Astro/Phys 202: Astrophysical Fluid Dynamics C.–P. Ma

Problem Set 2

Due 6pm Friday September 27

0. Reading: Finish Chapter 13.1-13.6 of Thorne and Blandford

1. Polytropic Stellar Models I: Analytic Solutions

(a) Find the analytical solution $\theta(\xi)$ to the Lane-Emden equation for a non-rotating spherical star with a polytropic index n = 0. Find the value of ξ at the star's surface.

(b) Repeat (a) for n = 1.

(c) Plot on a **single** figure the radial profile θ vs ξ for a polytropic star of n = 0, 1, and 5. Comment on the general trend as n increases. Attach your plotting script to show work.

2. Polytropic Stellar Models II: Some Physical Numbers

Consider a non-rotating spherical star of polytropic index n (with n < 5), mass M, and radius R.

(a) Show that the ratio of the star's central density to the mean density is

$$\frac{\rho_c}{\bar{\rho}} = \frac{\xi_{\max}^3}{3I_n} , \qquad I_n \equiv \int_0^{\xi_{\max}} \theta^n \xi^2 d\xi .$$
(1)

The Sun follows approximately the n = 3 polytropic model. For n = 3, the Lane-Emden equation does not have an analytic solution, but it can be solved numerically to show that $\xi_{\text{max}} = 6.9$, and $I_3 = 2.02$.

(b) For n = 3, show that the star's mass is independent of its central density and depends on only constants and the coefficient K. Compute the value of K for the Sun.

(c) Using information from (a) and (b), compute the value of the Sun's (i) mean density in g/cm³, (ii) central density in g/cm³, (iii) central pressure, and (iv) central temperature T_c (assuming an ideal gas with mean molecular weight of 0.6). How does your T_c compare with the value of 1.4×10^7 Kelvin obtained from numerical solution of the full set of stellar structure equations for a $1M_{\odot}$ star?

3. Giant Gas Planets

Jupiter and Saturn are both comprised of H-He fluid that is well approximated by a polytropic index of n = 1, that is, $P = K\rho^2$ with the same constant K. Use the fact that $M_J = 2 \times 10^{27}$ kg, $M_S = 6 \times 10^{26}$ kg and $R_J = 7 \times 10^4$ km to estimate the radius of Saturn. Using the analytic solution to the Lane-Emden equation with n = 1 in Problem 1(b) above, compute the central densities of Jupiter and Saturn.