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1 Fundamentals

1.1 Opening Comment

The behavior of a gas subject to large-scale gravitational and magnetic forces
is enormously rich and full of surprises. One of my goals in giving this
course is to try to give you, the student encountering the topic for the first
time, a sense of both the generality and the depth of the problems we are
struggling with. Truly, there is not an area of modern astrophysics that is not
touched in some way by the dynamical behavior of gases. Astrophysical gas
dynamics is, in the view of your author, the most fundamental component of
astrophysics. It is impossible to understand star formation, stellar structure,
planet formation, accretion disks, or anything in the early universe without
a detailed knowledge of the dynamics of magnetizedgases. So why don’t we
start?

1.2 Governing Equations

Although the fundamental objects are the atomic particles that comprise
our gas, we shall work in the limit in which the matter is regarded as a
nearly continuous fluid. The fact that this is not exactly a continuous fluid
manifests itself in many ways, the most important of which is the equation of
state of an ideal gas, which depends upon the notion of rapid atomic collisions
separated by “long” intervals of time when the atoms are, in essence, free.
But more subtle transport effects are also present, like viscosity and thermal
conduction, both of which are a consequence of atomic collisions.

One of the most interesting and salient features of astrophysical gases
is that they are almost always magnetized. This allows modes of behavior
that are absent in an ordinary nonmagnetized gas (e.g. shear waves). This
sometimes has profound consequences, especially in rotating systems. The
dynamics of magnetized gases is known as magnetohydrodynamics, or MHD
for short. The ohmic resistivity of a magnetized gas is another example of
a collisional process involving individual particles; in this case one of the
particles must be the current carrying electrons.

I shall assume that the reader is familiar with the basic equations of
standard hydrodynamics. If not, they1 may review a standard textbook
(my favorite is Elementary Fluid Dynamics by D.J. Acheson), or the set of
extensive notes I have prepared for my course Hydrodynamics, Instability
and Turbulence. We begin with a very brief review.

1In these notes, I will use “they” to mean generically “he or she”.
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1.2.1 Mass Conservation

The statement of mass conservation is expressed by the equation:

∂ρ

∂t
+ ∇·(ρv) = 0, (1)

Here ρ is the mass density and v is the velocity field. The content of this
equation is simply that if there is net a mass flux into or out of a fixed
volume, the mass within that volume must change accordingly. If the flow
happens to be divergence free, the density of an individual fluid element
remains constant, and if all fluid elements start with the same density, the
density remains everywhere constant.

1.2.2 Newtonian Dynamics

Our second fundamental equation is a statement of Newton’s second law of
motion, that applied forces cause acceleration in a fluid. The acceleration
refers to an individual element of fluid, hence the time derivative is expressed
as a total derivative, following the path of the element:

ρ
Dv

Dt
= ρ

[

∂v

∂t
+ (v·∇)v

]

= F (2)

where the right side is the sum of the forces on the fluid element. The
combination D/Dt arises often, and it is called the Lagrangian derivative.

A fundamental force that is always present acting on a fluid is the pres-
sure. We shall be working with gases obeying the ideal gas equation of state,
and the pressure is then given by

P =
ρkT

m
(3)

where T is the temperature in Kelvins, k is the Boltzmann constant 1.38 ×
10−23 J K−1, and m is the mass per particle. For a fully ionized gas consisting
of protons and electons, m is 0.5mp, one half of the proton mass (the electron
mass being negligible in comparison). The quantity kT/m arises often enough
that it will be given its own name:

c2
S ≡

kT

m
(4)

where the subscript S refers to “sound” for reasons that will become clear
later.
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The pressure arises from the kinetic energy of the gas particles them-
selves, and these particles must never be confused with fluid elements. A
fluid element is small enough that it has uniquely defined dynamic and ther-
modynamic attributes (e.g. velocity and pressure), but large enough to con-
tain a vast number of particles. A fluid element has a well-defined entropy
for example, an atom does not.

There is a very simple relationship between the pressure P and internal
energy density E of an ideal gas:

E =
P

γ − 1
. (5)

Here γ is the adiabatic index of the gas. It is equal to 5/3 for single particles,
and 7/5 for diatomic molecules.

A pressure exerts a force only if it is not spatially uniform. For example,
the pressure force in the x direction on a slab of thickness dx and area dy dz
is

[P (x − dx/2, y, z, t) − P (x + dx/2, y, z, t)]dy dz = −
∂P

∂x
dV (6)

There is nothing special about the x direction, so the force per unit volume
from a pressure is more generally −∇P dV .

Other forces can be added on as needed. One force of obvious importance
in astrophysics is gravity. The Newtonian gravitational acceleration g can
always be derived from a potential function

g = −∇Φ (7)

If the field is from an external source, then Φ is a given function of r and
t, otherwise it must be computed along with the evolution of the fluid itself.
We shall discuss the problems of self-gravity later in the course.

Another force that we must consider, which will be front and center in
this course, arises from the presence of a magnetic field. As we have already
noted, magnetic fields allow a gas to behave in ways not allowed when the
field vanishes, and the additional degrees of freedom imparted to a gas mean
that magnetic forces can be very important even when the field appears to be
weak! To calculate the magnetic force per unit volume exerted by a magnetic
field, start with the Maxwell equation

∇×B = µ0J + ϵ0µ0
∂E

∂t
(8)

The effects of the displacement current are negligible for nonrelativisitic flu-
ids, since they involve time delays associated with light propagation. Hence,
the current density is determined by the magnetic field geometry:

J = (1/µ0)∇×B (9)
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The Lorentz force per unit volume is J×B, assuming that the gas is every-
where locally neutral.

In the absence of dissipational processes, the equation of motion for a
magnetized gas is therefore

ρ
∂v

∂t
+ (ρv·∇)v = −∇P − ρ∇Φ +

1

µ0
(∇×B)×B (10)

1.2.3 Energetics

The thermal energy behavior of the gas is described by the internal energy
loss equation, which is most conveniently expressed in terms of the entropy
per particle. The entropy is defined up to an (unimportant) additive con-
stant, and is given by

s =
S

N
=

k

γ − 1
ln Pρ−γ (11)

where N is the number of particles, γ is the adiabatic index (equal to 1+2/f
where f is the number of degrees of freedom of a particle).

Exercise. Derive the above expression from dE = −PdV + TdS, P =
ρkT/m = (γ − 1)E , E = EV .

The entropy of a fluid element is conserved unless there is a loss or gain
of heat from radiative processes or from dissipation. If n is the number of
particles per unit volume, then

nT
Ds

Dt
=

P

γ − 1

D ln Pρ−γ

Dt
= volume heating rate ≡ Q̇ (12)

If there are no radiative losses or gains and no dissipation, as is often the
case when the fluid motions are too rapid for heat to escape, the fluid is said
to be adiabatic and the right side of the above is zero. Note that the internal
thermal energy is not conserved in an adiabatic fluid because of compression
or expansion. As an exercise, the reader should show that c2

S satisfies the
equation

ρ
D

Dt

c2
S

γ − 1
= −P∇·v (13)

for an adiabatic gas. (Use the entropy and mass conservation equations.)
The temperature of a fluid element, like the density, remains fixed only if the
motions are incompressible.
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1.3 The vector “v dot grad v”

The vector (v·∇)v is more complicated than it appears. In Cartesian coor-
dinates, matters are simple: the x component is just (v·∇)vx, and similar
for y, z. But in cylindrical coordinates, say, the radial component of this
vector is NOT (v·∇)vR, where vR is the radial velocity component. Rather,
we must take care to write

(v·∇)v = v·∇(vReR + vφeφ + vzez) (14)

where the ei are unit vectors in their respective directions. In Cartesian
coordinates, these unit vectors would be constant, but in any other coordinate
system they change with position. You should be able to show that

∂eR

∂φ
= eφ,

∂eφ

∂φ
= −eR, (15)

and that there are no other unit vector derivatives in cylindrical coordinates.
(Do it now. Hint: eR = cos φex + sin φey, and eφ = − sin φex + cos φey.)
Thus, the radial component of (v·∇)v is

v·∇vR −
v2

φ

R
, (16)

and the azimuthal component is

v·∇vφ +
vRvφ

R
(17)

The extra terms are related to centripetal and Coriolis forces, though more
work is needed to extract the latter...a piece of it still remains in the gradient
term!

1.4 Rotating Frames

It is often useful to work in a frame rotating at a constant angular velocity
Ω, perhaps the frame in which an orbiting planet appears at rest around its
star. The same rule that applies to ordinary point mechanics applies here as
well: add

−2Ω × v + RΩ2eR (18)

to the applied forces operating on a fluid element (the right side of the MHD
equation of motion). The first term is the Coriolis force, the second is the
centrifugal force, Ω is in the vertical direction, and all velocities are measured
relative to the rotating frame of reference.

8



1.5 Manipulating the Fluid Equations

For a particular astrophysical problem, working in cylindrical or spherical
cooridinates is often the most convenient, but for proving general theorems
or identities, Cartesian coordinates are usually the simplest to use. In this
case, there is a formalism that makes working with the MHD fluid equations
much easier.

The index i, j, or k will represent Cartesian component x, y, or z. Hence
vi means the ith component of v, which may any of the three depending upon
what value i is chosen. So vi is a way to write v. The gradient operator ∇

is written ∂i, in a way that should be self-explanatory.

Next, if an index appears twice, it is understood that it is to be summed
over all the values x, y, and z. Hence

A · B = AiBi = AxBx + AyBy + AzBz, (19)

and
(v·∇)v = (vi∂i)vj (20)

In this last example i is a “dummy index”: the actual vector component is
represented by j. The dynamical equation of motion in this notation is

ρ[∂t + (vi∂i)]vj = −∂jP − ρ∂jΦ (21)

Sometimes the “rot” (or “curl”) operator is needed. For this, we intoduce
the Levi-Civita symbol ϵijk. It is defined as follows:

• If any of the i, j, or k are equal to one another, then ϵijk = 0.

• If ijk = 123, 231, or 312, the so-called even permutations of 123, then
ϵijk = +1.

• If ijk = 132, 213, or 321, the so-called odd permutations of 123, then
ϵijk = −1.

By explicitly writing out each side of the equation, it is straightforward to
show that

∇ × A = ϵijk∂iAj . (22)

Here, the vector component is represented by the index k. Don’t forget to
sum over i and j! ϵijk is of course used in the ordinary cross product as well:

A × B = ϵijkAiBj . (23)
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Notice that
A · (B × C) = ϵijkAkBiCj (24)

which proves that any even permutation of the vectors on the left side of
the equation must give the same value, and an odd rearrangement gives the
same value with the opposite sign.

