|
ρ1

δP1 (647)

−iωδvz =
|k|
ρ2

δP2 (648)

The equilibrium pressure gradient is

∂Pi/∂z = −ρig,

where i refers to either 1 or 2. (The equilibrium pressure at the interface is
continuous at the interface, though its gradient is not.) Putting everything
together, equation (645) becomes

iω

|k| ρ1 δvz − i
δvz

ω
ρ1g = − iω

|k| ρ2 δvz − i
δvz

ω
ρ2g + Tk2 iδvz

ω
(649)

which leads to
ω2(ρ1 + ρ2) = g|k|(ρ1 − ρ2) + T |k|k2 (650)
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This is our dispersion relation. When ρ1 > ρ2, these disturbances propagate
as waves. (These low frequency waves can be excited by slow-moving boats
coming into a port, when a nearby river produces less dense fresh water lying
on top of denser salt water. The waves are an important source of energy
loss for the boat.) But if ρ1 < ρ2, wavenumbers less than

k2
crit = (ρ2 − ρ1)g/T (651)

produce a negative ω2. This means exponential behavior in time, and small
disturbances grow explosively. This is the classic behavior of a fluid instabil-
ity: small departures from equilibrium grow exponentially.

The underlying cause of the Rayleigh-Instability is that a heavy fluid
lying on top of a less dense fluid is energetically unfavorable. The same
system with the heavy fluid on the bottom is a state of lower (potential)
energy. If a path to the lower state is opened, the system will exploit it. In
our example the ripples between the two fluids create such a path, and they
grow into long fingers of upwelling low density fluid and downwelling high
density fluid, allowing the system to reach an equilibrium of lower energy.

9.3 The Kelvin-Helmholtz Instability

9.3.1 Simple homogeneous fluid.

Consider a fluid which is at rest in the half space z < 0, and moves with
a velocity U in the +x direction for z > 0. This is certainly a possible
equilibrium state, but it is, in fact, unstable.

Denote the fluid at rest by subscript 1, and the fluid in motion by sub-
script 2. The density ρ is constant. The interface between fluids 1 and 2 is
rippled with an assumed space-time dependence of exp(ikx − iωt). In fluid
1, the equation of motion is

−iωδv1 = −1

ρ
∇δP1 (652)

while in fluid 2 it is

−i(ω − kU)δv2 = −1

ρ
∇δP2 (653)

With ∇·δv = 0, we see that δP in both fluids satisfies ∇2δP = 0, so that
the z dependence of all variables is exp(−|kz|), as before. In particular, the
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z equations of motion are

−iωδvz1 = −|k|
ρ
δP1 (654)

−i(ω − kU)δvz2 =
|k|
ρ
δP2 (655)

The displacement of the interface ξ must obviously be the same viewed from
region 1 or 2, but not so the perturbed velocities δvz. Indeed, in region 1,

δvz1 = ∆vz1 =
Dξ

Dt
= −iωξ (656)

where the equality between Lagrangian and Eulerian perturbations follows
because there are no velocity gradients in the background flow. In region 2,
on the other hand,

δvz2 =
Dξ

Dt
= −i(ω − kU)ξ (657)

which is δvz1 + ikUξ!

The condition of pressure balance in this case is entirely Eulerian

δP1 = δP2, (658)

since there are no pressure gradients in the unperturbed equilibrium. Com-
bining the last four equations gives a very unusual dispersion relation:

ω2 + (ω − kU)2 = 0. (659)

Obviously this cannot be satisfied by any real value of ω! The solution is

2ω = kU(1 ± i) (660)

and there is always an exponentially growing branch for any finite U .

This is the Kelvin-Helmholtz instability in its simplest form: two fluids
in relative shear motion tend to be unstable. The source of free energy is
obviously the shear itself. But what is the actual mechanism, why should
shear be unstable? The answer can be found by a Bernoulli argument. An
upward directed distortion of the interface into the upper region 2 causes
a slight constriction for the x directed velocity. The fluid moves a little
faster, to conserve mass. When it moves a little faster, the pressure drops,
in accordance with Bernoulli’s law. In region 1 underneath, however, the
distortion causes a dilation in the flow, and the flow slows down. Thus the
pressure rises from below, and as we have just argued, drops from above.
The upward displacement is driven yet farther upward, and an instability
ensues.
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9.3.2 Effects of gravity and surface tension

If both density stratification and surface tension are present, the Kelvin-
Helmoltz instability can be suppressed. Short wavelengths are stabilized by
surface tension, long wavelengths by rapidly propagating gravity waves. At
sufficiently small velocities U , there are no wavelengths in between these
limits that are unstable. Let us examine this problem in detail.

