
Astro/Phys 202: Astrophysical Fluid Dynamics November 8 2024

C.–P. Ma

Problem Set 8

Due 6pm Friday November 22 2024

Reading: Sec. 13.7 of Thorne & Blandford; Ch. 7 of Balbus Hydrodynamics

0. Existence and Smoothness (or Not!) of the Navier-Stokes Equation

The existence and smoothness of solutions to the Navier-Stokes equation in 3D is one of seven Mil-
lennium problems posted here. Read the official description of this problem. This lecture by Atiyah
is quite elegant. Write down any thoughts (or solution - extra credit!) you may have.

1. Stokes Flow

In this problem, you are led through the derivation for the drag force on a sphere moving through a
viscous fluid. This is a classic fluid dynamics problem first solved by Stokes in 1845. Mathematical
subtleties, however, plagued the subject until the 1950s. The Millikan oil drop experiment relied on
the knowledge of the Stokes drag force on the drop due to the viscosity of air.

Specifically, we want to find the solutions for a constant and low-Reynolds number flow of a viscous
and incompressible fluid past a sphere of radius a. Assume the flow far away from the sphere is along
the z-axis, ~v = V ẑ, and neglect gravity to start with.

(a) For this type of flow, show that the fluid equations lead to two Laplace equations for pressure P
and vorticity ~ω ≡ ∇× ~v:

∇2P = 0 , ∇2~ω = 0 . (1)

In spherical coordinates where the origin is at the center of the sphere, the boundary conditions of the
fluid velocity are (i) ~v = 0 at the surface of the sphere, r = a; and (ii) ~v → V ẑ = V (cos θ r̂ − sin θ θ̂)
as r →∞. Now we would like to solve for the velocity at all r. A general solution can be written as:
~v = V [A(r) cos θ r̂ −B(r) sin θ θ̂].

(b) Show that the incompressibility condition requires

B =
1

2r

d(r2A)
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. (2)

(c) Show that the φ-component of the vorticity is

ωφ =
V sin θ

r
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One can then show (but you are not required to do this) that ∇2~ω = 0 requires
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. (4)

The function A must obey the boundary condition A→ 1 as r →∞. Given this condition, a reasonable
guess for the solution to eq. (4) is a power law of the form: A = 1 + b1/r + b2/r

2 + b3/r
3 + .....

(d) Show that A and B must be of the form A = 1 + b1/r+ b3/r
3 and B = 1 + b1/2r− b3/2r3. From

the boundary condition at the surface of the sphere r = a, show that the final solution for the fluid
velocity is

vr = V cos θ
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, vθ = −V sin θ
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)
. (5)

(e) Now let’s solve for the pressure. First, verify that

P = P∞ +
α cos θ

r2
(6)

is a solution to the Laplace equation. In fact, this is the only solution that is independent of φ and
approaches a uniform pressure at infinity (but you don’t have to prove this). Determining α is the
hardest part of the problem, which can be done from the z-component of the Navier-Stokes equation

∂zP = η∇2vz . (7)

Show that the left-hand side is
∂P

∂z
=
α

r3
(1− 3 cos2 θ) . (8)

The right-hand side of eq. (7) can be calculated from eq. (5) after some nasty algebra (you can skip
this part):

η∇2vz =
3aηV

2r3
(3 cos2 θ − 1) . (9)

Together, we have α = −3aηV/2. The final solution for P is therefore

P = P∞ −
3aηV cos θ

2r2
. (10)

(f) The force (per unit area) exerted by the fluid on the surface of the sphere is related to the stress
tensor. It can be shown that Fr = Trr = −P∞ + 3ηV cos θ/2a, and Fθ = Trθ = −3ηV sin θ/2a. Due
to the symmetry of the problem, the net force is along z, the direction of the flow. Using the given Fr
and Fθ, show that

Fz = −P∞ cos θ +
3ηV

2a
, (11)

and that the total force integrated over the sphere’s surface is

Fdrag = 6πηV a . (12)

This is known as the Stokes’ law.



(g) Now let’s turn on gravity. For a sphere of mass density ρs falling in a viscous fluid of density ρf
under the influence of gravity, the terminal speed is reached when gravity is balanced by the drag
force and the buoyant force. Show that the terminal speed is

vterm =
2ga2

9ν

(
ρs
ρf
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)
. (13)

Estimate the terminal speed in cm/s for a steel sphere of density ∼ 5 g/cm3 and radius of 1 cm in
glycerine at 0 degree Celsius (with ν ∼ 100 cm2/s and density of 1.26 g/cm3).