A double cross product looks complicated:

A × (B × C) = ϵlkmAl(ϵ
ijkBiCj) = ϵmlkϵijkAlBiCj. (25)

The last equality follows because mlk is an even permutation of lkm. This
looks unpleasant, but fortunately there is an identity that saves the day:

ϵmlkϵijk = δmiδlj − δmjδli (26)

where δij is the Kronecker delta function (equal to zero if i and j are different,
unity if they are the same). One may always prove this by brute force, but an
outline of a shorter proof would be to note that the left side has at most one
nonvanishing term in its sum, under all circumstances. Moreover, for this
one term not to vanish, the index pair (i, j) must be the same distinct pair
of numbers as (m, l) or (l, m). You can now check that in all cases, the sign
+1 or −1 always comes out correctly on both sides of the equation. With
this identity, our double cross product becomes

A × (B × C) = BmAjCj − CmAiBi = B(A · C) − C(A · B). (27)

Our final example is to derive an expression for

A×(∇×B) = ϵijkAi(ϵ
lmj∂lBm) = ϵkijϵlmj(Ai∂lBm) (28)

Using our identity (26), this becomes

(δklδim − δkmδil)(Ai∂lBm) = Ai∂kBi − Ai∂iBk = Ai∂kBi − (A·∇)B (29)

One consequence of this is a representation of Ai∂kBi in any coordinate
system:

Ai∂kBi = A×(∇×B) + (A·∇)B (30)
Another particularly important application of (30) is to the Lorentz force
expression, something very important for this course. Substituing B for A
in the above gives us:

(∇×B)×B = −
1

2
∇B2 + (B·∇)B (31)

The first term on the right side has the form of a magnetic pressure gradient;
the second behaves like a tension force. It depends on the derivative of B
along its length, and if the magnitude of B remains fixed, the force must be
perpendicular to B itself. The effect of this tension force is profound, allowing
a magnetized gas to support shear waves (known as Alfvén waves) that do
not exist in a standard, nonmagnetized fluid. In this sense, a magnetized gas
behaves more like a solid!
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1.6 The Conservation of Vorticity

Let us return, just for the moment, to an unmagnetized fluid. We start
with the following identity, which follows immediately from the results of the
previous section:

v × (∇ × v) =
1

2
∇v2 − (v·∇)v (32)

Using this result to replace (v·∇)v in the dynamical equation of motion
results in

∂v

∂t
+

1

2
∇v2 − v×ω = −

1

ρ
∇P − ∇Φ (33)

where ω = ∇×v is known as the vorticity. If we take the curl of this equation
and remember that the curl of the gradient vanishes, we find

∂ω

∂t
− ∇×(v×ω) =

1

ρ2
(∇ρ×∇P ) (34)

Let us once again consider the case where either ρ is constant, or when P is
a function only of ρ. In that case, the right hand side vanishes and:

∂ω

∂t
− ∇×(v×ω) = 0. (35)

To understand what this means, consider a closed linear curve, like a ring,
moving with the fluid. The integral

∫

v · dl around the ring is also
∫

ω · dA,
taken over an area that is bounded by the ring. This is the vorticity flux.
How does the vorticity flux change with time as the fluid evolves?

Let us consider more generally a generic equation of the form

∂A

∂t
= v × (∇ × A) + ∇Φ (36)

where Φ is a potential function. The curl of this equation leads directly to
equation (35) for the special case A = v, but it is better to retain generality
here, because this same equation will be useful when we investigate the be-
havior of magnetic fields. Expanding the double cross product on the right
(which you should be able to do by now!) and regrouping leads to

DAi

Dt
= vj∂iAj + ∂iΦ (37)

where D/Dt is the standard Lagrangian derivative, and we have, of course,
switched over to index notation. We now consider the change in the line
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integral of the vector field A over a closed curve moving with the fluid itself:

D

Dt

∮

A · dl =
∮

[

DA

Dt
·dl + A·

Ddl

Dt

]

(38)

Hmmm. How interesting. We are taking the derivative of a differential dl.
Have you ever done that before? Don’t panic. The Lagrangian change of an
embedded line element dl moving with the fluid is just the difference between
the velocities at each of the two endpoints of the segment dl, multiplied by
a time interval. To be precise, if dl is the line element at time t = 0, and dl′

is the same line element an instant later at time t = ∆t, then

dl′ = dl + [v(r + dl, t) − v(r, t)]∆t = dl + ∆t (dl·∇)v, (39)

or
Ddl

Dt
=

dl′ − dl

∆t
= (dl·∇)v (40)

as ∆t → 0. This may also be written

Ddlj
Dt

= dli∂ivj (41)

We then have from equation (37)

DA

Dt
·dl = dli vj∂iAj + dli∂iΦ (42)

and

A·
Ddl

Dt
= Ajdli∂ivj (43)

Adding these last two equations gives

∮ D

Dt
(A · dl) =

∮

dli∂i(Φ + vjAj) =
∮

dl · ∇(Φ + vjAj) (44)

This is a perfect gradient function integrated around a closed curve. Since
the beginning and end points are the same, it must vanish. The line integral
∮

A · dl is conserved with the fluid. In particular, when A = v, the velocity
circulation integral along with the vorticity flux surface integral are conserved
in the Lagrangian sense, moving with the fluid. We shall see very soon that
the same is true for the magnetic field and magnetic flux.

The fact that the integral
∮

v · dl around any closed curve in the fluid
remains constant as the it flows with the fluid is known as vorticity conser-
vation. Another way to say the same thing is that the field lines of vorticity
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dl.grad(v) ∆t

dl dl’

Figure 1: The change of a line element dl in time ∆t.

ω are “frozen” into the fluid. Once again, this is not a completely general
fluid result, even if there is no magnetic field. We had to assume either that
ρ is constant, or that P and ρ are functionally related, P = P (ρ). (This is
called a barotropic fluid.)

With the help of our ϵijkϵlmk identity and just a little work, it is quite
straightforward to show that the equation

∂ω

∂t
− ∇×(v×ω) = 0 (45)

is the same equation as

∂ω

∂t
+ (v · ∇)ω = +(ω · ∇)v − ω∇ · v (46)

Now, mass conservation implies

D ln ρ

Dt
= −∇ · v, (47)

so that our equation becomes

Dω

Dt
− ω

D ln ρ

Dt
= (ω · ∇)v, (48)

or
D

Dt

(

ω

ρ

)

=
1

ρ
(ω · ∇)v (49)

This is a very interesting result! Notice that ω/ρ satisfies exactly the
same equation (41) as the line element dl. But, by definition, dl was a small
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line segment moving with the fluid. So this is a direct way of showing that
ω/ρ moves with the fluid.

Next, consider a flow that is strictly two-dimensional, with nothing de-
pending on the vertical coordinate z, and no z component of the velocity.
Then, in the mass conservation equation (47), it makes sense to multiply by ρ
and integrate over z. This has the very simple effect of replacing the density
ρ with the integrated “column density” Σ in the analysis that follows. Also,
since ω now has only a z component, the right side of equation (49) must
vanish! We then find instead of (49),

D

Dt

(

ω

Σ

)

= 0 (50)

This is known as the conservation of potential vorticity. It is an extremely
useful and powerful constraint in the study of two-dimensional turbulence,
as well as in studying an important class of disturbances in planetary atmo-
spheres known as Rossby waves.

Exercise. Consider purely rotational flow, with the velocity v having only a
φ component vφ. In general, vφ could depend upon R and z, but show that if
vorticity conservation holds, then under steady conditions vφ cannot depend
upon z. This is known as von Zeippel’s theorem.

Exercise. Two-dimensional turbulence in a fluid is never spontaneous, it must
always be driven externally. This is not true of three dimensional turbulence.
Explain this far reaching result in terms of potential vorticity conservation.
(Hint: What would happen if we had even a tiny amount of dissipation in a
two-dimensional fluid?)

Exerccise. In planetary atmospheres, local disturbances that lose vorticity
find their way up to the north pole (or down to the south pole), and settle
down as “polar vortex rings.” Explain. (Hint: The total vorticity of a
disturbance, including the contribution from the planet’s rotation plus the
intrinsic vorticity within the gas, must be conserved.)

2 Magnetohydrodynamics (MHD)

2.1 Magnetic Forces

We return to magnetic fields. Astrophysical gases are almost always at least
partially ionized. This is not too surprising: a glass of distilled water is
ionized at the level of one part in 107, and salty sea water is much more
ionized: it is a very good conductor. A medium can be almost entirely
neutral and still behave like a good conductor. All but the coolest and
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densest astrophysical gases (e.g., protostellar disks) are electrodynamically
active.

The Lorentz force per unit volume in the gas is

F = ρeE + J × B (51)

where ρe is the charge density, E is the electric field, J is the current density,
and B is the magnetic field. The gases of interest here are all electrically
neutral, so that ρe = 0. This means that the only part of the Lorentz force
that affects the gas is the magnetic part.

We have already encountered the Lorentz force in our discussion of the
equation of motion for a magnetized gas:

J × B =
1

µ0
(∇ × B) × B (52)

In the last section, we showed that

(∇ × B) × B = −
1

2
∇B2 + (B · ∇)B (53)

Thus, the dynamical equation of motion for a magnetized gas is

ρ
Dv

Dt
= −∇

(

P +
B2

2µ0

)

− ρ∇Φ +

(

B

µ0
·∇

)

B (54)

The first magnetic term on the right clearly behaves like a sort of pressure.
Magnetic fields lines of force do not like to be squeezed any more than gas
molecules do.

The (B · ∇)B term is less obvious. We have noted that it corresponds
to a sort of magnetic tension. Notice that it vanishes when the magnetic field
does not change along the direction in which the field line itself is oriented.
On the other hand, when there are such changes, and the field line is bent,
the resulting force acts in the direction of restoring the field line back to an
unbent position. In fact, this can be made quantitative: there is a magnetic
analogue to waves propagating along an ordinary string that is under tension.
In the case of “magnetic strings,” these waves are called Alfvén waves.

2.2 Induction Equation

Having introduced the magnetic field, we need to know how it evolves when
there are changes in the fluid. The magnetic field adds one more variable to
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our problem (well, three actually, since there are three components of B), so
that we need some more equations. The motion of the gas causes charged
particles to move relative to one another, and the resulting electrical currents
in turn generate new magnetic fields. These affect the currents, that change
the fields again, that ... Help. It seems like a complicated mess!

Fortunately there is indeed help in the form of a great simplifying princi-
ple: in a pefect conductor, the electric field vanishes. Actually, what we need
to say is that in the rest frame of the conductor, the electric field vanishes. In
a frame in which the conductor (in our case the conducting gas fluid element)
moves, the total Lorentz force, not the electric field, must vanish. In other
words,

E + v × B = 0. (55)

So even though we have assumed conditions for charge neutrality, there must
be an electric field! Hmmm. Wait. If the divergence of this electric field does
not vanish, then according to Maxwell (or Coulomb!) there must be a local
charge density, and then charge neutrality cannot hold. This certainly looks
like looks like a contradiction. Well, guess what? The divergence of the
electric field does not, in general, vanish. In a moment, we’ll come back and
explain why this is not really a contradiction, but for the time being let us
continue as though we have nothing to worry about.

Faraday’s law of induction is

∂B

∂t
= −∇ × E (56)

and with E = −v × B, this becomes

∂B

∂t
= ∇ × (v × B) (57)

This is the equation we need to determine the magnetic field. By knowing
how the spatial gradients of B are behaving, we may compute how the field
evolves in time, thanks to the powerful constraint that the Lorentz force on
the charge carriers must vanish.

Notice something quite remarkable: the magnetic field satisfies the same
equation as the vorticity. In particular, equation (57) can be recast in the
form of equation (36), by “uncurling” it! That means everything we learned
about vorticity, in particular that it is frozen in to the fluid, also holds for
the magnetic field. Magnetic flux,

∫

B · dA, is conserved as the area moves
with the fluid. But unlike the case of vorticity conservation, which depended
upon a restrictive relationship between P and ρ, magnetic flux conservation
depends only upon there being no dissipation (i.e., electrical resistance) in
the gas. This is generally an excellent approximation.

16



2.3 Self-consistency

Why don’t we have a contradiction with the fact that ∇ · E is not zero?
The answer is that while not zero, it is in fact, you know, small. Small??
Don’t give me that. That answer is not good enough. How small? Very
small indeed: of order v2/c2 (c is the speed of light). This, as we will see, is
precisely of the same order as the neglected displacement current.

