
1

The Expansion of the Universe

The visible universe seems the same in all directions around us, at least if
we look out to distances larger than about 300 million light years.1 The
isotropy is much more precise (to about one part in 10−5) in the cosmic
microwave background, to be discussed in Chapters 2 and 7. As we will
see there, this radiation has been traveling to us for about 14 billion years,
supporting the conclusion that the universe at sufficiently large distances is
nearly the same in all directions.

It is difficult to imagine that we are in any special position in the universe,
so we are led to conclude that the universe should appear isotropic to
observers throughout the universe. But not to all observers. The universe
does not seem at all isotropic to observers in a spacecraft whizzing through
our galaxy at half the speed of light. Such observers will see starlight and
the cosmic microwave radiation background coming toward them from the
direction toward which they are moving with much higher intensity than
from behind. In formulating the assumption of isotropy, one should spec-
ify that the universe seems the same in all directions to a family of “typical”
freely falling observers: those that move with the average velocity of typical
galaxies in their respective neighborhoods. That is, conditions must be the
same at the same time (with a suitable definition of time) at any points that
can be carried into each other by a rotation about any typical galaxy. But any
point can be carried into any other by a sequence of such rotations about var-
ious typical galaxies, so the universe is then also homogeneous — observers
in all typical galaxies at the same time see conditions pretty much the same.2

The assumption that the universe is isotropic and homogeneous will
lead us in Section 1.1 to choose the spacetime coordinate system so that the
metric takes a simple form, first worked out by Friedmann3 as a solution
of the Einstein field equations, and then derived on the basis of isotropy
and homogeneity alone by Robertson4 and Walker.5 Almost all of modern
cosmology is based on this Robertson–Walker metric, at least as a first

1K. K. S. Wu, O. Lahav, and M. J. Rees, Nature 397, 225 (January 21, 1999). For a contrary view, see
P. H. Coleman, L. Pietronero, and R. H. Sanders, Astron. Astrophys. 200, L32 (1988): L. Pietronero,
M. Montuori, and F. Sylos-Labini, in Critical Dialogues in Cosmology, (World Scientific, Singapore,
1997): 24; F. Sylos-Labini, F. Montuori, and L. Pietronero, Phys. Rep. 293, 61 (1998).

2The Sloan Digital Sky Survey provides evidence that the distribution of galaxies is homogeneous
on scales larger than about 300 light years; see J. Yadav, S. Bharadwaj, B. Pandey, and T. R. Seshadri,
Mon. Not. Roy. Astron. Soc. 364, 601 (2005) [astro-ph/0504315].

3A. Friedmann, Z. Phys. 10, 377 (1922); ibid. 21, 326 (1924).
4H. P. Robertson, Astrophys. J. 82, 284 (1935); ibid., 83, 187, 257 (1936).
5A. G. Walker, Proc. Lond. Math. Soc. (2) 42, 90 (1936).
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1 The Expansion of the Universe

approximation. The observational implications of these assumptions are
discussed in Sections 1.2–1.4, without reference to any dynamical assump-
tions. The Einstein field equations are applied to the Robertson–Walker
metric in Section 1.5, and their consequences are then explored in
Sections 1.6–1.13.

1.1 Spacetime geometry

As preparation for working out the spacetime metric, we first consider the
geometry of a three-dimensional homogeneous and isotropic space. As
discussed in Appendix B, geometry is encoded in a metric gij(x) (with i
and j running over the three coordinate directions), or equivalently in a line
element ds2 ≡ gij dxi dxj , with summation over repeated indices understood.
(We say that ds is the proper distance between x and x + dx, meaning that
it is the distance measured by a surveyor who uses a coordinate system that
is Cartesian in a small neighborhood of the point x.) One obvious homo-
geneous isotropic three-dimensional space with positive definite lengths is
flat space, with line element

ds2 = dx2 . (1.1.1)

The coordinate transformations that leave this invariant are here simply
ordinary three-dimensional rotations and translations. Another fairly
obvious possibility is a spherical surface in four-dimensional Euclidean
space with some radius a, with line element

ds2 = dx2 + dz2 , z2 + x2 = a2 . (1.1.2)

Here the transformations that leave the line element invariant are four-
dimensional rotations; the direction of x can be changed to any other
direction by a four-dimensional rotation that leaves z unchanged (that is, an
ordinary three-dimensional rotation), while x can be carried into any other
point by a four-dimensional rotation that does change z. It can be proved6

that the only other possibility (up to a coordinate transformation) is a
hyperspherical surface in four-dimensional pseudo-Euclidean space, with
line element

ds2 = dx2 − dz2 , z2 − x2 = a2 , (1.1.3)

where a2 is (so far) an arbitrary positive constant. The coordinate trans-
formations that leave this invariant are four-dimensional pseudo-rotations,
just like Lorentz transformations, but with z instead of time.

6See S. Weinberg, Gravitation and Cosmology (John Wiley & Sons, New York, 1972) [quoted below
as G&C], Sec. 13.2.
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1.1 Spacetime geometry

We can rescale coordinates

x′ ≡ ax , z′ ≡ az . (1.1.4)

Dropping primes, the line elements in the spherical and hyperspherical
cases are

ds2 = a2
[
dx2 ± dz2

]
, z2 ± x2 = 1 . (1.1.5)

The differential of the equation z2 ± x2 = 1 gives zdz = ∓x · dx so

ds2 = a2
[
dx2 ± (x · dx)2

1 ∓ x2

]
. (1.1.6)

We can extend this to the case of Euclidean space by writing it as

ds2 = a2

[

dx2 + K
(x · dx)2

1 − Kx2

]

, (1.1.7)

where

K =






+1 spherical
−1 hyperspherical
0 Euclidean .

(1.1.8)

(The constant K is often written as k, but we will use upper case for this
constant throughout this book to avoid confusion with the symbols for wave
number or for a running spatial coordinate index.) Note that we must take
a2 > 0 in order to have ds2 positive at x = 0, and hence everywhere.

There is an obvious way to extend this to the geometry of spacetime: just
include a term (1.1.7) in the spacetime line element, with a now an arbitrary
function of time (known as the Robertson–Walker scale factor):

dτ 2 ≡ −gµν(x)dxµdxν = dt2 − a2(t)

[

dx2 + K
(x · dx)2

1 − Kx2

]

. (1.1.9)

Another theorem7 tells us that this is the unique metric (up to a coordinate
transformation) if the universe appears spherically symmetric and isotropic
to a set of freely falling observers, such as astronomers in typical galaxies.
The components of the metric in these coordinates are:

gij = a2(t)
(

δij + K
xixj

1 − Kx2

)
, gi0 = 0 , g00 = −1 , (1.1.10)

7G&C, Sec. 13.5.
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1 The Expansion of the Universe

with i and j running over the values 1, 2, and 3, and with x0 ≡ t the time
coordinate in our units, with the speed of light equal to unity. Instead of
the quasi-Cartesian coordinates xi , we can use spherical polar coordinates,
for which

dx2 = dr2 + r2d$ , d$ ≡ dθ2 + sin2 θdφ2 .

so

dτ 2 = dt2 − a2(t)

[
dr2

1 − Kr2 + r2d$

]

. (1.1.11)

in which case the metric becomes diagonal, with

grr = a2(t)
1 − Kr2 , gθθ = a2(t)r2 , gφφ = a2(t)r2 sin2 θ , g00 = −1 .