The system is a combination of the Rayleigh-Taylor and simple Kelvin-
Helmholtz problems. There are two fluids as usual, number 1 below and
number 2 above. Fluid 1 is at rest, fluid 2 moves at velocity U in the x
direction, relative to it. As in the Rayleigh-Taylor problem, there are two
densities: ρ1 below and ρ2 above. Here, we shall assume ρ1 > ρ2.

The space-time dependence of all fluid quantities is as in our previous
two problems:

δX ∝ exp[i(kx− ωt) − |kz|] (661)

The vertical equations of motion is each fluid are

−iωδvz1 = −|k|
ρ1
δP1 (662)

−i(ω − kU)δvz2 = −|k|
ρ2

δP2 (663)

The relationships between the δvz’s and ξ is given by equations (656) and
(657) above. Hence

δP1 =
ρ1ω

2

|k| ξ, δP2 = −(ω − kU)2 ρ2

|k|ξ (664)

Finally, the condition of pressure continuity is exactly that of the Raleigh-
Taylor problem, equation (645). Using this equation just as in RT problem,
but with the above values of δP1 and δP2, we obtain the dispersion relation

ω2(ρ1 + ρ2) − 2ωρkU + ρ2k
2U2 − |k|[g(ρ1 − ρ2) + k2T ] = 0 (665)

a combination of the Rayleigh-Taylor and simple Kelvin-Helmholtz formulae.
We leave it as an exercise for the reader to show that this quadractic equation
for ω has no instabilities if

ρ1ρ2U
2

2(ρ1 + ρ2)
<
√

gT (ρ1 − ρ2) (666)
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Both gravity and surface tension are required for stabilization, as noted in
the opening paragraph of this section. Even then, if the densities are close
in value, the relative velocity is constrained very closely.

This behavior, in which both very long and very short wavelengths are
stabilized, and instability is present only if there is a midrange of wavelengths
that remains unstable, appears in a number of different problems. A clas-
sic example from astrophysics is gravitational instability in a rotating disk.
Here, long wavelengths are stabilized by Coriolis forces (i.e., rotation), small
wavelengths by pressure, and the disk is unstable if self-gravity is stronger
than a sort of geometrical mean of the Coriolis and pressure forces. (See the
text of Binney and Tremaine, Galactic Dynamics, for a detailed discussion.)

9.4 Stability of Continuous Shear Flow

The discussion of the Kelvin-Hemlholtz instability focused on a flow with
a discontinuity in the velocity shear profile. The question naturally arises
of whether instability occurs when the velocity changes continuously. Lord
Rayleigh showed that for an inviscid flow, there is a very simple necessary,
though not sufficient, condition: the velocity profile must contain an point
of inflection at which its second derivative vanishes. This is known as the
Rayleigh inflection point criterion. The argument is extremely clever.

9.4.1 Analysis of inflection point criterion

Consider a constant density velocity flow in the xy plane,

vx = V (y)ex (667)

We consider the behavior of small perturbations to this flow which depend
upon x and t as exp[i(kx − ωt)], with an amplitude that depends upon y.
The linearized equations of motion are (′ ≡ d/dy):

ikδvx + δv′y = 0 (668)

−i(ω − kV )δvx + δvyV
′ = −ikδP/ρ (669)

−i(ω − kV )δvy = −δP ′/ρ (670)

These three equations can be reduced to a single equation for δvy:

δv′′y + δvy

(

−k2 +
kV ′′

ω − kV

)

= 0 (671)
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Rayleigh’s argument now proceeds as follows. Multiply the above differ-
ential equation by the complex conjugate δv∗y, and integrate between upper
and lower boundaries ±L. Note that

∫ L

−L
δv∗y δv

′′

y dy =
[

δv∗y δv
′

y

]L

−L
−
∫ L

−L
|δv′y|2 dy (672)

If either δvy or its derivative vanishes at the boundaries, or if the boundary
conditions are periodic, the integrated part vanishes. Under any of these
conditions, the result of transforming the differential equation is

−
∫ L

−L
|δv′y|2 dy +

∫ L

−L

(

−k2 +
kV ′′

ω − kV

)

|δv2
y| dy = 0. (673)

If there is an instability present, then ω must have an imaginary part, ωI .
Writing ω = ωR + iωI , the imaginary part of this equation is

ωIk
∫ L

−L

( |δv2
y|V ′′

|ω − kV |2
)

dy = 0. (674)

A necessary condition for this equation to be satisfied is that V ′′ must be
positive over part of the range of integration, and negative over other parts.
In other words, it must pass through zero. The flow must have a point of
inflection at which V ′′ = 0.

9.4.2 Viscous Theory

Viscous theory is considerably more complex, and we shall present only
a summary of the results. The definitive numerical treatment of planar
Poiseuille flow (viscous flow between plates at z = ±L, vx ∝ (L2 − z2))
was accomplished in 1971. Instability is present only at Reynolds numbers
Re > 5772. Note that there is no difficulty in duplicating the viscous ve-
locity profile in the inviscid limit, since the inviscid shear profile vx(y) is
completely unconstrained by the Euler equations of motion. Perturbations
to the velocity, on the other hand, vanish at the boundaries for viscous flow
but not for inviscid flow. In this sense there is not strict continuity between
the two problems.