To estimate ∇ · (v × B), assume that any magnetic field gradients are
as large as they can be (of order µ0J), and that J is also as large as it can
be, of order the ion charge density times v, ρiv (the current density could
be much smaller, since it is proportional to the difference between ion and
electron velocities). Then

∇·(v×B) ∼ vµ0J ∼
ρi

ϵ0

v2

c2
. (58)

That answer, that the divergence of the electric field is of order v2/c2 times
the ion charge density, really is good enough. Not only is it permitted to
ignore the divergence of the electric field, it is required! We have already
not included the displacement current, and this too is a correction of order
v2/c2. In this case, if L is a characteristic length and ∂/∂t ∼ v/L, then

ϵ0µ0
∂E

∂t
∼ ϵ0µ0

vE

L
∼ ϵ0µ0

v2B

L
∼ ϵ0µ

2
0v

2J (59)

which is indeed of order (v2/c2)µ0J . Corrections of order v2/c2 are truly
relativistic, and we must ignore them to be self-consistently nonrelativistic.

A Summary of the Dissipationless Equations
of Motion

From now on, we shall drop the subscript “0” on µ0, and write µ.

∂ρ

∂t
+ ∇·(ρv) = 0 (60)

ρ

(

∂

∂t
+ v·∇

)

v = −∇

(

P +
B2

2µ

)

− ρ∇Φ +
1

µ
(B·∇)B (61)

P

γ − 1

(

∂

∂t
+ v·∇

)

ln Pρ−γ = 0 (62)

∂B

∂t
= ∇×(v×B) (63)
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3 Fundamentals

In this section, a detailed derivation of the fundamental MHD equations is
presented. The discussion will be more technical here than in most of the
rest of the course, but it is very important to see how the basic governing
equations of the subject arise, and much of this material is not so easy to find
outside of specialized treatments. I hope the reader will have the patience to
read carefully through this section.

In astrophysics, we are very often interested in the MHD behavior of a
gas that is almost entirely neutral. This may seem like contradictory, since
a neutral gas has no charge carriers, but the key word is “almost.” Even a
very small population of charge carriers will make the gas magnetized, as we
will shortly see.

A typical environment is a gas cloud consisting of neutral particles (pre-
dominantly H2 molecules), electrons, and ions. Each species (denoted by
subscript s) is separately conserved, and obeys the mass conservation equa-
tion

∂ρs

∂t
+ ∇·(ρsvs) = 0 (64)

where ρs is the mass density for species s and vs is the velocity. The symbols
of the flow quantities (e.g. v, ρ, etc.) for the dominant neutral species will
henceforth be presented without subscripts.

So far, everything is simple. The dynamical equations become more cou-
pled, however, since we need to include interactions between the different
species. The dynamical equation for the neutral particles is

ρ
∂v

∂t
+ ρ(v·∇)v = −∇P − ρ∇Φ − pnI − pne (65)

where P is the pressure of the neutrals, Φ the gravitational potential and
pnI (pne) is the momentum exchange rate between the neutrals and the ions
(electrons).

The ion equation is

ρI
∂vI

∂t
+ ρI(vI·∇)vI = eZnI(E + vI × B) − ∇PI − ρI∇Φ − pIn (66)

and the electron equation is

ρe
∂ve

∂t
+ ρe(ve·∇)ve = −ene(E + ve × B) − ∇Pe − ρe∇Φ − pen (67)

The subscript I (e) refers to the ions (electrons). When not in a subscript but
used in an equation, e is the fundamental charge of a proton, i.e. it is always
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positive. The electron charge is always −e. The momentum exchange rate
pIn is precisely −pnI, and the same holds for pen. (Why?) The quantity Z
is the mean charge per ion, n is a number density, and the fluid is neutral in
bulk, eZnI = ene.

The key point is that for the charge carriers, all terms proportional to
the mass densities ρI and ρe are small compared with the Lorentz force and
momentum exchange rates. Hence, to a very good approximation,

0 = eZnI(E + vI × B) − pIn (68)

0 = −ene(E + ve × B) − pen (69)

Adding these two equations and using bulk neutrality leads to ,

0 = eZnI(vI − ve) × B − pIn − pen (70)

But eZnI(vI − ve) is just the current density J , so that

pIn + pen = J × B (71)

Using this in the neutral equation leads to

∂v

∂t
+ ρ(v·∇)v = −∇P − ρ∇Φ + J × B (72)

Remarkably, the net Lorentz force appears unmodified in the equation for
the neutrals.

For a sparsely ionized fluid, departures from ideal MHD appear mainly in
the induction equation. To relate E and B it is best to use the electron force
equation, since the ions may be more closely locked to the neutrals. Thus

E = −ve × B −
pen

ene
= −[v + (ve − vI) + (vI − v)] × B −

pen

ene
(73)

Now matters start to get very detailed. I present these details in the
following section, but for purposes of this course I view this material as
entirely optional. Having made the details available to you, however, I feel
free to make a quick summary of the results, leaving it for you to read the
next section if you wish more explanation.

The term ve − vI is −J/ene.

The term vI − v is related to pIn by an equation of the form

pIn = γρρI(vI − v)
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where γ is a coefficient that may be calculated from knowledge of the interac-
tion cross sections. (See equation (83).) But pIn is simply related to J × B
from equation (71), because pIn is in fact dominant over pen. Ultimately,
the reason is that the ions are more massive than the electrons.

The final term proportional to pen represents ohmic dissipation. We
denote the electrical conductivity by σcond.

Putting all of this together leads to the full induction equation:

∂B

∂t
= ∇×

[

v×B −
(∇ × B) × B

µ0ene
+

[(∇ × B) × B] × B

µ0γρρI
−

∇ × B

µoσcond

]

(74)

The Details....

Let us examine matters a little more closely. (Please don’t worry about every
last detail. My purpose here is to give you a feeling for all that goes into a
calculation like this, and to be able to understand the nomenclature that you
will encounter in the literature. You don’t have to become an expert in the
minutiae of interstellar kinetic theory for this course!) pnI takes the form

pnI = nµnI(v − vI)νnI (75)

where n is the number density of neutrals, and µnI is the reduced mass of an
ion–neutral particle pair,

µnI ≡
mImn

mI + mn
, (76)

mI and mn being the ion and neutral mass respectively. νnI is the collision
frequency of a neutral with a population of ions,

νnI = nI⟨σnIwnI⟩. (77)

In equation (77), nI is the number density of ions, σnI is the cross section
for neutral-ion collisions, and wnI is the relative velocity between a neutral
particle and an ion. The angle brackets represent an average over all possible
relative velocities in the thermal population of particles. Notice that equation
(75) has the dimensions of a force per unit volume, and that it is proportional
to the velocity difference between the species: if there is no difference in their
mean velocities, two population of particles cannot exchange momentum.

Why does the reduced mass µnI appear? Because the reduced mass always
appears in any interaction between two individual particles: in the center of
mass frame the equations reduce to a single particle equation with the particle
mass equal to the reduced mass. In an elastic one-dimensional collision, for
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example, if v is initial relative velocity of the two interacting particles, then
the momentum exchange is 2µ12v, where µ12 is the reduced mass. (Show
this.)

For neutral-ion scattering, we may approximate the cross section σnI to
be geometrical, which means that the quantity in angle brackets will be pro-
portional to µ−1/2

nI . The order of the subscripts has no particular significance
in either the cross section σnI , reduced mass µnI , or relative velocity wnI . But
νIn does differ from νnI : the former is proportional to the neutral density n,
the latter to the ion density nI .

Putting all these definitions together gives

pnI = nnIµnI⟨σnIwnI⟩(v − vI) (78)

In accordance with Newton’s third law, this is symmetric with respect to
the interchange n ↔ I, except for a change in sign, pnI = −pIn. All of
these considerations hold, of course, for electron-neutral scattering as well.
Explicitly, we have

pne = nneµne⟨σnewne⟩(v − ve) ≃ nneme⟨σnewne⟩(v − ve). (79)

The gas is assumed to be locally neutral, so that ne = Zni where Z is the
number of ionizations per ion particle. In a weakly ionized gas, Z = 1. The
reduced mass µne is very nearly equal to the electron mass me. The collision
rates are given by (see Draine, Roberge, & Dalgarno 1983 ApJ 264, 485 for
yet more details) (note, cgs units!):

⟨σnIwnI⟩ = 1.9 × 10−9 cm3 s−1 (80)

⟨σnewne⟩ = 10−15 (128kT/9πme)
1/2 = 8.3 × 10−10T 1/2 cm3 s−1 (81)

The electron-neutral collision rate is just the ion geometric cross section times
an electron thermal velocity. (The peculiar factor of (128/9π)1/2 is a detail of
the averaging procedure.) But the ion-neutral collision rate is temperature
independent, much more beholden to long range induced dipole interactions,
and significantly enhanced relative to a geometrical cross section assumption.
Even if the ion-neutral rate were determined only by a geometrical cross
section, |pnI| would exceed |pne| by a factor of order (me/µnI)1/2. In fact,
the dipole enhancement of the ion-neutral cross section makes this factor
larger still2.

2I should be a little bit more careful. The statement that |pne| is larger than |pnI | by
a factor of (me/µnI)1/2 assumes that the velocity differences v − ve and v − vI do not
introduce any mass dependencies, which is generally true.
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In the astrophysical literature, it is common to write the ion-neutral mo-
mentum coupling in the form

pIn = ρρIγ(vI − v), (82)

where γ is the so-called drag coefficient,

γ ≡
⟨σnIwnI⟩
mI + mn

(83)

and we will use this notation from here on. Numerically, γ = 3 × 1013 cm3

s−1 g−1 for astrophysical mixtures (Draine, Roberge, & Dalgarno 1983).

We come next to the ions and electrons. The dynamical equations for the
ions and electrons are

ρI
∂vI

∂t
+ ρIvI·∇vI = −∇PI − ρI∇Φ + ZenI (E + vI×B) − pIn (84)

and

ρe
∂ve

∂t
+ ρeve·∇ve = −∇Pe − ρe∇Φ − ene (E + ve×B) − pen, (85)

respectively. e will always denote the positive charge of a proton, the absolute
value of the electron charge, 1.602 × 10−19 Coulombs or 4.803 × 10−10 esu.3

For a weakly ionized gas, the Lorentz force and collisional terms dominate
in each of the latter two equations. Comparison of the magnetic and inertial
forces, for example, shows that the latter are smaller than the former by
the ratio of the proton or electron gyroperiod to a macroscopic flow crossing
time. Thus, to an excellent degree of approximation,

ZenI (E + vI×B) − pIn = 0, (86)

and
−ene (E + ve×B) − pen = 0. (87)

The sum of these two equations gives

J×B = pIn + pen (88)

where charge neutrality ne = ZnI has been used, and we have introduced
the current density

J ≡ ene(vI − ve). (89)

3Beware: esu units are still commonly used in the astrophysical literature! You should
become comfortable with them.
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The equation for the neutrals becomes

ρ
∂v

∂t
+ ρv·∇v = −∇P − ρ∇Φ + J×B (90)

Due to collisional coupling, the neutrals are subject to the magnetic Lorentz
force just as though they were a gas of charged particles. It is not the
magnetic force per se that changes in a neutral gas. As well shall presently
see, it is the inductive properties of the gas.