(1.1.12)

We will see in Section 1.5 that the dynamical equations of cosmology
depend on the overall normalization of the function a(t) only through a
term K/a2(t), so for K = 0 this normalization has no significance; all that
matters are the ratios of the values of a(t) at different times.

The equation of motion of freely falling particles is given in Appendix B
by Eq. (B.12):

d2xµ

du2 + 'µ
νκ

dxν

du
dxκ

du
= 0 , (1.1.13)

where '
µ
νκ is the affine connection, given in Appendix B by Eq. (B.13),

'µ
νκ = 1

2
gµλ

[
∂gλν

∂xκ
+ ∂gλκ

∂xν
− ∂gνκ

∂xλ

]
. (1.1.14)

and u is a suitable variable parameterizing positions along the spacetime
curve, proportional to τ for massive particles. (A spacetime path xµ = xµ(u)
satisfying Eq. (1.1.13) is said to be a geodesic, meaning that the integral∫

dτ is stationary under any infinitesimal variation of the path that leaves
the endpoints fixed.) Note in particular that the derivatives ∂ig00 and ġ0i
vanish, so 'i

00 = 0. A particle at rest in these coordinates will therefore stay
at rest, so these are co-moving coordinates, which follow the motion of typical
observers. Because g00 = −1, the proper time interval (−gµνdxµdxν)1/2 for
a co-moving clock is just dt, so t is the time measured in the rest frame of a
co-moving clock.

The meaning of the Robertson–Walker scale factor a(t) can be clarified
by calculating the proper distance at time t from the origin to a co-moving
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1.1 Spacetime geometry

object at radial coordinate r:

d(r, t) = a(t)
∫ r

0

dr√
1 − Kr2

= a(t) ×






sin−1 r K = +1
sinh−1 r K = −1
r K = 0

(1.1.15)

In this coordinate system a co-moving object has r time-independent, so
the proper distance from us to a co-moving object increases (or decreases)
with a(t). Since there is nothing special about our own position, the proper
distance between any two co-moving observers anywhere in the universe
must also be proportional to a(t). The rate of change of any such proper
distance d(t) is just

ḋ = d ȧ/a . (1.1.16)

We will see in the following section that in fact a(t) is increasing.
We also need the non-zero components of the affine connection, given

by Eq. (1.1.14) as:

'0
ij = −1

2

(
g0i,j + g0j,i − gij,0

)
= aȧ

(
δij + K

xixj

1 − Kx2

)

= aȧg̃ij , (1.1.17)

'i
0j = 1

2
gil
(
gl0,j + glj,0 − g0j,l

)
= ȧ

a
δij , (1.1.18)

'i
jl = 1

2
g̃im
(

∂ g̃jm

∂xl + ∂ g̃lm

∂xj − ∂ g̃jl

∂xm

)
≡ '̃i

jl . (1.1.19)

Here g̃ij and '̃i
jl are the purely spatial metric and affine connection, and g̃ij

is the reciprocal of the 3×3 matrix g̃ij , which in general is different from the
ij component of the reciprocal of the 4 × 4 matrix gµν . In quasi-Cartesian
coordinates,

g̃ij = δij + K
xixj

1 − Kx2 , '̃i
jl = K g̃jlxi . (1.1.20)

We can use these components of the affine connection to find the motion
of a particle that is not at rest in the co-moving coordinate system. First,
let’s calculate the rate of change of the momentum of a particle of non-zero
mass m0. Consider the quantity

P ≡ m0

√

gij
dxi

dτ

dxj

dτ
(1.1.21)

where dτ 2 = dt2 − gijdxidxj . In a locally inertial Cartesian coordinate
system, for which gij = δij , we have dτ = dt

√
1 − v2 where vi = dxi/dt,
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1 The Expansion of the Universe

so Eq. (1.1.21) is the formula given by special relativity for the magnitude
of the momentum. On the other hand, the quantity (1.1.21) is evidently
invariant under arbitrary changes in the spatial coordinates, so we can eval-
uate it just as well in co-moving Robertson–Walker coordinates. This can
be done directly, using Eq. (1.1.13), but to save work, suppose we adopt a
spatial coordinate system in which the particle position is near the origin
xi = 0, where g̃ij = δij + O(x2), and we can therefore ignore the purely
spatial components 'i

jk of the affine connection. General relativity gives
the equation of motion

d2xi

dτ 2 = −'i
µν

dxµ

dτ

dxν

dτ
= −2

a
da
dt

dxi

dτ

dt
dτ

.

Multiplying with dτ/dt gives

d
dt

(
dxi

dτ

)
= −2

a
da
dt

dxi

dτ
,

whose solution is

dxi

dτ
∝ 1

a2(t)
. (1.1.22)

Using this in Eq. (1.1.21) with a metric gij = a2(t)δij , we see that

P(t) ∝ 1/a(t) . (1.1.23)

This holds for any non-zero mass, however small it may be compared to
the momentum. Hence, although for photons both m0 and dτ vanish,
Eq. (1.1.23) is still valid.

It is important to characterize the paths of photons and material particles
in interpreting astronomical observations (especially of gravitational lenses,
in Chapter 9). Photons and particles passing through the origin of our
spatial coordinate system obviously travel on straight lines in this coordinate
system, which are spatial geodesics, curves that satisfy the condition

d2xi

ds2 + '̃i
jl

dxj

ds
dxl

ds
= 0 , (1.1.24)

where ds is the three-dimensional proper length

ds2 ≡ g̃ij dxi dxj . (1.1.25)

But the property of being a geodesic is invariant under coordinate transfor-
mations (since it states the vanishing of a vector), so the path of the photon
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1.1 Spacetime geometry

or particle will also be a spatial geodesic in any spatial coordinate system,
including those in which the photon or particle’s path does not pass through
the origin. (This can be seen in detail as follows. Using Eqs. (1.1.17) and
(1.1.18), the equations of motion (1.1.13) of a photon or material particle are

0 = d2xi

du2 + 'i
jl

dxj

du
dxl

du
+ 2ȧ

a
dxi

du
dt
du

(1.1.26)

0 = d2t
du2 + aȧg̃ij

dxi

du
dxj

du
. (1.1.27)

Eq. (1.1.26) can be written

0 =
(

ds
du

)2
[

d2xi

ds2 + 'i
jl

dxj

ds
dxl

ds

]