The role of viscosity is stabilizing both when the viscosity is large and
when the viscosity is small; at intermediate values it destabilizes. The small
Re limit is readily understood since the viscosity is strongly dissipative when
it is large. High Re tends to be stabilizing because the inviscid flow is stable
by the Rayleigh inflection point theorem. As seen in figure (18), however,
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Figure 18: The shaded region is the zone of instability in the wavenumber–
Reynolds number plane for classical Poiseuille flow. In the inviscid limit,
this flow profile would be stable. Viscous flow theory always gives a zone of
instability for any Reynolds number, though the width of the band goes to
zero.

high Re is never completely stabilizing: there are always unstable wavenum-
bers for any Re, but a smaller and smaller range as Re → ∞. You can see
how delicate the question of stability is for this problem! Viscosity is at once
a stabilizing and destabilizing agent. By way of contrast, unstable flows with
inflection points offer no such subtlety. At large Re there is an extensive
range of wavenumbers that are always unstable.

9.5 Entropy and Angular Momentum Stratification

We end our very brief introduction to the vast topic of fluid stability by
mentioning two additional classical instabilities. These are convective and
rotational instability.
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9.5.1 Convective instability

Convective instability has already been presented in our discussion of internal
waves. These are waves that propagate in a medium that is stratified in the
vertical z direction by an entropy gradient. We found that such waves obeyed
the dispersion relation

ω2 =
k2

x

k2
N2 (675)

where kx is a wavenumber in the horizontal direction, k2 = k2
x + k2

z , and

N2 = − 1

γρ

dP

dz

d lnPρ−γ

dz
(676)

This may also be written in the form

N2 = −gd lnρ

dz
− g2

a2
(677)

where a2 is the adiabatic sound speed. In this form, the equation holds for
both ideal gases as well as liquids. If

−d ln ρ

dz
<
g2

a2
(678)

then N2 < 0, and small disturbances grow exponentially. Low density regions
of the fluid are convected upward, high density regions downward. This
generally corresponds to a net upward transport of heat. In the laboratory,
heating a fluid from below lowers the magnitude of the density gradient, and
induces this convective instability. It is generally necessary to include the
effects of viscosity and thermal conduction in laboratory studies. The full
problem is known as the Rayleigh-Bénard problem.

9.5.2 Rotational Instability

Consider a fluid in rotation about the z axis. The radial and azimuthal
equations of motion for a constant density fluid are

∂vR

∂t
+ (v·∇)vR − v2

φ

R
= −1

ρ

∂P

∂R
− ∂Φ

∂R
(679)

∂vφ

∂t
+ (v·∇)vφ +

vφvR

R
= − 1

Rρ

∂P

∂φ
− ∂Φ

R∂φ
(680)
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where we have allowed for the possibility of a central potential Φ. We consider
motions in the Rφ plane and small disturbances of the form exp(ikz − iωt).
The linearized perturbation equations are

−iωδvR − 2Ωδvφ = 0 (681)

−iωδvφ +
κ2

2Ω
δvR = 0 (682)

where Ω = vφ/R and

κ2 = 4Ω2 +
dΩ2

d lnR
=

1

R3

d(R4Ω2)

dR
. (683)

κ is known as the epicyclic frequency in astrophysics, and κ2 as Rayleigh’s
discriminant in the fluid community.

Once again, we look for solutions of the form exp(iωt). Such solutions
exist, provided that

ω2 = κ2 (684)

Solutions are stable if κ2 > 0, and unstable otherwise. In other words, a ro-
tating fluid is stable to axisymmetric disturbances if the angular momentum
per unit mass R2Ω increases outward. This is known as the Rayleigh crite-
rion. If we allow for more general axisymmetric wavenumbers k = (kR, kz),
it is not difficult to show that the dispersion relation is

ω2 =
k2

z

k2
κ2 (685)

These disturbances propagate with a finite group velocity, and are known as
inertial waves when κ2 > 0.

Nonaxisymmetric disturbances are considerably more difficult to analyze
(because of the presence of shear), and to this day a general stability criterion
valid for both axisymmetric and nonaxisymmetric disturbances is still not
known. It appears however, that the Rayleigh criterion is a good rule of
thumb, except when the shear dΩ/d lnR is larger than the Coriolis force 2Ω.
Then the flow is prone to Kelvin-Helmholtz instabilities, because the Coriolis
stabilization is too weak to compete with the destabilizing shear. Finally, a
finite viscosity tends to stabilize the flow as well, and it is a classic and
complex problem to determine the stability criterion that was first solved by
G. I. Taylor in 1923. It is accordingly known as the Taylor problem.