Let us return to the force balance equations for the electrons:

−ene (E + ve×B) − pen = 0. (91)

After division by −ene, this may be expanded to

E + [v + (ve − vI) + (vI − v)]×B +
meνen

e
[(ve − vI) + (vI − v)] = 0,

(92)
where we have introduced the collision frequency of an electron in a popula-
tion of neutrals:

νen = n⟨σnewne⟩. (93)

We have written the electron velocity ve in terms of the dominant neutral
velocity v and the key physical velocity differences of our problem. It has
already been noted that in equation (88), pen is small compared with pIn,
provided that the velocity difference |ve−v| is not much larger than |vI−v|.
As we argued earlier, the pen term in equation (88) is small relative to pIn:

J×B ≃ pIn = nnIµnI(vI − v)νnI . (94)

It then follows that the final term in equation (92)

meνen

e
(vI − v),

which is proportional to J × B, becomes small compared with the third
term

(ve − vI)×B,

which also proportional to J×B, by a factor of order (me/µIn)1/2. These
simplifications allow us to write the electron force balance equation as

E + v×B −
J × B

ene
−

J

σcond
+

(J × B) × B

γρρI
= 0, (95)

where the electrical conductivity has been defined as

σcond ≡
e2ne

meνen
(96)
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The associated resistivity η is

η =
1

µ0σcond
, (97)

which has units of m2 s−1. Numerically (e.g. Blaes & Balbus 1994 ApJ, 421,
163; Balbus & Terquem 2001, ApJ, 552, 235):

η = 0.0234
(

n

ne

)

T 1/2 m2 s−1 (98)

Equation (95) is a general form of Ohm’s law for a moving, multiple fluid
system.

Next, we make use of two of Maxwell’s equations. The first is Faraday’s
induction law:

∇×E = −
∂B

∂t
. (99)

We substitute E from equation (95) to obtain an equation for the self-
induction of the magnetized fluid,

∂B

∂t
= ∇×

[

v×B −
J × B

ene
+

(J × B) × B

γρρI
−

J

σcond

]

(100)

It remains to relate the current density J to the magnetic field B. This
is accomplished by the second Maxwell equation,

µ0J = ∇×B +
∂E

∂t
(101)

The final term in the above is the displacement current, and it may be
ignored. Indeed, since we have not, and will not, use the “Gauss’s Law”
equation

∇·E = (e/ϵ0)(ZnI − ne), (102)

we must not include the displacement current. In Appendix B, we show
that departures from charge neutrality in ∇·E and the displacement cur-
rent are both small terms that contribute at the same order: v2/c2. These
must both be self-consistently neglected in nonrelativisitc MHD. (The final
Maxwell equation ∇·B = 0 adds nothing new. It is automatically satisfied
by equation (99), as long as the initial magnetic field satifies this divergence
free condition.) These considerations imply

J =
1

µ0
∇×B (103)
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for use in equation (100).

To summarize, the fundamental equations of a weakly ionized fluid are
mass conservation of the dominant neutrals (eq.[64])

∂ρ

∂t
+ ∇·(ρv) = 0, (104)

the equation of motion (eq. [90] with [103])

ρ
∂v

∂t
+ ρv·∇v = −∇P − ρ∇Φ +

1

µ0
(∇×B)×B, (105)

and the induction equation (eq. [100] with [97] and [103])

∂B

∂t
= ∇×

[

v×B −
(∇ × B) × B

µ0ene
+

[(∇ × B) × B] × B

µ0γρρI
−

∇ × B

µoσcond

]

(106)

It is only natural that the reader should be a little taken aback by the
sight of equation (106). Be assured that it is rarely, if ever, needed in full
generality: almost always one or more terms on the right side of the equation
may be discarded. When only the induction term v×B is important, we refer
to this regime as ideal MHD. The three remaining terms on the right are the
nonideal MHD terms.

To get a better feel for the relative importance of the nonideal MHD terms
in equation (100), we denote the terms on the right side of the equation,
moving left to right, as I (induction), H (Hall), A (ambipolar diffusion), and
O (Ohmic resistivity). We will always be in a regime in which the presence
of the induction term is not in question. More interesting is the relative
importance of the nonideal terms. The explicit dependence of A/H and
O/H in terms of the fluid properties of a cosmic gas has been worked out by
Balbus & Terquem (2001):

A

H
= Z

(

9 × 1012 cm−3

n

)1/2 (
T

103 K

)1/2 (vA

cS

)

(107)

and
O

H
=
(

n

8 × 1017 cm−3

)1/2 ( cS

vA

)

(108)

Here n is the total number density of all particles, T is the kinetic tempera-
ture, vA is the so-called Alfvén velocity (much more about this quantity will
come later!),

vA =
B

√
µ0ρ

(109)
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Figure 2: Parameter space for nonideal MHD. The curves correspond to the
case vA/cS = 0.1. (From Kunz & Balbus 2004, MNRAS, 348, 355.)

and cS is the isothermal speed of sound,

c2
S = 0.429

kT

mp
(110)

where k is the Boltzmann constant and mp the mass of the proton. The coef-
ficient 0.429 corresponds to a mean mass per particle of 2.33mp, appropriate
to a molecular gas with a 10% helium admixture.

As reassurance that the fully general nonideal MHD induction equation is
not needed for our purposes, note that equations (107) and (108) imply that
for all three nonideal MHD terms to be comparable, T ∼ 108 K! Obviously
this is not a weakly ionized regime. In figure (2), we plot the domains of
relative dominance of the nonideal MHD terms in the nT plane.

Our emphasis of the relative ordering of the nonideal terms in the in-
duction equation should not obscure the fact that ideal MHD is often an
excellent approximation, even when the ionization fraction is ≪ 1. For ex-
ample, the ratio of the ideal inductive term to the ohmic loss term is given
by the Lundquist number

ℓ =
vAH

η
(111)
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where H is a characteristic gradient length scale. To orient ourselves, let us
consider the case of a protostellar disk and set H = 0.1R, where R is the
radial location in the disk. (This would correspond to H being about the
vertical thickness of the disk.) Then ℓ is given by

ℓ ≃ 2.5(ne/n)(vA/cS)Rcm,

Rcm being the radius in centimeters. In other words, the critical ionization
fraction at which ℓ = 1 is about

(ne/n)crit = 0.4(cS/vA)R−1
cm ∼ 10−13(cS/10vA)

at R = 1 AU. The actual ionization fraction at this location may be above
or below this during the course of the solar systems evolution, but the point
worth noting here is that Rcm is a large number for a protostellar disk!
Ionization fractions far, far below unity can render an astrophysical gas a
near perfect electrical conductor. It therefore makes a great deal of sense to
begin by examining the behavior of an ideal MHD fluid.

Exercise. Show that the Lorentz force may be written

J × B = ∂i

(

BiBj

µ
− δij

B2

2µ

)

≡ ∂iT
L
ij . (112)

Exercise. Show that the Newtonian self-gravity force may be written

−ρ∇Φ = ∂i

(

−
gigj

4Gπ
+ δij

g2

8Gπ

)

≡ ∂iT
N
ij . (113)

where gi = −∂iΦ. (Hint: ∂i∂iΦ = 4πGρ.)

Exercise. Show that the inertial terms in the equation of motion be written

ρ∂tvi + ρvj∂jvi + ∂iP = ∂t(ρvi) + ∂i (ρvivj + δijP ) ≡ ∂t(ρvi) + ∂iT
R
ij , (114)

which defines the Reynolds stress T R
ij .

Exercise. Show that the equation of motion may be written

ρ∂tvi + ∂iTij = 0, (115)

where Tij = TL
ij +TN

ij +TR
ij is the energy-momentum stress tensor. This form

of the equation of motion is most readily generalized when relativity becomes
important.
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4 Ideal MHD

4.1 Alfvén Waves

We begin our study with the behavior of an ideal, perfectly conducting, mag-
netized gas. Consider a constant density, constant pressure medium contain-
ing a uniform magnetic field. Define the z axis to lie along the direction of the
magnetic lines of force. The x and y axes lies perpendicular to z, and time is
denoted t. We wish to study the response of the gas when it is subject to very
small perturbations which have the mathematical form exp(ikz − iωt). The
constant k is the wavenumber of the disturbance, and the constant ω is the
angular frequency of the disturbance. As always, when we use the notation
of a complex-valued exponential, we take the real part to obtain the physical
quantity: eiα corresponds to cosα, ieiα corresponds to − sin α, and so forth.

To begin, we may write the induction in the form (just as was done for
the vorticity equation):

∂B

∂t
+ ∇×(B × v) =

DB

Dt
− (B·∇)v + B∇·v = 0 (116)

Because the perturbations are very small, only terms that are linear in
the amplitudes need be retained. Terms like (v·∇)v, or example, may be
dropped.

Let us begin by assuming that all three components of the velocity are
present, as are density perturbations δρ, pressure perturbations (δP ), and
magnetic field perturbations δB. We will quickly find that many of these
quantities vanish. For example, the divergences of the velocity v and the
perturbed magnetic field δB both vanish. Since the pertubation depend
only upon z, both δBz and vz vanish. The z equation of motion is

0 = −
∂

∂z
(δP + δB·B/µ0) (117)

But δB·B must vanish for an equilibrium field pointing in the z direction,
so we conclude that δP vanishes. And, for adiabatic perturbations, δρ must
likewise vanish. For the remaining x and y velocity components, the equation
of motion is

∂v

∂t
=

B

µ0ρ

∂δB

∂z
(118)

or
−iωv = (ikBµ0)δB (119)

The vectors v and δB are parallel, and without loss of generality, we will
consider linearly polarized waves pointing along the x axis. (The waves may
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be in principle circularly polarized, but their propagation properties are the
same.) The induction equation gives

−iωδB = ikBv (120)

This is consistent with the equation of motion if and only if

ω2 = k2B2/(ρµ0) (121)

We define the Alfvén velocity as

vA =
B

√
ρµ0

(122)

so that our wave dispersion relation

ω2 = k2v2
A (123)

These waves propagate along the magnetic lines of force with a velocity vA,
and induce zero pressure and density changes. They are transverse waves.
Alvén waves are thought to play an important role in the heating of the
solar corona (where they are damped), and may be important in the inter-
stellar medium for heating interstellar clouds–in the case to relatively cool
temperatures.

4.2 Fast, slow, and Alfvén waves

Let us consider more general disturbances in a magnetized medium. We
consider an equilibrium field with components in the z and y direction. The
wave number k lies along the z axis. The perturbed magnetic field in the z
direction, δBz must therefore vanish. With small perturbations denoted by
a leading δ, the governing linear equations are mass conservation,

−ω
δρ

ρ
+ kδvz = 0 (124)

the equations of motion,

−iω δvx − i
kBz

µ0ρ
δBx = 0, (125)

−iω δvy − i
kBz

µ0ρ
δBy = 0, (126)
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−iω δvz + ik

(

δP

ρ
+

ByδBy

µ0ρ

)

= 0, (127)

and the induction equation,

−iωδBx = ikBzδvx, (128)

−iωδBy = ikBzδvy. − Byikδvz (129)

Finally, the entropy equation for adiabatic disturbances is simply

δP

P
= γ

δρ

ρ
. (130)

It is a straightforward, if somewhat lengthy, exercise to solve for the disper-
sion relation:

[ω2 − (k · vA)2][ω4 − k2ω2(a2 + v2
A) + (k · vA)2k2a2] = 0. (131)

Here, a2 = γP/ρ is the square of the isothermal sound speed.

The Alfvén branch of the dispersion relation is explicitly decoupled from
the others. Let us write their frequency as ωA, and let the angle between the
wavevector k and the equilibrium B be θ. Then ωA = kvA cos θ.