+
[

d2s
du2 + 2ȧ

a
dt
du

ds
du

]
dxi

ds
, (1.1.28)

where s is so far arbitrary. If we take s to be the proper length (1.1.25) in
the spatial geometry, then as we have seen

du2 ∝ dτ 2 ∝ dt2 − a2 ds2

Dividing by du2, differentiating with respect to u, and using Eq. (1.1.27)
shows that

d2s
du2 + 2ȧ

a
dt
du

ds
du

= 0 ,

so that Eq. (1.1.28) gives Eq. (1.1.24).)
There are various smoothed-out vector and tensor fields, like the current

of galaxies and the energy-momentum tensor, whose mean values satisfy the
requirements of isotropy and homogeneity. Isotropy requires that the mean
value of any three-vector vi must vanish, and homogeneity requires the
mean value of any three-scalar (that is, a quantity invariant under purely
spatial coordinate transformations) to be a function only of time, so the
current of galaxies, baryons, etc. has components

Ji = 0 , J0 = n(t) , (1.1.29)

with n(t) the number of galaxies, baryons, etc. per proper volume in a co-
moving frame of reference. If this is conserved, in the sense of Eq. (B.38),
then

0 = Jµ
;µ = ∂Jµ

∂xµ
+ 'µ

µνJν = dn
dt

+ 'i
i0n = dn

dt
+ 3

da
dt

n
a

so

n(t) = constant
a3(t)

. (1.1.30)
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1 The Expansion of the Universe

This shows the decrease of number densities due to the expansion of the
co-moving coordinate mesh for increasing a(t).

Likewise, isotropy requires the mean value of any three-tensor tij at x = 0
to be proportional to δij and hence to gij , which equals a−2δij at x = 0.
Homogeneity requires the proportionality coefficient to be some function
only of time. Since this is a proportionality between two three-tensors tij and
gij it must remain unaffected by an arbitrary transformation of space coor-
dinates, including those transformations that preserve the form of gij while
taking the origin into any other point. Hence homogeneity and isotropy
require the components of the energy-momentum tensor everywhere to take
the form

T 00 = ρ(t) , T 0i = 0 , Tij = g̃ij(x) a−2(t) p(t) . (1.1.31)

(These are the conventional definitions of proper energy density ρ and pres-
sure p, as given by Eq. (B.43) in the case of a velocity four-vector with ui = 0,
u0 = 1.) The momentum conservation law Tiµ

;µ = 0 is automatically sat-
isfied for the Robertson–Walker metric and the energy-momentum tensor
(1.1.31), but the energy conservation law gives the useful information

0 = T 0µ
;µ = ∂T 0µ

∂xµ
+ '0

µνT νµ + 'µ
µνT 0ν

= ∂T 00

∂t
+ '0

ijT
ij + 'i

i0T 00 = dρ

dt
+ 3ȧ

a

(
p + ρ

)
,

so that

dρ

dt
+ 3ȧ

a

(
p + ρ

)
= 0 . (1.1.32)

This can easily be solved for an equation of state of the form

p = wρ (1.1.33)

with w time-independent. In this case, Eq. (1.1.32) gives

ρ ∝ a−3−3w . (1.1.34)

In particular, this applies in three frequently encountered extreme cases:

• Cold Matter (e.g. dust): p = 0

ρ ∝ a−3 (1.1.35)

• Hot Matter (e.g. radiation): p = ρ/3

ρ ∝ a−4 (1.1.36)
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1.1 Spacetime geometry

• Vacuum energy: As we will see in Section 1.5, there is another kind of
energy-momentum tensor, for which Tµν ∝ gµν , so that p = −ρ, in
which case the solution of Eq. (1.1.32) is thatρ is a constant, known (up
to conventional numerical factors) either as the cosmological constant
or the vacuum energy.

These results apply separately for coexisting cold matter, hot matter, and
a cosmological constant, provided that there is no interchange of energy
between the different components. They will be used together with the
Einstein field equations to work out the dynamics of the cosmic expansion
in Section 1.5.

So far, we have considered only local properties of the spacetime. Now
let us look at it in the large. For K = +1 space is finite, though like any
spherical surface it has no boundary. The coordinate system used to derive
Eq. (1.1.7) with K = +1 only covers half the space, with z > 0, in the same
way that a polar projection map of the earth can show only one hemisphere.
Taking account of the fact that z can have either sign, the circumference of
the space is 2πa, and its volume is 2π2a3.

The spaces with K = 0 or K = −1 are usually taken to be infinite, but
there are other possibilities. It is also possible to have finite spaces with
the same local geometry, constructed by imposing suitable conditions of
periodicity. For instance, in the case K = 0 we might identify the points
x and x + n1L1 + n2L2 + n3L3, where n1, n2, n3 run over all integers, and
L1, L2, and L3 are fixed non-coplanar three-vectors that characterize the
space. This space is then finite, with volume a3L1 · (L2 × L3). Looking out
far enough, we should see the same patterns of the distribution of matter
and radiation in opposite directions. There is no sign of this in the observed
distribution of galaxies or cosmic microwave background fluctuations, so
any periodicity lengths such as |Li| must be larger than about 1010 light
years.8

ThereareaninfinitenumberofpossibleperiodicityconditionsforK = −1
as well as for K = +1 and K = 0.9 We will not consider these possibilities
further here, because they seem ill-motivated. In imposing conditions of
periodicity we give up the rotational (though not translational) symmetry
that led to the Robertson–Walker metric in the first place, so there seems
little reason to impose these periodicity conditions while limiting the local
spacetime geometry to that described by the Robertson–Walker metric.

8N. J. Cornish et al., Phys. Rev. Lett. 92, 201302 (2004); N. G. Phillips & A. Kogut, Astrophys. J.
545, 820 (2006) [astro-ph/0404400].

9For reviews of this subject, see G. F. R. Ellis, Gen. Rel. & Grav. 2, 7 (1971); M. Lachièze-Rey
and J.-P. Luminet, Phys. Rept. 254, 135 (1995); M. J. Rebouças, in Proceedings of the Xth Brazilian
School of Cosmology and Gravitation, eds. M. Novello and S. E. Perez Bergliaffa (American Institute
of Physics Conference Proceedings, Vol. 782, New York, 2005): 188 [astro-ph/0504365].
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1 The Expansion of the Universe

1.2 The cosmological redshift

The general arguments of the previous section gave no indication whether
the scale factor a(t) in the Robertson–Walker metric (1.1.9) is increasing,
decreasing, or constant. This information comes to us from the observa-
tion of a shift in the frequencies of spectral lines from distant galaxies as
compared with their values observed in terrestrial laboratories.