In the laboratory, rotational stability is studied in what are known as
Couette cylinders. An inner cylinder and an outer cylindrical shell enclose a
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viscous liquid. By adjusting the rotation rates of the inner and outer cylin-
ders, different interior flow profiles may be set up [see equations (491) and
(492)]. Taylor not only derived the viscous stability criterion, but performed
the difficult and painstaking experiment needed to confirm his result.

The parameter space for this problem is the plane defined by two axes:
the Reynolds number for each of the cylinders, R2Ω/ν, where R and Ω are the
radius and rotation rate for each cylinder. (A recent experiment at Princeton
University by Hantao Ji and his collaborators has achieved Reynolds numbers
in excess of 106.) When the flow is unstable, an enormous variety of different
types of different turbulent flows are seen in different regions of the parameter
space, including one regime in which stable and turbulent flow are entwined
with one another!

This completes our very brief introduction to the topic of fluid insta-
bilities. We turn next to the study of turbulent flow, which is the general
nonlinear outcome of the linear instabilities we have analyzed.

10 Turbulence

When the fluid instabilities of the previous section are allowed to develop fully
into the nonlinear regime, the flow is characterised by extremely irregular
spatial and temporal behavior. Often there is structure seen on all possible
length and time scales, from global to microscopic. This is what is generally
meant by turbulence. A more precise definition is not possible, because the
phenomenon is too complex.

There is no theory of turbulence which is at a level, say, comparable to
that of statistical mechanics. It is possible to be quite precise in calculating
mean values of molecules and their statistical fluctuations in a gas in thermal
equilibrium. It is not possible, however, to predict a priori what the mean
RMS values of the velocity fluctuations will be in a turbulent flow, or how two
components of the velocity fluctuations will be correlated with one another,
or what the thermal energy transport will be due to the correlation between
velocity and temperature fluctuations, or what the turbulent drag force on a
moving body will be. For both enormously practical and purely intellectual
reasons, we would love to be able to do this. It has been remarked that
turbulence is a grand problem on the frontier of physics whose solution would
have a tangible impact on our daily lives.

We are not wholly ignorant of all aspects of turbulence. The foundations
of classical turbulence theory were established in the 1930’s and 1940’s by the
Russian school of theoretical physics. Many important and semi-quantitative
results were obtained by simple but very ingenious reasoning. We will discuss
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some of these in the next section.

A radical shift in perspective occurred in the 1960’s and 1970’s. An influ-
ential work in 1963 by Lorenz showed that even simple systems of coupled dif-
ferential equations display what we would now call chaos. Two well-behaved
nonsingular solutions, separated by an infintesimal difference in their initial
conditions, were found to completely diverge from one another after a rel-
atively short time. This has very important implications in its own right
(making, for example, long range weather forecasting impossible), but it also
seemed to capture the essence of turbulence in a tractable mathematical set-
ting. There was great excitement that real progress could be made. This
excitement was heightened when experiments (including a real beauty by
Libchaber here at the ENS) showed that crucial features of the mathemat-
ics, previously unobserved, were in fact seen directly in nature.

The intervening decades have not, alas, handed over the secrets of tur-
bulence. Rather, they have taught us the right questions to ask, which is no
small present. We now know that the problem is even more complex than
imagined in the early days, and almost certainly no universal theory will be
possible. But new mathematics, new physics, and a far deeper understand-
ing of how the world works have all emerged from the efforts. Even if the
problem is never fully solved, the struggle to understand the properties of
turbulent flows will continue to be an enormously productive endeavor.

10.1 Classical Turbulence Theory

According to the Russian school, the onset of turbulence generally begins
when the Reynolds R number exceeds some critical value. Large scale
“eddies”—regions over which the velocity varies appreciably—appear first.
At larger values of R, eddies appear on smaller and smaller scales, and even-
tually they are present on all scales. The nonlinear interaction between two
eddies produces structure on smaller scales, in much the same way that

cos(k1x) cos(k2x) =
1

2
[cos(k1x+ k2x) + cos(k1x− k2x)] (686)

produces structure at the wavenumber k1 + k2 from structure at the smaller
scales k1 and k2. (We take the wavenumbers to be positive.)

At the smallest scales at which eddies are present, λ0, viscosity is impor-
tant and the kinetic energy of the fluid turbulence is thermalized. This loss
of mechanical energy at small scales must be replaced from sources at larger
scales, which is just the role of the free energy source driving the instabil-
ity (velocity shear, thermal gradients, etc.). We thus arrive at a picture of
an energy cascade: power is injected at large scales, nonlinear interactions
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bring energy to progressively smaller scales, and finally viscous dissipation
thermalizes the energy at the smallest scales.