The remaining roots (of the quartic polynomial) of our dispersion relation
correpond to what are known as the “fast mode” and the “slow mode.” These
are most easily understood when either i) a ≪ vA ; ii) vA ≪ a ; iii) cos θ ≪ 1.
Then, one solution to the quartic, the fast mode, is a balance between the
first two terms,

ω2
+ = k2(v2

A + a2) (132)

and the other solution, the slow mode, is a balance between the last two
terms,

ω2
−

=
k2v2

Aa2 cos2 θ

v2
A + a2

(133)

Notice that ω+ > ωA > ω−.

The ω+ modes comes from magnetic and pressure forces acting together.
It is sometimes referred to as a magnetosonic wave. The ω− mode corre-
sponds to pressure and magnetic forces in opposition. When the magnetic
field is strong, the result is an ordinary sound wave channeled along the field
lines. When the field is weak, the slow mode becomes degenerate with an
Alfvén wave.

The slow mode can also have a different frequency from an Alfvén wave
when the medium is in rotation, even in the limit of very large a. In fact, it is
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possible for ω2
−

to pass through zero and become negative! This corresponds
to imaginary ω and an exponenitally growing mode. This is the magnetoro-
tational instability, or MRI, a very important instability for understanding
the origin of turbulence accretion disks. We will have much to say about the
MRI later in the course.

4.3 Small Perturbations: a More Formal Treatment

4.3.1 Linear, nonlinear, Eulerian, Lagrangian

Waves are said to be linear if their associated amplitudes are much smaller
than the corresponding equilibrium values of the background medium. Oth-
erwise they are nonlinear. For example, if at a particular point in a fluid the
equilibrium pressure is P (r), and a wave disturbance at time t causes the
pressure to change to P ′(r, t), then in linear theory,

P ′(r, t) − P (r) ≡ δP ≪ P (r) (134)

For the velocity, linear theory generally requires the disturbance to be much

less than
√

P/ρ, not the velocity of the background. The flow velocity itself
is irrelevant, since relative motion by itself does not affect local physics!
(Velocity gradients in the equilibrium flow are a different matter, however.
They can, in fact, be critical for understanding wave propagation.) The name
“linear” refers to the fact that in the mathematical analysis, only terms linear
in the δ amplitudes are retained, while terms of quadratic or higher order are
ignored.

Small disturbances can be described mathematically in more than one
way. The above equation for δP is known as an Eulerian perturbation,
which is the difference between the equilibrium and perturbed values of a
fluid quantity taken at a fixed point in space. It is sometimes useful to work
with what is known as a Langrangian perturbation, particularly when freely
moving boundary surfaces are present. In a Lagrangian disturbance, we focus
not upon the change at a fixed location r, but upon the changes associated
with a particular fluid element when it undergoes a displacement ξ. For the
case of a pressure disturbance, for example, we ask ourselves how does the
pressure of a fluid element change when it is displaced from its equilibrium
value r to r + ξ? The Langrangian perturbation ∆P is therefore

P ′(r + ξ, t) − P (r) ≡ ∆P. (135)

Note the difference between equations (134) and (135). To linear order in ξ,
∆P and δP are related by

∆P = P ′(r, t) − P (r) + ξ · ∇P = δP + ξ · ∇P. (136)
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The Lagrangian velocity perturbation ∆v is given by Dξ/Dt:

∆v ≡
Dξ

Dt
=

∂ξ

∂t
+ (v · ∇)ξ (137)

where v is any background velocity that is present. This is simply the in-
stantaneous time rate of change of the displacement of a fluid element, taken
relative to the unperturbed flow. Since

∆v = δv + (ξ · ∇)v, (138)

the Eulerian velocity perturbation δv is related to the fluid displacement ξ
by:

δv =
∂ξ

∂t
+ (v · ∇)ξ − (ξ · ∇)v. (139)

Exercise. Let v = RΩ(R)eφ. Consider a displacement ξ with radial and
azimuthal components ξR and ξφ, each depending upon R and φ. Show that

DξR

Dt
= δvR,

Dξφ

Dt
= δvφ + ξR

dΩ

d lnR

where D/Dt = ∂/∂t + v·∇. (Be careful!)

4.3.2 Equations of Constraint

Imagine an equilibrium background, independent of time. A finite velocity
disturbance is made over a tiny period of time that causes the flow to change.
The partial derivative ∂/∂t come to life.

Notice that a term like ∂ρ/∂t has an interesting interpretation in this
case: it is δρ/δt, where δρ is an Eulerian perturbation and δt is just a time
interval. The perturbation is a true Eulerian perturbation because it is the
change in ρ at constant r. Thus, mass conservation may be written

δρ = −∇·(ρvδt) (140)

The velocity is the unperturbed velocity v0 (which may be zero) plus the
disturbed velocity v1 which here is comparable to v0 (or infinitely larger if
the latter is zero). Since v1δt is ξ, and the v0 term causes no time change
by definition, we obtain

δρ = −∇·(ρξ) (141)

This may also be written
∆ρ = −∇·ξ. (142)
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We have, in effect, integrated the mass conservation equation, an equation
of constraint in the sense that it imposes a restriction on the behavior of
the flow: only displacements satisfying either of the above two (equivalent)
equations are allowed, regardless of whether the disturbances are dynamically
acceptable or not!

Exactly similar reasoning for adiabatic perturbations leads to

δS = −ξ · ∇S (143)

for the entropy S, and to

δB = ∇ × (ξ × B) (144)

for the magnetic field. The usefulness of these equations will shortly become
apparent.

4.4 The Virial Theorem

4.4.1 Analysis

The Virial Theorem is one of the most useful theorems in astrophysical gas-
dynamics. Basically, it is an integrated form of the equation of motion in full
generality. When the dominant balance is between two forces, the theorem
states that the associated energies must be comparable in strength. We shall
use Cartesian index notation in our proof.

Begin with

ρ
Dvi

Dt
= −∂iP − ∂i

(

B2

2µ

)

− ρ∂iΦ +
Bj

µ
∂jBi (145)

where

Φ(r) = −G
∫ ρ(r′) d3r′

|r − r′|
(146)

is the gravitational potential the system. Note that

−∂iΦ = −G
∫ ρ(r′) (ri − r′i) d3r′

|r − r′|3
(147)

Multiply the equation of motion by ri and sum over i,

ρri
Dvi

Dt
= −ri∂iP − ri∂i

(

B2

2µ

)

− ρri∂iΦ + ri
Bj

µ
∂jBi (148)
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and then integrate over a fixed volume V . For the pressure integral,

−
∫

ri∂iP dV = −
∫

∂i(riP ) dV + 3
∫

P dV (149)

= −
∫

Pr · dA + 3
∫

P dV

= −
∫

Pr · dA + 2
∫

Utherm dV (150)

where Utherm = (3/2)P is the thermal energy density.

The integral involving the potential is

∫

ρri
∂Φ

∂ri
d3r = G

∫ ρ(r)ρ(r′)ri(ri − r′i)

|r − r′|3
d3r d3r′ (151)

If we switch the labels r and r′, we obtain

∫

ρri
∂Φ

∂ri
d3r = G

∫ ρ(r)ρ(r′)r′i(r
′

i − ri)

|r − r′|3
d3r d3r′ (152)

Adding and dividing by 2:

∫

ρri
∂Φ

∂ri
d3r =

G

2

∫ ρ(r)ρ(r′)

|r − r′|
d3r d3r′ ≡ −V. (153)

i.e., this is just minus the gravitational potential energy V . (The factor of
1/2 is present because each pair of interacting fluid elements occurs twice in
the integration, but should only be counted once.)

On to the magnetic integrals:
∫

ri∂i(B
2/2µ) d3r =

∫

(B2/2µ)r · dA − 3
∫

(B2/2µ) d3r, (154)

where we have integrated by parts and used the divergence theorem. And
∫ ri

µ
∂j(BiBj)d

3r =
∫

(r · B)
B

µ
·dA −

∫ δij

µ
BiBj d3r

=
∫

(r · B)
B

µ
·dA −

∫ B2

µ
d3r. (155)

The sum of all the terms on the right side of our equation is then

2Etherm + V + M −
∫

(

P +
B2

2µ

)

r · dA +
1

µ

∫

(r · B)B · dA (156)
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where

Etherm =
∫

Utherm d3r, M =
∫ B2

2µ
d3r (157)

are the total thermal and magnetic energies.

For the left side of the virial equation we start with the following identity:

∫

ρ
DQ

Dt
d3r =

∫

ρ

(

∂Q

∂t
+ v·∇Q

)

d3r =
∫ ∂(ρQ)

∂t
d3r +

∫

∇·(ρvQ) d3r

(158)
where the second equality follows from mass conservation. The last integral
can be converted to a surface integral of the flux ρvQ over a bounding area.
If we choose the surface so that the velocity vanishes at this surface, then
this integral vanishes, and we shall make this assumption. We then have:

∫

ρ
DQ

Dt
d3r =

∫ ∂(ρQ)

∂t
d3r =

d

dt

∫

ρQ d3r (159)

With this in hand, we perform the following manipulations:

∫

ρri
Dvi

Dt
d3r =

∫

ρ
D(rivi)

Dt
d3r −

∫

ρvi
Dri

Dt
d3r (160)

=
d

dt

∫

ρrivi d
3r −

∫

ρv2 d3r

=
d

dt

∫

ρri
Dri

Dt
d3r − 2KE

=
d

dt

∫ ρ

2

Dr2

Dt
d3r − 2KE

=
d2

dt2
1

2

∫

ρr2d3r − 2KE

=
1

2

d2I

dt2
− 2KE (161)

where I is
∫

ρr2d3r and KE denotes the total kinetic energy of the fluid. The
Virial theorem is then:

1

2
Ï = 2KE + 2Etherm + V + M −

∫

(

P +
B2

2µ

)

r · dA +
1

µ

∫

(r · B)B · dA

(162)
where the velocity is assumed to vanish over the bounding surface. The
Virial theorem shows that when a dominant steady-state balance is present
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between two effects–pressure and gravity, say—the two associated energies
are comparable. In particular, for a star in hydrostatic equilibrium,

Etherm = −
1

2
V, Etotal = Etherm + V =

V

2
(163)

since the pressure vanishes at the surface, and magnetic fields are generally
negligible for stellar hydrostatic equilibrium.

4.4.2 Interstellar Clouds

A classical application of the virial theorem is to interstellar clouds. Con-
sider first a nonmagnetized spherical cloud that is embedded in an ambient
pressure P . For steady conditions, the virial theorem states

2Etherm + V =
∫

Pr · dA (164)

The thermal energy Etherm will be (3/2)NkT , where T is the average cloud
temperature and N is the total number of particles. For N , we will write
N = M/µ, where M is the mass of the cloud and µ is the mass per particle.
The potential energy V will be approximated by −(3/5)GM2/R, the value
for a constant density sphere. The surface pressure integral is 4πR3P0, where
P0 is the confining pressure. Hence,

P0 =
3MkT

µ4πR3
−

3

5

GM2

4πR4
(165)

Hold T and M fixed, and imagine a series of different equilibrium solutions
in which R changes. When R is large, P0 is small and increases as R gets
smaller because the gravity term is less important. We can always find an R
for a given P0. (This is like squeezing a balloon.) Then gravity becomes more
important, the pressure rises less rapidly as R decreases, and at some point
if we squeeze more, there is no equilibrium R! This happens when dP0/dR
is zero. The radius at which this occurs is

Rm =
4

15

GMµ

kT
(166)

and the resulting pressure is

Pm =
5334

45π

(

kT

µ

)4
1

G3M2
(167)
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The numerical coefficient is 3.15.

What is the effect of a magnetic field? As a very simple model of the
field, we follow Spitzer’s calculation and take the magnetic field to be uniform
inside the cloud, and that the field strength B2(r) outside the cloud equals
B2(R/r)6.