To calculate these frequency shifts, let us adopt a Robertson–Walker
coordinate system in which we are at the center of coordinates, and consider
a light ray coming to us along the radial direction. A ray of light obeys the
equation dτ 2 = 0, so for such a light ray Eq. (1.1.11) gives

dt = ±a(t)
dr√

1 − Kr2
(1.2.1)

For a light ray coming toward the origin from a distant source, r decreases
as t increases, so we must choose the minus sign in Eq. (1.2.1). Hence if
light leaves a source at co-moving coordinate r1 at time t1, it arrives at the
origin r = 0 at a later time t0, given by

∫ t0

t1

dt
a(t)

=
∫ r1

0

dr√
1 − Kr2

. (1.2.2)

Taking the differential of this relation, and recalling that the radial coord-
inate r1 of co-moving sources is time-independent, we see that the interval
δt1 between departure of subsequent light signals is related to the interval
δt0 between arrivals of these light signals by

δt1
a(t1)

= δt0
a(t0)

(1.2.3)

If the “signals” are subsequent wave crests, the emitted frequency is ν1 =
1/δt1, and the observed frequency is ν0 = 1/δt0, so

ν0/ν1 = a(t1)/a(t0) . (1.2.4)

If a(t) is increasing, then this is a redshift, a decrease in frequency by a factor
a(t1)/a(t0), equivalent to an increase in wavelength by a factor convention-
ally called 1 + z:

1 + z = a(t0)/a(t1) . (1.2.5)

Alternatively, if a(t) is decreasing then we have a blueshift, a decrease in
wavelength given by the factor Eq. (1.2.5) with z negative. These results are
frequently interpreted in terms of the familiar Doppler effect; Eq. (1.1.15)
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1.2 The cosmological redshift

shows that for an increasing or decreasing a(t), the proper distance to any co-
moving source of light like a typical galaxy increases or decreases with time,
so that such sources are receding from us or approaching us, which naturally
produces a redshift or blueshift. For this reason, galaxies with redshift (or
blueshift) z are often said to have a cosmological radial velocity cz. (The
meaning of relative velocity is clear only for z ( 1, so the existence of
distant sources with z > 1 does not imply any violation of special relativity.)
However, the interpretation of the cosmological redshift as a Doppler shift
can only take us so far. In particular, the increase of wavelength from
emission to absorption of light does not depend on the rate of change of
a(t) at the times of emission or absorption, but on the increase of a(t) in the
whole period from emission to absorption.

We can also understand the frequency shift (1.2.4) by reference to the
quantum theory of light: The momentum of a photon of frequency ν is
hν/c (where h is Planck’s constant), and we saw in the previous section that
this momentum varies as 1/a(t).

For nearby sources, we may expand a(t) in a power series, so

a(t) ) a(t0) [1 + (t − t0)H0 + . . . ] (1.2.6)

where H0 is a coefficient known as the Hubble constant:

H0 ≡ ȧ(t0)/a(t0) . (1.2.7)

Eq. (1.2.5) then gives the fractional increase in wavelength as

z = H0 (t0 − t1) + . . . . (1.2.8)

Note that for close objects, t0 − t1 is the proper distance d (in units with
c = 1). We therefore expect a redshift (for H0 > 0) or blueshift (for H0 < 0)
that increases linearly with the proper distance d for galaxies close enough
to use the approximation (1.2.6):

z = H0d + . . . . (1.2.9)

The redshift of light from other galaxies was first observed in the 1910s
by Vesto Melvin Slipher at the Lowell Observatory in Flagstaff, Arizona.
In 1922, he listed 41 spiral nebulae, of which 36 had positive z up to 0.006,
and only 5 had negative z, the most negative being the Andromeda nebula
M31, with z = −0.001.1 From 1918 to 1925 C. Wirtz and K. Lundmark2

1V. M. Slipher, table prepared for A. S. Eddington, The Mathematical Theory of
Relativity, 2nd ed. (Cambridge University Press, London, 1924): 162.

2C. Wirtz, Astr. Nachr. 206, 109 (1918); ibid. 215, 349 (1921); ibid. 216, 451 (1922); ibid. 222, 21
(1924); Scientia 38, 303 (1925); K. Lundmark, Stock. Hand. 50, No. 8 (1920); Mon. Not. Roy. Astron.
Soc. 84, 747 (1924); ibid. 85, 865 (1925).
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1 The Expansion of the Universe

discovered a number of spiral nebulae with redshifts that seemed to increase
with distance. But until 1923 it was only possible to infer the relative dis-
tances of the spiral nebulae, using observations of their apparent luminosity
or angular diameter. With the absolute luminosity and physical dimensions
unknown, it was even possible that the spiral nebulae were outlying parts
of our own galaxy, as was in fact believed by many astronomers. Edwin
Hubble’s 1923 discovery of Cepheid variable stars in the Andromeda neb-
ula M31 (discussed in the next section) allowed him to estimate its distance
and size, and made it clear that the spiral nebulae are galaxies like our own,
rather than objects in our own galaxy.

No clear linear relation between redshift and distance could be seen in
the early data of Slipher, Wirtz, and Lundmark, because of a problem that
has continued to bedevil measurements of the Hubble constant down to
the present. Real galaxies generally do not move only with the general
expansion or contraction of the universe; they typically have additional
“peculiar” velocities of hundreds of kilometers per second, caused by grav-
itational fields of neighboring galaxies and intergalactic matter. To see a
linear relation between redshift and distance, it is necessary to study galax-
ies with |z| * 10−3, whose cosmological velocities zc are thousands of
kilometers per second.

In 1929 Hubble3 announced that he had found a “roughly linear” relation
between redshift and distance. But at that time redshifts and distances
had been measured only for galaxies out to the large cluster of galaxies in
the constellation Virgo, whose redshift indicates a radial velocity of about
1,000 km/sec, not much larger than typical peculiar velocities. His data
points were therefore spread out widely in a plot of redshift versus distance,
and did not really support a linear relation. But by the early 1930s he
had measured redshifts and distances out to the Coma cluster, with redshift
z ) 0.02, corresponding to a recessional velocity of about 7,000 km/sec, and
a linear relation between redshift and distance was evident. The conclusion
was clear (at least, to some cosmologists): the universe really is expand-
ing. The correctness of this interpretation of the redshift is supported by
observations to be discussed in Section 1.7.

From Hubble’s time to the present galaxies have been discovered with
ever larger redshifts. Galaxies were found with redshifts of order unity,
for which expansions such as Eq. (1.2.9) are useless, and we need formulas
that take relativistic effects into account, as discussed in Sections 1.4 and
1.5. At the time of writing, the largest accurately measured redshift is for
a galaxy observed with the Subaru telescope.4 The Lyman alpha line from

3E. P. Hubble, Proc. Nat. Acad. Sci. 15, 168 (1929).
4M. Iye et al., Nature 443, 186 (2006) [astro-ph/0609393].
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1.3 Distances at small redshift: The Hubble constant

this galaxy (emitted in the transition from the 2p to 1s levels of hydrogen),
which is normally at an ultraviolet wavelength of 1,215 Å, is observed at the
infrared wavelength of 9,682 Å, indicating a redshift 1 + z = 9682/1215, or
z = 6.96.

It may eventually become possible to measure the expansion rate H(t) ≡
ȧ(t)/a(t) at times t earlier than the present, by observing the change in very
accurately measured redshifts of individual galaxies over times as short as
a decade.5 By differentiating Eq. (1.2.5) we see that the rate of change of
redshift with the time of observation is

dz
dt0

= ȧ(t0)
a(t1)

− a(t0) ȧ(t1)
a2(t1)

dt1
dt0

=
[
H0 − H(t1)

dt1
dt0

]
(1 + z) .