Turbulence is a highly dissipative process. The key idea of the Russian
school is that a single quantity ǫ, the energy dissipated per unit time per
unit mass of fluid, is the sole external physical parameter that determines
the cascade of energy. It has dimensions of length2 divided by time3. A great
deal may be deduced just by dimensional analysis alone.

10.1.1 Homogeneous, isotropic turbulence

On length scales well below the global scale of the problem, but well above
the dissipation scale, we expect the properties of the turbulence to be homo-
geneous and isotropic. If one looks at velocity variations over a scale λ, how
does this velocity vλ depend upon λ? There is only one velocity that may be
formed from ǫ and λ,

vλ ∼ (ǫλ)1/3 (687)

What does this really tell us? We interpret this equation as follows. Pick
a point in the fluid. Measure the velocity, v1. At the same time, measure
the velocity v2 a distance λ away. Calculate the mean squared difference
(v1 − v2)

2, and do this many, many times. That average variation calculated
this way will be proportional to λ2/3.

Similarly, if we follow a fluid element through its turbulent course over
a time scale t, how large a velocity fluctuation are we likely to encounter?
Once again, dimensional analysis suggests that only ǫ and t determine this
velocity, hence

vt ∼ (ǫt)1/2 (688)

The time variations experienced by a fluid element are proportional to the
square root of time.

Be careful, however. If we fix our gaze at a single location of the fluid and
ask how the mean velocity fluctuation behaves with time, we get a different
result! How can that be? Dimensional analysis is supposed to provide a
unique answer. The resolution of this apparent paradox is that at a fixed
location, we are sensitive to the large scale velocity of the largest eddies
(circulation patterns), ∆u, which is another dimensional parameter. In time
t, the fluid element passing in front of our eyes would have come from a
distance λ = (∆u)t, and our result for vλ then applies:

vt(fixed location) = vλ(t) = (ǫ∆u t)1/3 (689)

Notice that since we are concerned with very small times, this fixed location
fluctuation vt is larger than the intrinsic variation vt (eq. [688]) of the in-
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dividual fluid elements passing by the measurement device. Therefore the
fluctuations represented by equation (689) are more important than the time
fluctuations of a single fluid element. If the fluctuations of the individual
fluid element had been larger than those caused by the spatial variation rep-
resented in vλ, then the latter would have been unimportant, and our fixed
location and fixed fluid element results would have been the same: both
would be given by the fixed fluid element result. (You begin to get a sense
for the subtleties of describing turbulent quantities!)

The spatial variations represented in vλ imply that there is an associated
Fourier power spectrum, v2(k). The dimensions of v2(k) are velocity2 per
unit wavenumber, or length3 per time2. On scales well below global and well
above dissipative, the power spectrum can depend only upon ǫ and, of course,
k. (Only the magnitude of k enters, since we assume the flow is isotropic.)
Dimensional analysis then gives

v2(k) ∼ ǫ2/3k−5/3 (690)

This is the celebrated energy power spectrum for homogeneous isotropic tur-
bulence first derived by Kolmogorov in 1941. It has been seen in the labora-
tory, in numerical simulatons, and in nature. Notice that most of the power
in concentrated at the largest scales (small k).

It is useful to have temporal power spectra as well, especially for labora-
tory measurements. Once again, we have to be careful! The energy per mode
quite generally scales as (ǫ/k)2/3. The question is which frequency should be
associated with a given wavenumber k? This frequency can always be writ-
ten ω = kc, where c is some velocity. It is this velocity that differs between
Eulerian (spatially fixed) and Lagrangian (fluid element fixed) spectra. For
the Eulerian power spectrum, c is ∆u, as before, the dominant large scale
velocity drifting across our observation point. Hence the energy per mode
per unit frequency is

v2(ω) [Eulerian] ∼ (ǫ/k)2/3ω−1 ∼ (ǫ∆u)2/3ω−5/3. (691)

For the Lagrangian fluid element, only local quantites enter, which means
c ∼ (ǫ/k)1/3 and

ω ∼ k(ǫ/k)1/3 = ǫ1/3k2/3 (692)

In this case,
v2(ω) [Lagrangian] ∼ (ǫ/k)2/3ω−1 ∼ ǫω−2. (693)

In a typical laboratory arrangement, a very fine wire is inserted in the
flow, and velocity fluctuations of turbulent gas passing over the wire result
in cooling by the “wind”. This, in turn, induces fluctuations of the wire
temperature. The ohmic resistance of the wire is very temperature sensitive
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(by design), and therefore the electrical current fluctuations measure the
velocity fluctuations in the flow–one hopes that the hot wire doesn’t itself
affect the flow it is trying to measure! The expected temporal spectrum for
this set-up is Eulerian, ω−5/3, and this has indeed been well-confirmed.