We now take the surface terms not at the cloud radius R, but at infin-
ity. Then the surface integrals of the magnetic field may be ignored. The
contribution to the magnetic energy density within the cloud is

(1/2µ0)
∫ R

0
B24πr2dr =

2π

3µ0
B2R3 (168)

and the contribution from outside the cloud is

(1/2µ0)
∫

∞

R
R6B2(4π/r4)dr =

2π

3µ0
B2R3 (169)

for a total of (4π/3µ0)B2R3.

What about the pressure terms, which appear to change when we move
the surface to infinity? There is in fact no change from putting the surface
at the cloud radius R! The increase in the thermal energy term is

3
∫

∞

R
P04πr2dr (170)

and the surface term is now

−
∫

P0r
3 dΩ, (171)

the integral being over solid angles at infinity. The sum of these two terms
involves a cancellation of the diverging terms at infinity (4πr3P0 for large
r), and the contribution of the thermal energy integral and the lower limit is
−4πR3P0, which is just what we found before (but from the surface integral!).

The virial theorem now reads

P0 =
3MkT

µ4πR3
−

3

5

GM2

4πR4
+

B2

3µ0
(172)

or

P0 =
3MkT

µ4πR3
−

3

5

GM2

4πR4

[

1 −
20πB2R4

9µ0GM2

]

(173)

The quantity in square brackets on the right is constant since the magnetic
flux, πBR2 is conserved. Hence, the analysis proceeds just as in the case of
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no magnetic field, but with a modified value of G: the old G multiplied by
the square bracket term. Let us write this term as a function of a critical
mass Mc, defined by equal magnetic and gravitational contributions. With
BR2 = B0R2

0 (initial values), the mass Mc must satisfy

M2
c =

20πB2
0R

4
0

9µ0G
=

20πB2
0

9µ0G

(

3Mc

4πρ0

)4/3

(174)

or

M2/3
c =

20πB2
0

9µ0G

(

3

4πρ0

)4/3

(175)

For a cloud of a given initial radius R0 = (3M/4πρ0)1/3, the critical mass Mc
is then a measure of the initial magnetic field strength B0. The equation for
P0 is then

P0 =
3MkT

µ4πR3
−

3

5

GM2

4πR4

[

1 −
(

Mc

M

)2/3
]

(176)

The equations for Rm and Pm that we first derived for a nonmagnetized cloud
become

Rm =
4

15

GMµ

kT

[

1 −
(

Mc

M

)2/3
]

(177)

and

Pm = 3.15

(

kT

µ

)4 (
1

G3M2

)

[

1 −
(

Mc

M

)2/3
]−3

(178)

5 The Newcomb-Parker Problem

Often just called the “Parker Instability” in the astrophysical literature, the
more properly called “Newcomb-Parker Problem” addresses the behavior of
a gas in a gravitational field with partial magnetic support. The problem had
been formally formerly well-studied in the plasma physics community before
astrophysicists took it up. If you’re going to try to magnetically confine
thermonuclear reactions, you’d better know what you’re doing, so it is not
surprising that the plasma physicists had thought about this long and hard.

The problem itself is as follows. If a disturbance is made to a gas that
keeps everything in pressure equilibrium, an upward moving parcel cools.
The equilibrium surrounding gas also typically become cooler as one moves
up, but the fall in temperature is not as drastic as in the rising parcel. The
parcel is therefore cooler and heavier than its surroundings, and it drops back
down. Exactly the same reasoning works in reverse for a downward moving
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parcel, which returns back up. The restoring “buoyancy force,” as it is called,
allows a sort of wave to propagate in the gas, often referred to as a gravity
wave.

When a magnetic field is present, the rising parcel in the above argument
can have a lower density and still maintain pressure balance with the sur-
roundings, thanks to the magnetic pressure contribution. Indeed, if the field
is strong enough, the rising magnetized parcel could in fact be less dense
than the surroundings, in which case the resulting buoyancy force would ac-
tually be upwards. The parcel is then accelerated in the same direction as
its displacement, and the system is disrupted. An instability is said to be
present.

Discussion of the Parker Instability in the astrophysical literature tends
to be confused and hence unclear (i.e. wrong); in the plasma community the
discussion is often too terse and mathematical. Here, I hope to find the right
middle ground.

Consider a slab of gas lying in the xy plane with vertical coordinate z.
There is a gravitational field g = −gez pointing downward in the −z direc-
tion. The gas contains a magnetic field, which in the equilibrium configu-
ration lies in the x direction. The magnetohydrostatic equilibrium is given
by

ez

d

dz

(

P +
B2

2µ0

)

= ρg (179)

As usual, P and ρ denote the gas pressure and density, respectively. All
quantities may depend upon z.

We next consider perturbations corresponding to vertical motions. Since
there is no x and t dependence in the equilibrium state, we are free to assume
an xt dependence of exp(ikx − iωt) in the perturbations, where k is a con-
stant wavenumber and ω the associated angular frequency. We will consider
displacements in the vertical direction, δv = δvez.

In the analysis to follow, we will often use the displacement ξ instead
of δv, since the equations take a simpler form. For a problem in which
the background equilibrium is static, the relation between the displacement
amplitude ξ and δv is simply δv = −iωξ. Finally, we will adopt the notation
∂/∂z = ∂z, etc., and work in the limit ω → 0, since we are interested in
stability.

The linearly perturbed Eulerian dynamical equation of motion is

0 = −
1

ρ
∇

(

δP +
B · δB

µ0

)

+
δρ

ρ
g +

B∂xδB

ρµ0
+ ex

δB · ∇B

ρµ0
, (180)

while the induction equation for the magnetic field is

δB = ∇×(ξ×B) = ∇×(ξBey) (181)

39



or
δBz = B∂xξ, δBx = −ξ∂zB. (182)

Notice that the final term in equation (181) is not to be regarded as small!

There is a neat equality between certain magnetic force terms, since B
does not depend on x:

δBz∂zB = (B∂xξ)∂zB = −B∂xδBx. (183)

This is a very handy result, for in view of (183), the final two terms in the x
component of the equation of motion immediately cancel, leaving just

0 = −∂x

(

δP +
δBx B

µ0

)

. (184)

Since ∂/∂x amounts to multiplication by ik, we find the very reasonable
result that if there are no horizontal accelerations, the perturbed gas and
magnetic pressures must cancel one another:

δP = −
δBx B

µ0
=

B

µ0
(ξ∂zB) = ξ

∂

∂z

(

B2

2µ0

)

(185)

This, in turn means that the pressure terms make no contribution to the z
equation of motion, which is now very simple indeed:

0 = g
δρ

ρ
+ (k · vA)2ξ (186)

There are only two forces acting on a parcel of gas: buoyancy, and magnetic
tension. It remains only to compute δρ/ρ for adiabatic disturbances,

δρ

ρ
=

1

γ

δP

P
+

ξ

γ

∂ ln Pρ−γ

∂z
=

ξ

γ

(

1

P

∂

∂z

B2

2µ0
+

∂ ln Pρ−γ

∂z

)

(187)

An interesting way to write this result is to make use of the equilibrium
condition (179)

δρ

ρ
= −

ξ

γ

(

ρg

P
+

∂ ln ργ

∂z
,

)

(188)

which altogether eliminates the explicit appearance of the magnetic field.
Using this result in equation (186) yields the criterion for marginal stability:

0 = −g

(

g

a2
+

∂ ln ρ

∂z

)

+ (k · vA)2, (189)
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where a2 = γP/ρ is, we shall later see, the classical expression for the speed
of sound. The point is that instability is possible. The physical sense of the
instability is that there must be sufficiently high density material near the
midplane to anchor the magnetic field. If, on the other hand,

∂ ln ρ

∂z
> −

g

a2
(190)

there is an instability: a small vertical disturbance is exponentially magni-
fied. This is called a convective instability, since it leads to bulk convective
motions.

The magnetic field in itself does not cause the convection to occur: with or
without a magnetic field, convective instability is possible. Indeed, without
a field, the criterion for instability is the same as saying that the entropy
decreases upwards. This was found by Karl Scwarzschild in his classic study
of convective instability in stars. The point is that with a magnetic field it
is easier to generate convective instability, since the (negative) equilibrium
density gradient can be larger (i.e. smaller in magnitude, closer to zero),
thanks to the additional support of a magnetic field. This makes it easier to
trigger convective, or buoyant, instability. The role of the magnetic field in
destabilizing astrophysical gases was championed by Parker in 1966; plasma
applications were first investigated years earlier (1961) by Newcomb. In
astrophysics, this form of magnetic destabilization has come to be known as
the Parker Instability.

Much has been made of the Parker process for forming stars in the spiral
arms of galaxies (dense matter falls and collects into magnetic “wells”), but
little is known with any degree of certainty. (My own view is that matters
are much more complex in real galaxies, with vertical convection an ongoing
process.) The student would be well-served to understand that many plau-
sible and well-developed competing models of star formation abound in the
literature.

Exercise. In Parker’s treatment, the effects of cosmic rays are included! What
does this mean? Cosmic rays are a population of relativistic particles with
their own pressure, let us say Pcr. Pcr figures in the hydrostatic equilibrium:

dPtot

dz
= −ρg, Ptot = P + B2/2µ0 + Pcr

The defining physical property of Pcr is that the pressure remains constant
along a magnetic field line. This is because the cosmic rays can freely stream
along the field lines, and they will not allow pressure deviations to be main-
tained along the way. Show that, for the problem of interest, the condition
B·∇Pcr = 0 in linearized form is:

B·∇∆Pcr = 0.
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Hence, the Lagrangian change ∆Pcr does not change along a field line. In
particular, if it is zero at one point along a field line, it is zero everywhere
along the field line. (In our problem, B·∇ amounts to multiplication by
k · B.)

With ∆Pcr = 0, repeat the Parker problem just completed, but include
cosmic rays. Show that the condition for instability (190) remains unchanged.

6 Accretion and Winds

6.1 Spherical Accretion: The Bondi Problem

Consider an extended gaseous medium with a central gravitating point mass
M . The pressure and density in the medium are P∞ and ρ∞ respectively.
The gravitational field of the point mass draws on the surroundings, and
gas either accumulates onto the surface of the star, or is lost through the
horizon of a black hole. This process is referred to as accretion. Accretion
heats the gas by compression, and if there is turbulence, by dissipation as
well. Gravitational accretion is thought to be the power source responsible
for active galactic nuclei, the most luminous objects known.

6.1.1 Formulation

In its simplest form, accretion flow is spherical and time-steady. Under these
conditions, the mass accretion rate

ṁ = −4πρr2v (191)

is constant. Here, v is the radial velocity, and the minus sign is inserted so
that ṁ > 0. The gas is assumed to follow a simple polytropic law

P = Kργ (192)

where the constant K may be defined by the gas properties at r = ∞:

K = P∞ρ−γ
∞

(193)

The speed of sound, an important parameter in this problem, is

a2 =
dP

dρ
= γKργ−1 (194)
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Thus, another useful way to write the constant K is

γK = a2
∞

ρ1−γ
∞

, (195)

or more simply,

a2 = a2
∞

(

ρ

ρ∞

)γ−1

(196)

The equation of motion is

v
dv

dr
= −

1

ρ

dP

dr
−

GM

r2
(197)

But,
1

ρ

dP

dr
=

d

dr

(

γKργ−1

γ − 1

)

=
d

dr

(

a2

γ − 1

)

, (198)

which allows the equation of motion to be integrated immediately:

v2

2
+

a2

γ − 1
−

GM

r
=

a2
∞

γ − 1
(199)

where the integration constant is chosen by evaluating the left side at r = ∞.
This is simply the Bernoulli constant.