From the same argument that led to Eq. (1.2.3) we have dt1/dt0 = 1/(1+z),
so if we measure dz/dt0 we can find the expansion rate at the time of light
emission from the formula

H(t1) = H0(1 + z) − dz
dt0

. (1.2.10)

1.3 Distances at small redshift: The Hubble constant

We must now think about how astronomical distances are measured. In
this section we will be considering objects that are relatively close, say
with z not much greater than 0.1, so that effects of the spacetime curva-
ture and cosmic expansion on distance determinations can be neglected.
These measurements are of cosmological importance in themselves, as they
are used to learn the value of the Hubble constant H0. Also, distance
measurements at larger redshift, which are used to find the shape of the
function a(t), rely on the observations of “standard candles,” objects of
known intrinsic luminosity, that must be identified and calibrated by stud-
ies at these relatively small redshifts. Distance determinations at larger
redshift will be discussed in Section 1.6, after we have had a chance to lay
a foundation in Sections 1.4 and 1.5 for an analysis of the effects of expan-
sion and spacetime geometry on measurements of distances of very distant
objects.

It is conventional these days to separate the objects used to measure dis-
tances in cosmology into primary and secondary distance indicators. The
absolute luminosities of the primary distance indicators in our local group

5A. Loeb, Astrophys. J. 499, L111 (1998) [astro-ph/9802122]; P-S. Corasaniti, D. Huterer, and
A. Melchiorri, Phys. Rev. D 75, 062001 (2007) [astro-ph/0701433]. For an earlier suggestion along this
line, see A. Sandage, Astrophys. J. 139, 319 (1962).
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1 The Expansion of the Universe

of galaxies are measured either directly, by kinematic methods that do not
depend on an a priori knowledge of absolute luminosities, or indirectly, by
observation of primary distance indicators in association with other primary
distance indicators whose distance is measured by kinematic methods. The
sample of these relatively close primary distance indicators is large enough
to make it possible to work out empirical rules that give their absolute
luminosities as functions of various observable properties. Unfortunately,
the primary distance indicators are not bright enough for them to be stud-
ied at distances at which z is greater than about 0.01, redshifts at which
cosmological velocities cz would be greater than typical random depar-
tures of galactic velocities from the cosmological expansion, a few hundred
kilometers per second. Thus they cannot be used directly to learn about
a(t). For this purpose it is necessary to use secondary distance indicators,
which are bright enough to be studied at these large distances, and whose
absolute luminosities are known through the association of the closer ones
with primary distance indicators.

A. Primary distance indicators1

Almost all distance measurements in astronomy are ultimately based on
measurements of the distance of objects within our own galaxy, using one
or the other of two classic kinematic methods.

1. Trigonometric parallax
The motion of the earth around the sun produces an annual motion of the
apparent position of any star around an ellipse, whose maximum angular
radius π is given in radians (for π ( 1, which is the case for all stars) by

π = dE

d
(1.3.1)

where d is the star’s distance from the solar system, and dE is the mean dis-
tance of the earth from the sun,2 defined as the astronomical unit,

1For a survey, see M. Feast, in Nearby Large-Scale Structures and the Zone of Avoidance, eds.
A. P. Fairall and P. Woudt (ASP Conference Series, San Francisco, 2005) [astro-ph/0405440].

2The history of measurements of distances in the solar system goes back to Aristarchus of Samos
(circa 310 BC–230 BC). From the ratio of the breadth of the earth’s shadow during a lunar eclipse to the
angular diameter of the moon he estimated the ratio of the diameters of the moon and earth; from the
angular diameter of the moon he estimated the ratio of the diameter of the moon to its distance from
the earth; and from the angle between the lines of sight to the sun and moon when the moon is half full
he estimated the ratio of the distances to the sun and moon; and in this way he was able to measure the
distance to the sun in units of the diameter of the earth. Although the method of Aristarchus was correct,
his observations were poor, and his result for the distance to the sun was far too low. [For an account
of Greek astronomy before Aristarchus and a translation of his work, see T. L. Heath, Aristarchus of
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1.3 Distances at small redshift: The Hubble constant

1 AU = 1.496 × 108 km. A parsec (pc) is defined as the distance at which
π = 1′′; there are 206,264.8 seconds of arc per radian so

1 pc = 206,264.8 AU = 3.0856 × 1013 km = 3.2616 light years.

The parallax in seconds of arc is the reciprocal of the distance in parsecs.
The first stars to have their distances found by measurement of their

trigonometric parallax were α Centauri, by Thomas Henderson in 1832,
and 61 Cygni, by Friedrich Wilhelm Bessel in 1838. These stars are at
distances 1.35 pc and 3.48 pc, respectively. The earth’s atmosphere makes
it very difficult to measure trigonometric parallaxes less than about 0.03′′

from ground-based telescopes, so that for many years this method could
be used to find the distances of stars only out to about 30 pc, and at these
distances only for a few stars and with poor accuracy.

This situation has been improved by the launching of a European Space
Agency satellite known as Hipparcos, used to measure the apparent pos-
itions and luminosities of large numbers of stars in our galaxy.3 For stars
of sufficient brightness, parallaxes could be measured with an accuracy
(standard deviation) in the range of 7 to 9 ×10−4 arc seconds. Of the
118,000 stars in the Hipparcos Catalog, it was possible in this way to find
distances with a claimed uncertainty of no more than 10% for about 20,000
stars, some at distances over 100 pc.

2. Proper motions
A light source at a distance d with velocity v⊥ perpendicular to the line
of sight will appear to move across the sky at a rate µ in radians/time
given by

µ = v⊥/d . (1.3.2)

This is known as its proper motion. Of course, astronomers generally have no
way of directly measuring the transverse velocity v⊥, but they can measure
the component vr of velocity along the line of sight from the Doppler shift
of the source’s spectral lines. The problem is to infer v⊥ from the measured
value of vr. This can be done in a variety of special cases:

• Moving clusters are clusters of stars that were formed together and
hence move on parallel tracks with equal speed. (These are open

Samos (Oxford University Press, Oxford, 1913).] The first reasonably accurate determination of the
distance of the earth to the sun was made by the measurement of a parallax. In 1672 Jean Richer and
Giovanni Domenico Cassini measured the distance from the earth to Mars, from which it was possible
to infer the distance from the earth to the sun, by observing the difference in the apparent direction to
Mars as seen from Paris and Cayenne, which are separated by a known distance of 6,000 miles. Today
distances within the solar system are measured very accurately by measurement of the timing of radar
echoes from planets and of radio signals from transponders carried by spacecraft.

3M. A. C. Perryman et al., Astron. Astrophys. 323, L49 (1997).
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clusters, in the sense that they are not held together by gravitational
attraction, in distinction to the much larger globular clusters whose
spherical shape indicates a gravitationally bound system.) The most
important such cluster is the Hyades (called by Tennyson’s Ulysses the
“rainy Hyades”), which contains over 100 stars. The velocities of these
stars along the line of sight are measured from their Doppler shifts,
and if we knew the distance to the cluster then the velocities of its
stars at right angles to the line of sight could be measured from their
proper motions. The distance to the cluster was determined long ago
to be about 40 pc by imposing the constraint that all these velocities
are parallel. Distances measured in this way are often expressed as
moving cluster parallaxes. Since the advent of the Hipparcos satellite,
the moving cluster method has been supplemented with a direct mea-
surement of the trigonometric parallax of some of these clusters,
including the Hyades.