Finally, let us consider the effects of viscosity. The most important ques-
tion is at what scale in the energy cascade do we expect viscosity to alter
the −5/3 law? A first glance, one might think that it is only at the scale of
the particle mean free path that we expect viscous effects to be important,
as we found when we studied shock waves. But in fact, viscous effects en-
ter at much larger scales, essentially because the characteristic length scales
associated with ǫ are large. There is only one quantity that can be formed
from ǫ and ν that has the dimensions of length:

λ0 ∼ (ν3/ǫ)1/4 (694)

This may also be derived by setting

ǫ ∼ ν(ǫλ
1/3
0 )2 λ−2

0 , (695)

which balances the energy dissipation rate in the cascade by viscous losses.
This show the characteristic velocity that is being directly dissipated: (ǫλ0)

1/3.
If we now express ǫ in terms of the large scale eddy velocity ∆u and length
l, then with ǫ ∼ (∆u)3/l,

λ0 ∼ l R−3/4 (696)

where the large scale Reynolds number is R ∼ l∆u/ν. The viscous scale of
the turbulence is proportional to the −3/4 power of R.

10.2 The decay of free turbulence

This section contains optional advanced material, included for your interest.

A classical result shown by Kolmogorv in 1941 is that free, undriven
turbulence will decay with time, with the energy density following a t−10/7

power law. If, as the generally the case, the region of turbulence is bounded
by quiescent fluid, the size of the turbulent region will actually increase in
time, proportional to t2/7. Kolomogorov’s argument was rather complicated,
but Landau & Lifschitz showed how these scalings arise from global angular
momentum conservation of the fluid. We follow their line of argument.

The kth component of angular momentum of a constant density fluid may
be written

Mij = ρ
∫

(xivj − xjvi) dV (697)
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where the integral is taken over the volume of the fluid, of order L3, say. By
contrast, the largest coherent scale of the turbulence is taken to be l, l ≪ L.
Turbulence is present at scales large compared with l, but small compared
with L. The identity

∂(xixjvl)

∂xl
= xivj + xjvi, (698)

valid for a divergence free velocity vl may be used to show
∫

(xivj + xjvi) dV = 0, (699)

provided that the normal velocity vanishes at the boundary of the fluid. (We
are of course using the divergence theorem on the left side of equation [698].)
Hence

Mij = 2ρ
∫

xivj dV (700)

For i = x and j = y, Mxy is the z component of the angular momentum, and
Myx is the −z component. The same holds for other permutations of and i
and j, and if i = j then Mij vanishes. Therefore

MijMij = 4ρ2
(
∫

xivj dV
∫

x′iv
′

j dV
′

)

= constant (701)

since this is just twice the square of the conserved angular momentum vector.
The repeated integral may be written as a double integral

∫

xivj dV
∫

x′iv
′

j dV
′ =

∫ ∫

xix
′

ivjv
′

j dV dV
′ (702)

and the double integral itself may be written as

I ≡
∫ ∫

xix
′

ivjv
′

j dV dV
′ = −1

2

∫ ∫

(xi − x′i)
2vjv

′

j dV dV
′. (703)

This last equality follows since the term involving (xi)
2) or (x′i)

2 involve the
direct integration of either vj or v′j by itself over the volume of the fluid.
This, of course, must vanish.

The integral of interest becomes

I = −1

2

∫

dV
∫

(xi − x′i)
2vjv

′

j dV
′ ≡ −1

2

∫

dV
∫

s2v′
·v dV ′ (704)

where s2 = (xi − x′i)
2 is the distance between the two points xi and x′i in

the fluid. We now perform the following rather subtle averaging procedure.
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Fix s, and average the velocity dot product over all xi and x′i. Then do
the integration. This is the same as peforming the average over the double
integral itself. Because the turbulence is isotropic, the average

〈v′
·v〉

must itself be a function only of s, let us say F (s). We are in essence
calculating the correlation of the velocity field in the turbulent fluid, and
this correlation should fall rapidly to zero on scales larger than the largest
coherent eddy, l. Therefore

G ≡
∫

s2F (s)dV ′ (705)

will depend upon l, but not xi. (This is an important and subtle point, the
key to the argument, and worth some thought.) We conclude that

I = −1

2

∫

dV
∫

s2F (s)dV ′ = −GV
2
. (706)

where V is the assumed large but finite volume of the fluid. But if I is
constant in time (conserved angular momentum), then G must be also be
constant in time. Since G scales like v2l5, we conclude that

v2l5 = constant in time (707)

In this scale-free problem, we must have v ∼ lt, and one finds Kolomogov
laws for the decay of free, isotropic turbulence,

v2 = constant/t10/7 (708)

and
l = constant × t2/7 (709)