The Bernoulli equation can be used to relate v and r. Expressing a in
terms of v, we find

v2

2
+

a2
∞

γ − 1

(

ṁ

4πr2|v|ρ∞

)γ−1

−
GM

r
=

a2
∞

γ − 1
(200)

It is very instructive to look at the case γ = 1.5, which has a simple, explicit
solution:

r =
2
[

a2
∞

(ṁ/πρ∞|v|)1/2 − GM
]

4a2
∞
− v2

(201)

This expression for r has a singular denominator, and as a consequence has
two types of solution. The first has |v| < 2a∞ everywhere. The velocity goes
to zero at large distances, increases as r decreases, and reaches a constant
value |v0| satisfying

ṁ = πρ∞(GM)2 |v0|
a4
∞

(202)
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as r → 0. Since |v0| approaches a constant, the density increases sharply
as 1/r2 at small values of r. These solutions, which are characterized by a
limited range of velocity and a large density are known as settling solutions.

There are many settling solutions,since ṁ is not uniquely determined. If
we now regard v0 as a free parameter, as |v0| increases from below, approach-
ing 2a∞, the associated mass accretion rate ṁ also increases. In the limiting
case |v0| = 2a∞, ṁ reaches its maximum value,

ṁmax = 2πρ∞(GM)2a−3
∞

(203)

and the singular behavior simply vanishes from equation (201)! We find

r =
2GM

(|v| + 2a∞)(|v| +
√

2|v|a∞)
(204)

This is well-behaved for |v| = 2a∞. In fact, there is no reason to stop there.
The solution extends to infinite |v| as r → 0 and the flow approaches a pure
free-fall,

v2 ≃
2GM

r
(205)

What is the significance of |v| = 2a∞? When |v| = 2a∞, equations
(204) an (199) imply a = 2a∞ at the same point. In other words, the point
|v| = 2a∞ is the sonic point M2 = 1. We have shown that for ṁ < ṁmax, the
flow remains subsonic everywhere, but becomes transonic at the maximum
accretion rate possible. The flow remains transonic from inside the M2 = 1
sonic radius down to r = 0, and can be brought to subsonic levels only
through the mediation of a shock wave (for example, the surface of the star).

The γ = 1.5 example is special only in the sense that it is relatively
easy to solve. Settling and transonic solutions are found for all values of
γ between 1 and 5/3. In fact, while it is not possible to solve the Bondi
accretion problem in any simple way for general γ, we can always obtain the
value of ṁmax. For a polytropic equation of state,

dP =
γP

ρ
dρ = a2dρ (206)

Hence,

v
dv

dr
= −a2 d ln ρ

dr
−

GM

r2
= a2d ln(r2v)

dr
−

GM

r2
(207)

where mass conservation has been used in the second equality. This leads to
the equation

v
dv

dr
=

(v2/r)(2a2 − GM/r)

(v2 − a2)
(208)
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The sonic point S with v2 = a2 can be crossed only if

a2
S =

GM

2rS
(209)

which will ensure that the numerator and denominator vanish together. Com-
bining this with the Bernoulli relation (199) yields

a2
S =

2a2
∞

5 − 3γ
(210)

The relation P = Kργ implies that

ρS = ρ∞

(

aS

a∞

)2/(γ−1)

(211)

so that the accretion rate

ṁ = 4πρSr2
SaS = πρS(GM)2a−3

S (212)

can be expressed entirely in terms of a∞, ρ∞, and GM , the given parameters
of the problem. Upon substitution and simplification,

ṁ = αα/(1−γ)πρ∞(GM)2a−3
∞

, α = (5 − 3γ)/2. (213)

This is the maximum spherical accretion rate possible for any value of γ.
The coefficient in front of π varies from exp(1.5) = 4.48 for γ = 1 to 1 for
γ = 5/3.

Exercise. The center of our galaxy has a black hole of mass 2.6 × 106

solar masses. There is an ambient gas with a number density of about 100
cm−3 and a temperature of 107. Estimate the Bondi accretion rate onto
the Galactic Center black hole by assuming γ = 1.5. Typically, a black hole
might convert 5% of the incoming rest mass energy into radiation. Using this,
calculate the expected luminosity of the black hole. The actual luminosity
is ∼ 2 × 1033 ergs s−1, which should be much less than your result! The
Galactic Center is accreting well below its Bondi value.

6.2 The Parker Wind Problem

There is an interesting counterpart to Bondi accretion that involves an out-
flow from the surface of a star (or perhaps something larger like a cluster or
galaxy). This idea was first developed by E. Parker in 1956 and predicted
something truly remarkable: the outer layers of the Sun extend throughout
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and beyond the solar system! The idea is that solar corona can become suf-
ficiently hot near the Sun’s surface that the gas can escape to infinity as a
cold but rapidly moving (hypersonic) fluid.

The mathematics is very similar to the Bondi problem, but with different
boundary conditions. We consider a spherical flow around a central mass M
with a sound speed of a0 at the solar surface r0. Let the flow velocity at
infinity be v∞ (assuming the gas can in fact escape!). Our Benoulli equation
may either be written

v2

2
+

a2

γ − 1
−

GM

r
=

a2
0

γ − 1
−

GM

r0
(214)

or
v2

2
+

a2

γ − 1
−

GM

r
=

v2
∞

2
(215)

which means that

v2
∞

= 2

(

a2
0

γ − 1
−

GM

r0

)

(216)

A nearly isothermal gas can have a temperature corresponding to just a small
fraction of the formal escape velocity and still become unbound.

At the sonic point of the outflow, a2
S = GM/2rS still holds as before, and

Bernoulli’s equation gives

a2
S =

γ − 1

5 − 3γ
v2
∞

(217)

But since the velocity must rise monotonically, aS < v∞, and this means that
γ < 3/2 for a wind. For accretion, recall that γ ≤ 5/3.

The outflow rate from the surface of the star can be determined in just the
same way that we determined the mass accretion rate for the Bondi problem:
go to the sonic point and evaluate

ṁ = 4πr2
SρSaS (218)

with

ρS =
(

aS

a0

)
2

γ−1

(219)

This gives
ṁ = παα/2G2M2ρ0a

−2/γ−1
0 v5−3γ/γ−1

∞
(220)

with α = (γ − 1)/(5 − 3γ).

The effects of a magnetic field in a stellar wind have been studied by
Weber and Davis (1967 ApJ, 148, 217). The problem is complex because
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there is not one, but three critical points! This is because there are three
types of propagating disturbances: fast waves, slow waves, and Alfvén waves.
Each has its own associated critical point.

We will not present the details here, but refer to the reader to this clearly
written and comprehensive paper. The astrophysical significance of this so-
lution is that it shows that magnetic torques can, over the lifetime of the Sun
exert a significant angular momentum loss.

7 Accretion in Disks

7.1 Introduction

In any realistic astrophysical system, accreting gas does not simply fall onto
a central star in a radial streamline. There is always some relative angular
momentum between the gas and star. The gas is diverted and slowed by an-
gular momentum conserving Corilois forces as it approaches the center, and
the “pile-up” ultimately takes the form of a dissipative disk. The disk is a
reservoir of angular momentum. In order for further accretion to occur, the
fluid in the disk must rid itself of angular momentum, and in the process, it
will be able to gradually spiral into the center of the disk. The angular mo-
mentum is conveyed outward as the material spirals inward. This extended
process is really what we mean by an accretion disk. A state of minimum en-
ergy is achieved when all the material has collected at the center, and all the
angular momentum is at infinity, contained in a vanishingly small fraction of
the mass.

In this section, we will see how this happens. Magnetic fields, it will
emerge, are crucial.

Exercise. Show that if the surface density of a disk is proportional to R−5/2

at large distances from the origin, the angular momentum is logarithmically
infinite (i.e. dominated by large R), but that the total mass is within radius
R falls rapidly with R → ∞. How rapidly?

7.2 Energy and angular momentum fluxes

To begin our study, we need to have an equation expressing total energy
conservation with magnetic fields. Begin with the induction equation written
in Cartesian index notation:

∂tBi + vj∂jBi = −Bi∇·v + Bj∂jvi (221)
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Multiply by Bi and sum over i:

∂t

(

B2

2

)

+ vj∂j

(

B2

2

)

= −B2
∇·v + BiBj∂jvi (222)

After a rearrangement of the second term on the left (show!):

∂t

(

B2

2

)

+ ∂j

(

B2vj

2

)

= −
B2

2
∇·v + BiBj∂jvi (223)

Next, consider the equation of motion:

ρ∂tvi + ρvj∂jvi = −∂i(P + B2/2µ0) − ρ∂iΦ + Bj∂jBi/µ0 (224)

Multiplying by vi, summing over i and performing exactly the same kind of
manipulations that we did for the induction equation gives us:

∂t

(

ρv2

2

)

+ ∂j

[(

ρv2

2
+ P + Φ

)

vj +
B2vj

2µ0
−

viBiBj

µ0

]

= RHS (225)

where RHS, the right hand side of the equation, is

RHS = P∇·v + (∂iΦ)∇·(ρv) +
B2

2µ0
∇·v −

1

µ0
BiBj∂jvi (226)

The last two terms on the right side of the RHS equation are the same as the
right side of equation (223) with a minus sign. If we now combine equation
(223) with the above equation, after some algebraic simplification (which you
should show), we find

∂t

(

ρv2

2
+ ρΦ +

B2

2µ0

)

+∇·

[(

ρv2

2
+ ρΦ + P

)

v −
1

µ0
(v × B)×B

]

= P∇·v

(227)
This equation is still not quite exact, since we have ignored dissipation and
radiation (these would appear as loss terms on the right side of the equation),
but what we are really interested in is the mechanical energy flux. This, we
have calculated correctly on the left side of the equation.

The contribution of the magnetic field to the energy flux is the double
cross product, the final term in the divergence on the left side. The is just
the classical Poynting flux, E × B/µ0, the general expression for the flux
of electromagnetic energy. The effects of the magnetic field could have been
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guessed in advance: add the magnetic energy density B2/2µ0 to the hydrody-
namic energy density, and add the Poynting flux to the hydrodynamic energy
flux. Leave the rest untouched.

In classical disk theory, the dominant terms in the energy flux are taken
to be

(

ρv2

2
+ ρΦ

)

v −
1

µ0
(v × B)×B (228)

i.e., the pressure term is ignored. Nominally, this is done because the disk’s
rotational energy is larger than its thermal energy. We will come back to
this nontrivial point at the end, after we have a better understanding of the
issues that are involved.

Let us consider next the angular momentum flux, a simpler task. The
exact azimuthal equation of motion may be written

ρ∂t(Rvφ) + ρv·∇(Rvφ) = −∂φ(P + B2/2µ0) + (1/µ0)B·∇(RBφ) (229)

This may be written in the form

∂t(ρRvφ) + ∇·

[

R

(

ρvφv −
BφB

µ0
−
(

P +
B2

2µ0

)

eφ

)]

= 0 (230)

The non-toroidal component of the angular momentum flux is then con-
served. If we integrate over z, and regard the velocities, both kinematic and
Alfvénic, as density weighted averages, the statement of angular momentum
conservation becomes

R2Σ (vφvR − vAφvAR) = constant. (231)

where Σ is
∫

ρdz, the height-integrated column density, and each of the vA
terms represents an Alfvén velocity component. (Do you understand the
leading factor of R2?)

7.3 Fluctuations

Accretion disks are believed to be turbulent, so that each flow variable is
considered to have a mean part plus a fluctuating part. The fluctuation has
zero for its time-averaged value.