• A second method is based on the statistical analysis of the Doppler
shifts and proper motions of stars in a sample whose relative
distances are all known, for instance because they all have the same
(unknown) absolute luminosity, or because they all at the same
(unknown) distance. The Doppler shifts give the velocities along
the line of sight, and the proper motions and the relative distances
give the velocities transverse to the line of sight, up to a single overall
factor related to the unknown absolute luminosity or distance. This
factor can be determined by requiring that the distribution of veloc-
ities transverse to the line of sight is the same as the distribution of
velocities along the line of sight. Distances measured in this way are
often called statistical parallaxes, or dynamical distances.

• The distance to the Cepheid variable star ζ Geminorum has been
measured4 by comparing the rate of change of its physical diame-
ter, as found from the Doppler effect, with the rate of change of its
angular diameter, measured using an optical interferometer. (About
Cepheids, more below.) The distance was found to be 336 ± 44 pc,
much greater than could have been found from a trigonometric par-
allax. This method has subsequently been extended to eight other
Cepheids.5

• It is becoming possible to measure distances by measuring the
proper motion of the material produced by supernovae, assuming a

4B. F. Lane, M. J. Kuchner, A. F. Boden, M. Creech-Eakman, and S. B. Kulkarni, Nature 407, 485
(September 28, 2000).

5P. Kervella et al., Astron. Astrophys. 423, 327 (2004) [astro-ph/0404179].
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1.3 Distances at small redshift: The Hubble constant

more-or-less cylindrically symmetric explosion, so that the transverse
velocity v⊥ can be inferred from the radial velocity vr measured by
Doppler shifts. This method has been applied6 to the ring around
the supernova SN1987A, observed in 1987 in the Large Magellanic
Cloud, with the result that its distance is 52 kpc (thousand parsecs).

• Themeasurementof the time-varyingDoppler shift andpropermotion
of an object in orbit around a central mass can be used to find the dis-
tance to the object. For instance, if the line of sight happens to be in
the plane of the orbit, and if the orbit is circular, then the Doppler
shift is a maximum when the object is moving along the line of sight,
and hence gives the orbital velocity ν, while the proper motion µ is a
maximum when the object is moving with the same velocity at right
angles to the line of sight, and gives the distance as ν/µ. This method
can also be used for orbits that are inclined to the line of sight and not
circular, by studying the time-variation of the Doppler shift and proper
motion. The application of this method to the star S2, which orbits
the massive black hole in the galactic center, gives what is now the best
value for the distance of the solar system from the galactic center,7

as 8.0 ± 0.4 kpc. This method also allows the measurement of some
distances outside our galaxy, by using the motion of masers — point
microwave sources — in the accretion disks of gas and dust in orbit
around black holes at the centers of galaxies. The orbital velocity can
be judged from the Doppler shifts of masers at the edge of the accretion
disk, which are moving directly toward us or away from us, and if this
is the same as the orbital velocities of masers moving transversely to
the line of sight, then the ratio of this orbital velocity to their observed
proper motion gives the distance to the galaxy. So far, this method
has been used to measure the distance to the galaxy NGC 4258,8 as
7.2 ± 0.5 Mpc (million parsecs), and to the galaxy M33,9 as 0.730 ±
0.168 Mpc.

These kinematic methods have limited utility outside the solar neighbor-
hood. We need a different method to measure larger distances.

3. Apparent luminosity
The most common method of determining distances in cosmology is based
on the measurement of the apparent luminosity of objects of known (or

6N. Panagia, Mem. Soc. Astron. Italiana 69, 225 (1998).
7F. Eisenhauer et al., Astrophys. J. Lett. 597, L121 (2003) [astro-ph/0306220].
8J. Herrnstein et al., Nature 400, 539 (3 August 1999).
9A. Brunthaler, M. J. Reid, H. Falcke, L. J. Greenhill, and C. Henkel, Science 307, 1440 (2005)

[astro-ph/0503058].
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supposedly known) absolute luminosity. The absolute luminosity L is the
energy emitted per second, and the apparent luminosity / is the energy
received per second per square centimeter of receiving area. If the energy
is emitted isotropically, then we can find the relation between the absolute
and apparent luminosity in Euclidean geometry by imagining the luminous
object to be surrounded with a sphere whose radius is equal to the distance
d between the object and the earth. The total energy per second passing
through the sphere is 4πd2/, so

/ = L
4πd2 . (1.3.3)

This relation is subject to corrections due to interstellar and/or intergalac-
tic absorption, as well as possible anisotropy of the source, which though
important in practice involve too many technicalities to go into here.

Astronomers unfortunately use a traditional notation for apparent and
absolute luminosity in terms of apparent and absolute magnitude.10 In
the second century A.D., the Alexandrian astronomer Claudius Ptolemy
published a list of 1,022 stars, labeled by categories of apparent brightness,
with bright stars classed as being of first magnitude, and stars just barely
visible being of sixth magnitude.11 This traditional brightness scale was
made quantitative in 1856 by Norman Pogson, who decreed that a difference
of five magnitudes should correspond to a ratio of a factor 100 in apparent
luminosities, so that / ∝ 10−2m/5. With the advent of photocells at the
beginning of the twentieth century, it became possible to fix the constant
of proportionality: the apparent bolometric luminosity (that is, including
all wavelengths) is given in terms of the apparent bolometric magnitude
m by

/ = 10−2m/5 × 2.52 × 10−5 erg cm−2 s−1 . (1.3.4)

Fororientation, Siriushasavisualmagnitudemvis = −1.44, the Andromeda
nebula M31 has mvis = 0.1, and the large galaxy M87 in the nearest large
cluster of galaxies has mvis = 8.9. The absolute magnitude in any wave-
length band is defined as the apparent magnitude an object would have at
a distance of 10 pc, so that the absolute bolometric luminosity is given in
terms of the absolute bolometric magnitude M by

L = 10−2M/5 × 3.02 × 1035erg s−1 . (1.3.5)

10For the history of the apparent magnitude scale, see J. B. Hearnshaw, The Meas-
urement of Starlight: Two centuries of astronomical photometry (Cambridge University Press,
Cambridge, 1996); K. Krisciunas, astro-ph/0106313.