A beautiful and delicate argument. Too bad it is probably wrong in
detail! The problem is related to the existence of G: this integral need
not converge. (It is hard to converge with an r4 factor in the integrand.)
However, experiments are in basic, if somewhat approximate, agreement with
this Kolmogorov decay formula, so most researchers feel that this is not all
complete nonsense. Recently, this problem has been put on a more firm
foundation by Yakot (2004, J. Fluid Mech., 505, 87), who claims to have
recovered Kolmogorov scaling, but without demanding the existence of G.
You can see that one does not have to go very far into turbulence theory
before unresolved issues are present! The free decay of isotropic turbulence
still remains to be fully solved.
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10.3 Turbulence: a modern perspective

10.3.1 The logistic map

The story begins in 1963. The meteorologist E. A. Lorenz was interested in
the results of certain thermal experiments conducted in a rotating ring, or
annulus. The inner wall of the annulus was cooled and the outer wall was
heated. Because of the outward centrifugal force, the sense of this heating
was similar to heating a nonrotating system from below in a gravitational
field. Both walls of the annulus rotated at the same angular frequency Ω.
Despite the fact that there was no differential rotation in the confining walls,
differential rotation was established in the fluid by the thermal convection
that was produced by the instability. As Ω increased, amplified nonaxisym-
metric waves that were present turned into a large scale stream (something
like the atmospheric jet stream). This stream could be steady, oscillatory, or
highly non-periodic depending upon the value of Ω.

The presence of large scale organization within a turbulent flow is a major
omission of the classical theory. A signature of what is now called chaos is
the appearance of both periodic and completely irregular behavior in the
same system, with only a slightly different set of external parameters. A
very simple example of an elementary equation that shows chaotic behavior
is known as the logistic map, first studied in detail in 1976 by Robert May
(now Lord May by the way, so you see what can happen if you understand
turbulence better) as a model for biological populations:

xn+1 = rxn(1 − xn) (710)

This is basically an equation for geometrical growth with the simplest possible
nonlinear quenching. It works as follows: Choose a random starting point x0

in [0, 1]. Compute x1 from the equation, then use x1 to compute x2, and so on.
This may be thought of an evolutionary equation for x. When r < 4, all of
the xn stay within [0, 1]. x = 1−1/r is a fixed point, but the mapping actually
converges to this value only if r < 3. For 3.449 > r > 3, the convergence
oscillates between two values, when r > 3.499 it oscillates between four
values: there is a period 4 solution. As r increases, period doubling continues
indefinitely, but it occurs at smaller and smaller increments of r. The limiting
value of this kind of period doubling sequence is r = 3.570. Above this
number, the behavior is chaotic, with only occasional values of r once again
giving rise to periodic behavior. (See figure 19.) At around 3.81, a period of
three is seen. It is has been proven that any mapping that has a period of
three must always also show chaotic behavior.
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Figure 19: Convergence points of the logistic equation as a function of r. For
r < 3.570, discrete points exist, and convergence is periodic. For r > 3.570
the response is chaotic and a distributional response is shown instead.
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10.3.2 An analytic chaotic solution

Amazingly enough, it is possible to solve equation (710) in closed form, in the
chaotic regime! To motivate our approach, consider the classical quadratic
equation:

ax2 + bx+ c = 0. (711)

We all know how to solve this equation for x, but I am guessing that you
probably didn’t learn the solution in the following way.

Let us make the substitution x = −(b/a) sin2 θ. Then our equation trans-
forms to

−b
2

a
sin2 θ cos2 θ + c = 0,

or

− b2

4a
sin2 2θ + c = 0. (712)

Evidently, the substitution x = −(b/a) cos2 θ would lead to exactly the same
equation, so our two solutions to the quadratic equation may be presented
as

x = −(b/a) sin2 θ, −(b/a) cos2 θ, with θ =
1

2
sin−1

(

4ac

b2

)1/2

(713)

We leave it as an exercise for the reader to confirm that these are, in fact,
equivalent to the usual formula for the solutions of a quadratic equation.
(Note that the sum of the roots is −b/a and their product c/a.)

Consider now the solution of the particular logistic equation

xn+1 = 4xn(1 − xn)

which is well in the chaos regime. The substitution

xn = sin2(πun)

immeidately suggests itself, with the factor of π displayed explicitly for later
convenience. Then,

sin2(πun+1) = xn+1 = 4 sin( πun) cos2(πun) = sin2(2πun) (714)

or
un+1 = 2un (715)

The angle simply doubles with each iteration.
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To understand what this means in terms of xn, imagine a binary repre-
sentation for u0:

u0 = N.01001110101010010.... (716)

where N is an integer whose value does not matter for calculating xn. Note
the decimal point (more correctly, the binary point). Each multiplication of
un by 2 simply shifts the point one space to the right. In other words, each
iteration makes the “least signficant” fractional part of un more significant!
After enough iterations, any fractional part of u0, no matter how tiny, com-
pletely determines the value of some xn. Two initial points, arbitrarily close
together, become completely separated after a finite number of iterations.
This is exactly the behavior we witness in numerical tests.