The azimuthal velocity is written

vφ = RΩ + δvφ (232)
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where RΩ represents the Keplerian velocity and δvφ the fluctuation with
zero mean value. The δ-notation is meaningful: these are true Eulerian
fluctuations, taken at fixed spatial location. We consider RΩ ≫ δvφ. The
radial velocity is written

vR = v̄ + δvR (233)

where v̄ is the slow inward drift velocity of the gas that results from orbital
decay, and δvR is the (in this case) much larger fluctuation. δvR and δvφ are
taken to be comparable; in practice they are both about 10% of the sound
speed. In principle, P , ρ, Σ, and B all have mean and fluctuating components
as well, but there is nothing to be gained by an explicit decomposition for
these quantities. The Alfvén velocities are taken to be of the same order as
the fluctuating velocity components.

In a steady-state model, the mass accretion rate Ṁ is a constant. This
implies

Ṁ = −2πRΣv̄ = constant. (234)

Now, the conserved angular momentum flux (231) may be written

R2Σ [(v̄ + δvR)(RΩ + δvφ) − vARvAφ] = constant, (235)

or

−R2Ω
Ṁ

2π
+ R2ΣWRφ = constant (236)

where we have introduced the quantity

WRφ ≡ ⟨δvR δvφ − vARvAφ⟩. (237)

WRφ is proportional to the turbulent stress, and the averaging indicated by
the angle brackets should be thought of as a time average.

What about the constant on the right side of equation (236)? A good
question! If the inner edge of disk abuts a hard surface, there is some logic to
adopting the boundary condition that WRφ vanish at the inner edge R = R0.
That, in any case, is what classical disk theory does. If the inner edge of the
disk is near the Schwarzschild radius RS of a black hole, the arguments are
(even!) more vague. In general relativity, one finds that inside of a radius of
order RS the disk is hydrodynamically unstable (this is rigorously true), with
the expected consequence that a dramatic change occurs (a guess!). The disk
goes from a state of rotational support outside of this “ISCO” (Innermost
Stable Circular Orbit), to a state of plunging freefall inside the ISCO. Such
an interior flow cannot support a stress at its boundary, and therefore once
again the stress must vanish at some R0.

What to make of this? Numerical simulations tend to show nothing
dramatic at the ISCO, but this is currently an ongoing point of controversy.
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Much is at stake here: knowledge of the inner edge of a black hole accretion
disk is essential if proposed tests of strong field gravity are to be viable. (See
Noble, Krolik, & Hawley 2010 Astrophysical Journal, 711, 959 and references
therein.) We will assume, however, following the classical approach, that the
stress vanishes at some radius R0.

If WRφ vanishes at R = R0, then angular momentum conservation gives

WRφ =
ṀΩ

2πΣ

[

1 −
(

R0

R

)1/2
]

(238)

where we have assumed a Keplerian law for Ω ∝ 1/R3/2. With knowledge of
Σ, the R dependence of the turbulent stress is known.

7.4 Energy Loss

The radial component of the energy flux is

(v̄ + δvR)

[

ρ
(RΩ + δvφ)2

2
+ ρΦ

]

+
1

µ0
B × (v × B) (239)

Next, we height integrate and time average, just as before. If we now expand,
retain the largest terms, and use −Φ = GM/R = R2Ω2, the energy flux
reduces to

Ṁ

4π
R2Ω2 + ΣR2ΩWRφ. (240)

Finally, we substitute for WRφ from the angular momentum result (238). The
energy flux is then

FE ≡
3RΩ2Ṁ

4π

⎛

⎝1 −
2

3

R1/2
0

R1/2

⎞

⎠ (241)

But this is not a conserved flux! Its divergence is

1

R

d(RFE)

dR
= −

3

4π

GMṀ

R3

[

1 −
(

R0

R

)1/2
]

(242)

In other words there is an energy loss of

1

2
×

1

R

d(RFE)

dR
= −

3

8π

GMṀ

R3

[

1 −
(

R0

R

)1/2
]

(243)
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from each side of the disk. If this loss of mechanical energy is radiated
thermally like a black body, the surface temperature of the disk is

T 4
S(R) =

3

8πσ

GMṀ

R3

[

1 −
(

R0

R

)1/2
]

(244)

where σ is the Stefan-Boltzmann constant 5.67 × 10−8 in MKS units. The
total luminosity of the disk is 2πR0FE(R0), since there is an outward energy
flux FE(R0) at the inner edge, and none of the energy makes it to infinity.
This gives a total disk luminosity of

L =
GMṀ

2R0
(245)

precisely one-half the binding energy of the innermost orbit.

The characteristic disk spectrum was shown by Donald Lynden-Bell to
be given by a power law of the form ν1/3. Here is a crude argument for how
this emerges.

We have seen that for R ≫ R0, the surface temperature TS is propor-
tional to R−3/4. But the surface temperature at radius R is also directly
proportional to the characteristic frequency emitted at radius R, since kTS
is of order hν. So the characteristic frequency at radius R is proportional to
R−3/4. Another was to say this is that given a particular frequency ν, the
characteristic radius at which this frequency is typically emitted is propor-
tional to ν−4/3. Therefore, the area of the disk associated with this frequency
goes like ν−8/3. A local blackbody spectrum with a frequency hν ≃ kT is
proportional to ν3, giving a net result ν3 × R2 of ν1/3.

Unhappy with that argument? OK, back to mathematics. Prove that the
spectrum is “bel et bien”

Fν =
8πhν3

c3

∫

∞

R0

2πR dR

exp(hν/kTS(R)) − 1
(246)

and derive the ν1/3 result yourself for the case TS ∝ R−3/4.

Equation (244) is the fundamental equation of classical accretion disk
theory. For its existence, it is essential that the quantity WRφ exists, and for
that we need to understand why there are correlations between the radial
and azimuthal fluctuations in the velocity and magnetic field. This is the
subject of the next section.
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8 The Magnetorotational Instability

The magnetorotational instability is one of the most important and remark-
able processes in astrophysical MHD. It allows an (almost!) arbitrarily weak
magnetic field to completely disrupt a differentially rotating system like a
Keplerian disk. Let us see how it works in detail.

8.1 Local Disk Behavior

In what is known as the local limit, we consider the governing equations in
the limit that R approaches infinity, but Ω remains finite. This means that
such quantities as v2

R/R or B2
φ/R may be neglected, but v2

φ/R cannot. We
allow for the velocities and magnetic fields to have derivatives on scales much
smaller than R, so their derivative cannot be neglected. In essence we drop
all curvature terms, except those associated with rotation.

For example the radial equation of motion is

ρ
DvR

Dt
− ρ

v2
φ

R
= −

∂

∂R

(

P +
B2

2µ0

)

− ρ
∂Φ

∂R
+

1

µ0
B·∇BR (247)

Notice that the term in B2
φ/R has been dropped! We have also use the

Lagrangian derivative
D

Dt
≡

∂

∂t
+ (v·∇) (248)

The azimuthal equation of motion is

ρ
Dvφ

Dt
+

ρvRvφ

R
= −

1

R

∂

∂φ

(

P +
B2

2µ0

)

+
1

µ0
B·∇Bφ (249)

We will work with velocity uφ which is defined as vφ − RΩ, that is the true
velocity vφ with the local Keplerian velocity subtracted. For consistency of
notation, we will also use uR and uz, although there is no particular distinc-
tion to be made for these variables.

With RΩ2 = ∂Φ/∂R, the radial equation of motion becomes in the local
approximation

ρ
DuR

Dt
− 2ρΩuφ = −

∂

∂R

(

P +
B2

2µ0

)

+
1

µ0
B·∇BR (250)

and the azimuthal equation of motion is

ρ
Duφ

Dt
+ ρ

κ2

2Ω
uR = −

1

R

∂

∂φ

(

P +
B2

2µ0

)

+
1

µ0
B·∇Bφ (251)
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Here, κ is the so-called “epicyclic frequency,” which may be defined as

κ2 = 4Ω2 +
dΩ2

d ln R
(252)

In the absence of a magnetic field and pressure forces, a perturbed fluid ele-
ment would oscillate around its equilibrium location in an elliptical “epicycle”
with a period of κ.

We also need the induction equation. For motion in which ∇·v vanishes,
the local radial equation is

DBR

Dt
= B·∇vR (253)

and the local azimuthal equation is (be careful with rotational terms!)

DBφ

Dt
= RB·∇(Ω + uφ/R) (254)

8.2 Linear Analysis

Consider now the following problem. In the equilibrium state, there is a
Keplerian disk with a uniform vertical magnetic field. Such a field exerts no
forces. We now make small perturbations in the form of fluid displacements,
with space/time dependence exp(ikz − iωt), in the R and φ directions, and
ask what happens.

The perturbed linear radial equation is

−iωδuR − 2Ωδuφ =
ik

µ0ρ
BzδBR (255)

and the perturbed linear azimuthal equation is

−iωδuφ +
κ2

2Ω
δuR =

ik

µ0ρ
BzδBφ (256)

The perturbed induction equations are

−iωδBR = ikBzδuR (257)

and

−iωδBφ = ikBzδuφ + δBR
dΩ

dR
(258)
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These are four equations in four unknowns, and a solution exisits only if the
following dispersion relation is satisfied:

ω4 − ω2(κ2 + 2k2v2
A) + (kvA)2(k2v2

A + dΩ2/d lnR) = 0 (259)

This is a standard quadratic equation in ω2, and the exact analysis of its
solutions is straightforward. It is not difficult to show that the discriminant
of this quadratic (i.e., “b2−4ac”) is always positive, so that ω2 is always real.
This means that the critical mode between stability ω2 > 0 and instability
ω2 < 0 occurs at ω2 = 0. If dΩ2/dR > 0, then there are no wavenumbers
with ω solutions corresponding to ω2 = 0. On the other hand, if dΩ2/dR < 0,
as it is for essentially all astrophysical disks, then for wavenumbers satisfying

(kvA)2 < −
dΩ2

d ln R
(260)

instability exists. This is the magnetorotational instability, or MRI. In a
Keplerian disk, this corresponds to k2v2

A < 3Ω2.

From the explicit solution of the growth rates from equation (259), the
following results can be derived. (Get a pencil and paper and do so):

• The wavenumber of the maximum growth rate is given by

k2v2
A = −

(

1

4
+

κ2

16Ω2

)

dΩ2

d lnR
(261)

The right side is 15Ω2/16 for a Keplerian disk.

• The maximum growth rate is given by

|ωmax| = −
1

2

dΩ

d lnR
(262)

This is 0.75Ω for a Keperian disk, an enormously fast rate. In one orbit,
linear amplitudes grow by more than factor of 100. Notice that the
maximum growth rate is independent of the strength of the magnetic
field! The field just sets the lengthscale at which the maximum growth
occurs.

• The eigenvector of displacement makes an angle of 45◦ with respect to
outward radial axis, with an azimuthal component pointed along the
direction of the shear, and opposite to the sense of global rotation. This
gives a strong positive value for the stress tensor, WRφ. In numerical
simulations, the Alfvén velocity components of the stress tensor are
larger than the ordinary velocity components by a factor of 3 to 4.
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A more general linear calculation shows that these results hold for any
configuration of magnetic field, as long as there is some component of the
vertical field. The MRI is widely believed to be the underlying source of
turbulence in accretion disks, though important questions still remain to be
understood. Foremost among these is how the MRI works in the relatively
cool disks around forming stars.

For more information on the MRI, see the review articles that can be
obtained on my webpage, http://www.lra.ens.fr/ balbus
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