11For the star catalog of Ptolemy, see M. R. Cohen and I. E. Drabkin, A Source Book in Greek Science
(Harvard University Press, Cambridge, MA, 1948): p. 131.
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1.3 Distances at small redshift: The Hubble constant

For comparison, in the visual wavelength band the absolute magnitude Mvis
is +4.82 for the sun, +1.45 for Sirius, and −20.3 for our galaxy. Eq. (1.3.3)
may be written as a formula for the distance in terms of the distance-modulus
m − M :

d = 101+(m−M)/5pc . (1.3.6)

There are several different kinds of star that have been used in measure-
ments of distance through the observation of apparent luminosity:

• Main Sequence: Stars that are still burning hydrogen at their cores
obey a characteristic relation between absolute luminosity and color,
both depending on mass. This is known as the main sequence, discov-
ered in the decade before the First World War by Ejnar Hertzsprung
and Henry Norris Russell. The luminosity is greatest for blue-white
stars, and then steadily decreases for colors tending toward yellow and
red. The shape of the main sequence is found by observing the appar-
ent luminosities and colors of large numbers of stars in clusters, all of
which in each cluster may be assumed to be at the same distance from
us, but we need to know the distances to the clusters to calibrate abso-
lute luminosities on the main sequence. For many years the calibration
of the main sequence absolute luminosities was based on observation
of a hundred or so main sequence stars in the Hyades cluster, whose
distance was measured by the moving cluster method described above.
With the advent of the Hipparcos satellite, the calibration of the main
sequence has been greatly improved through the observation of col-
ors and apparent luminosities of nearly 100,000 main sequence stars
whose distance is known through measurement of their trigonomet-
ric parallax. Including in this sample are stars in open clusters such
as the Hyades, Praesepe, the Pleiades, and NGC 2516; these clusters
yield consistent main sequence absolute magnitudes if care is taken
to take proper account of the varying chemical compositions of the
stars in different clusters.12 With the main sequence calibrated in
this way, we can use Eq. (1.3.3) to measure the distance of any star
cluster or galaxy in which it is possible to observe stars exhibiting
the main sequence relation between apparent luminosity and color.
Distances measured in this way are sometimes known as photometric
parallaxes.
The analysis of the Hipparcos parallax measurements revealed a dis-
crepancy between the distances to the Pleiades star cluster measured by
observations of main sequence stars and by measurements of

12S. M. Percival, M. Salaris, and D. Kilkenny, Astron. Astrophys. 400, 541 (2003) [astro-ph/0301219].
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trigonometric parallax.13 The traditional method, using a main
sequence calibration based on the application of the moving cluster
method to the closer Hyades cluster, gave a distance to the Pleiades14

of 132 ± 4 pc. Then trigonometric parallaxes of a number of stars in
the Pleiades measured by the Hipparcos satellite gave a distance15 of
118 ± 4 pc, in contradiction with the results of main sequence fitting.
More recently, these Hipparcos parallaxes have been contradicted by
more accurate measurements of the parallaxes of three stars in the
Pleiades with the Fine Guidance Sensor of the Hubble Space Tele-
scope,16 which gave a distance of 133.5 ± 1.2 pc, in good agreement
with the main sequence results. At the time of writing, the balance
of astronomical opinion seems to be favoring the distances given by
main sequence photometry.17

• Red Clump Stars: The color–magnitude diagram of clusters in metal-
rich18 parts of the galaxy reveals distinct clumps of red giant stars
in a small region of the diagram, with a spread of only about 0.2 in
visual magnitude. These are stars that have exhausted the hydrogen
at their cores, with helium taking the place of hydrogen as the fuel for
nuclear reactions at the stars’ cores. The absolute magnitude of the
red clump stars in the infrared band (wavelengths around 800 nm) has
been determined19 to be MI = −0.28 ± 0.2 mag, using the distances
and apparent magnitudes measured with the Hipparcos satellite and in
an earlier survey.20 In this band there is little dependence of absolute
magnitude on color, but it has been argued that even the infrared
magnitude may depend significantly on metallicity.21

• RR Lyrae Stars: These are variable stars that have been used as
distance indicators for many decades.22 They can be recognized by
their periods, typically 0.2 to 0.8 days. The use of the statistical par-
allax, trigonometric parallax and moving cluster methods (with data

13B. Paczynski, Nature 227, 299 (22 January, 2004).
14G. Meynet, J.-C. Mermilliod, and A. Maeder, Astron. Astrophys. Suppl. Ser. 98, 477

(1993).
15J.-C. Mermilliod, C. Turon, N. Robichon, F. Arenouo, and Y. Lebreton, in ESA SP-402 Hipparcos–

Venice ‘97, eds. M.A.C. Perryman and P. L. Bernacca (European Space Agency, Paris, 1997), 643; F. van
Leeuwen and C. S. Hansen Ruiz, ibid, 689; F. van Leeuwen, Astron. Astrophys. 341, L71 (1999).

16D. R. Soderblom et al., Astron. J. 129, 1616 (2005) [astro-ph/0412093].
17A new reduction of the raw Hipparcos data is given by F. van Leeuwen and E. Fantino, Astron.

Astrophys. 439, 791 (2005) [astro-ph/0505432].
18Astronomers use the word “metal” to refer to all elements heavier than helium.
19B. Paczyński and K. Z. Stanek, Astrophys. J. 494, L219 (1998).
20A. Udalski et al., Acta. Astron. 42, 253 (1992).
21L. Girardi, M. A. T. Groenewegen, A. Weiss, and M. Salaris, astro-ph/9805127.
22For a review, see G. Bono, Lect. Notes Phys. 635, 85 (2003) [astro-ph/0305102].
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from both ground-based observatories and the Hipparcos satellite)
give respectively23 an absolute visual magnitude for RR Lyrae stars
in our galaxy’s halo of 0.77 ± 0.13, 0.71 ± 0.15, and 0.67 ± 0.10, in
good agreement with an earlier result24 Mvis = 0.71 ± 0.12 for halo
RR Lyrae stars and 0.79 ± 0.30 for RR Lyrae stars in the thick disk
of the galaxy. RR Lyrae stars are mostly too far for a measurement
of their trigonometric parallax, but recently measurements25 with the
Hubble Space Telescope have given a value of 3.82×10−3 arcsec for the
trigonometric parallax of the eponymous star RR Lyr itself, implying
an absolute visual magnitude of 0.61−0.11

+0.10 .

• Eclipsing Binaries: In favorable cases it is possible to estimate the
intrinsic luminosity of a star that is periodically partially eclipsed by
a smaller companion, without the use of any intermediate distance
indicators. The velocity of the companion can be inferred from the
Doppler shift of its spectral lines (with the ellipticity of the orbit
inferred from the variation of the Doppler shift with time), and the
radius of the primary star can then be calculated from the duration
of the eclipse. The temperature of the primary can be found from
measurement of its spectrum, typically from its apparent luminosity
in various wavelength bands. Knowing the radius, and hence the area,
and the temperature of the primary, its absolute luminosity can then be
calculated from the Stefan–Boltzmann law for black body radiation.
This method has been applied to measure distances to two neighboring
dwarf galaxies, the Large Magellanic Cloud (LMC)26 and the Small
Magellanic Cloud (SMC),27 and to the Andromeda galaxy M3128 and
its satellite M33.29

• Cepheid variables: Because they are so bright, these are by far the
most important stars used to measure distances outside our galaxy.
Named after the first such star observed, δ Cephei, they can be

23P. Popowski and A. Gould, Astrophys. J. 506, 259, 271 (1998); also astro-ph/9703140, astro-
ph/9802168; and in Post-Hipparcos Cosmic Candles, eds. A. Heck and F. Caputo (Kluwer Academic
Publisher, Dordrecht) [astro-ph/9808006]; A. Gould and P. Popowski, Astrophys. J. 568, 544 (1998)
[astro-ph/9805176]; and references cited therein.