10.3.3 Feigenbaum’s Number

As r → 3.570, we may identify a sequence rm at which each new period
doubling occurs. If we now evaluate the limit of

rm − rm−1

rm+1 − rm

, as m→ ∞ (717)

we find that it is equal to 4.66920160910299.... This is known as Feignbaum’s
number. M. Feigenbaum has proved that this is a universal behavior of
period doublings of any map of the form xn+1 = f(xn), no matter what the
function f is! Feigenbaum’s number is in this sense a fundamental universal
mathematical constant, like e or π. In fact, Feigenbaum’s theory gives even
more than this (truly remarkable) result. It predicts, for example, the values
of the external r parameter at which period doubling occurs, and even the
relative strength of each period (i.e., the power at different frequencies).

Nice mathematics, but where is the physics? What do we use for our
“maps?” The answer is that the maps of physics are partial differential
equations, which are in a sense just elaborate prescriptions that tell us how to
get new values of flow (or field) quantities from old values. In its most direct
interpretation, a partial differential equation tells us to apply a differencing
operator to a set of old data values in order to calculate the next series of
values. Indeed, on a computer, this is quite literally what you do. So from the
very beginning, there was always some hope that the results of Feigenbaum’s
functional theory might actually be seen in nature.

In 1977, Albert Libchaber of the ENS designed and carried out a remark-
able experiment involving liquid helium in a tiny cell in which temperature
changes of a few thousandths of a degree could induce convective instabil-
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ity.8 By carefully increasing the heating, he found exactly the same march
of period doublings seen in the logistic map, but in this case they led to the
informative and entertaining discussion of this topic. By carefully increasing
the heating, he found exactly the same march of period doublings seen in
the logistic map, but in this case they led to the onset of turbulence! It was
stunning confirmation that the period doubling route to turbulence was more
than a mathematical possibility.

But the problem of turbulence has not been solved just yet. Turbulence
also appears by routes other than period doubling. In Couette experiments,
for example, vortices appear which have nonaxisymmetric structure. As the
inner cylinder increases its rotation rate, this “wavy vortex” becomes un-
stable and generates more vortices, but with a period that is not a simple
multiple of the first. At yet higher Ω, there is a sudden burst of broadband
noise. This was in fact foreseen by Ruelle and Takens, who developed a de-
tailed theory based on mapping techniques applied to coupled ODE’s. They
predicted that there would be this additional route to turbulence, in addition
to progressive period doublings.

In some cases, turbulence is triggered not by the gradual adjustment of
some global parameter, like the heating rate or the rotation rate. Instead it
occurs in the normal course of evolution of an initially smooth fluid, say, as
it traverses a confining wall. For example, fluid flowing over a flat plate will
develop a boundary layer whose thickness grows in proportion to

√
x, where

x is the horizontal distance from the leading edge of the plate (see section
9.1). The boundary layer in this case does not separate, since there are no
adverse gradients causing it to peel away from the survace. Nevertheless,
when the boundary layer has grown so that the internal Reynolds number
Uδ/ν ∼ 500 (U is the flow velocity, δ the boundary layer thickness, ν the
kinematic viscosity), turbulence starts to develop. The mechanism is similar
to Poisseuille and planar Couette flow. At earlier points in the flow, the
boundary layer is too thin and too viscous to be unstable, but as it spreads
vertically, the Reynolds number drops below the critical value needed for the
onset of instability.

In this example, the onset of turbulence goes through several stages. First
two-dimensional waves appear, with wave crests perpendicular to the direc-
tion of the unperturbed velocity. These waves, rather than the boundary
layer flow directly, then feed the turbulence. First, the waves develop their
own instabilities, forming growing ripples along their wave crests. These get
increasingly more irregular and agitated, breaking down into turbulent flow.
But the turbulence occurs only in discrete, well defined regions! Finally, even
further downstream, the turbulent regions merge, and a extended plane of

8See Chaos, by James Gleick, for a highly informative and entertaining discussion of
this topic.
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fully developed turbulence is seen.

The problem of self-sustained (as opposed to externally driven) turbulence
is truly three-dimensional. In shear flow, in which the ultimate source is
the velocity gradient, the link between the fluctuations and the free energy
source is provided by vortex stretching. Vortices are, as we know, frozen into
the flow. When stretched by shearing motion, the vortex compensates by
increasing the circulation around its core. This process effectively transfers
large scale shear into smaller scale eddies. Ultimately, this energy is cascaded
down and thermalized at the viscous scale. Because vorticies are responsible
for binding turbulence to large scale shear, the fluid dynamicist Keith Moffatt
has referred to them as the “sinews” (= tendons) of turbulence.

Better is the end of a thing than the beginning thereof...

— Ecclesiates 7:8
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