24A. Layden, R. B. Hanson, S. L. Hawley, A. R. Klemola, and C. J. Hanley, Astron. J. 112, 2110
(1996).

25G. F. Benedict et al., Astrophys. J. 123, 473 (2001) [astro-ph/0110271]
26E. F. Guinan et al., Astrophys. J. 509, L21 (1998); E. L. Fitzpatrick et al. Astrophys. J. 587, 685

(2003).
27T. J. Harries, R. W. Hilditch, and I. D. Howarth, Mon. Not. Roy. Astron. Soc. 339, 157

(2003); R. W. Hilditch, I. D. Howarth, and T. J. Harries, Mon. Not. Roy. Astron. Soc. 357, 304
(2005).

28I. Ribas et al., Astrophys. J. 635, L37 (2005).
29A. Z. Bonanos et al., Astrophys. Space Sci. 304, 207 (2006) [astro-ph/0606279].
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recognized from the characteristic time dependence of their luminos-
ity, with periods ranging from 2 to 45 days. (Cepheids in other galaxies
have been observed with periods extending up to 100 days.) In 1912
Henrietta Swan Leavitt discovered that the Cepheid variables in the
Small Magellanic Cloud (SMC) have apparent luminosities given by
a smooth function of the period of the variation in luminosity, but
the distance to the SMC was not known. Having measured the dist-
ances and apparent luminosities of several Cepheids in open clusters,
and hence their absolute luminosities, it became possible to calibrate
the relation between period and luminosity. Cepheid variables thus
became a “standard candle” that could be used to measure the dis-
tance to any galaxy close enough for Cepheids to be seen. It was the
discovery of Cepheids in M31, together with Leavitt’s calibration of
the Cepheid period–luminosity relation, that allowed Edwin Hubble in
1923 to measure the distance of M31, and show that it was far outside
our own galaxy, and hence a galaxy in its own right.

Today the form of the Cepheid period–luminosity relation is
derived more from the Large Magellanic Cloud (LMC), where there
are many Cepheids, and the dependence of the absolute luminosity on
color is also taken into account. The calibration of Cepheid absolute
luminosities can therefore be expressed as (and often in fact amounts
to) a measurement of the distance to the LMC. Main sequence pho-
tometry and other methods gave what for some years was a generally
accepted LMC distance modulus of 18.5 mag, corresponding accord-
ing to Eq. (1.3.6) to a distance of 5.0 × 104 pc. The use of red clump
stars30 has given a distance modulus of 18.47, with a random error
±0.01, and a systematic error +0.05

−0.06. A large catalog31 of Cepheids in
the LMC has been interpreted by the members of the Hubble Space
Telescope Key Project32 to give the Cepheid visual and infrared abso-
lute magnitudes as functions of the period P in days:

MV = −2.760 log10 P − 1.458 , MI = −2.962 log10 P − 1.942 ,
(1.3.7)

under the assumption that the LMC distance modulus is 18.5.

This result was challenged in two distinct ways, which illustrate the
difficulty of this sort of distance measurement:

First, there have been discordant measurements of the distance to
the LMC. Under the assumption that red clump stars in the LMC

30M. Salaris, S. Percival, and L. Girardi, Mon. Not. Roy. Astron. Soc. 345, 1030 (2003) [astro-
ph/0307329].

31A. Udalski et al., Acta Astr. 49, 201 (1999): Table 1.
32W. L. Freedman et al., Astrophys. J. 553, 47 (2001).
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have the same infrared luminosity as those in the local galactic disk,
a distance modulus was found33 that was 0.45 magnitudes smaller,
giving a distance to the LMC that is smaller by a factor 0.8. This
has in turn been challenged on the grounds that the stars in the LMC
have distinctly lower metallicity than in the local disk; two groups
taking this into account34 have given LMC distance moduli of 18.36±
0.17 mag and 18.28 ± 0.18 mag, in fair agreement with the previously
accepted value. This also agrees with the measurement of the distance
to the LMC inferred35 from observations of RR Lyrae stars, which
gives a distance modulus of 18.33 ± 0.06 mag. This distance modulus
for the LMC is further confirmed by the measurement of the distance
of the eclipsing binary HV2274; taking account of its distance from
the center of the LMC gives36 a distance modulus for the LMC of
18.30 ± 0.07.

Second, there have been new calibrations of the Cepheid period–
luminosity relation, that do not rely on Cepheids in the LMC, which
together with observations of Cepheids in the LMC can be used to
give an independent estimate of the LMC distance.37 In recent years
the satellite Hipparcos38 has measured trigonometric parallaxes for
223 Cepheid variables in our galaxy, of which almost 200 can be used
to calibrate the period–luminosity relation, without relying on main
sequence photometry, red clump stars, or RR Lyrae stars. The nearest
Cepheids are more than 100 pc away from us (the distance to Polaris
is about 130 pc), so the parallaxes are just a few milliarcseconds, and
individual measurements are not very accurate, but with about 200
Cepheids measured it has been possible to get pretty good accuracy.
One early result39 gave the relation between the absolute visual mag-
nitude MV and the period P (in days) as

MV = −2.81 log10 P − 1.43 ± 0.10 .

This was a decrease of about 0.2 magnitudes from previous results,
i.e., an increase of the intrinsic luminosity of Cepheids by a factor
100.2×2/5 = 1.20 leading to a 10% increase in all cosmic distances based

33K. Z. Stanek, D. Zaritsky, and J. Harris, Astrophys. J. 500, L141 (1998) [astro-ph/9803181].
34A. A. Cole, Astrophys. J. 500, L137 (1998) [astro-ph/9804110]; L. Girardi et al., op. cit..
35P. Popowski and A. Gould, op. cit..
36E. F. Guinan et al., op. cit..
37For a review, see M. Feast, Odessa Astron. Publ. 14 [astro-ph/0110360].
38M. A. C. Perryman, Astron. Astrophys. 323, L49 (1997).
39M. W. Feast and R. M. Catchpole, Mon. Not. Roy. Astron. Soc. 286, L1 (1997); also see F. Pont,

in Harmonizing Cosmic Distances in a Post-Hipparcos Era, eds. D. Egret and A. Heck (ASP Conference
Series, San Francisco, 1998) [astro-ph/9812074]; H. Baumgardt, C. Dettbarn, B. Fuchs, J. Rockmann,
and R. Wielen, in Harmonizing Cosmic Distance Scales in a Post-Hipparcos Era, ibid [astro-ph/9812437].
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directly or indirectly on the Cepheid period–luminosity relation. With
this value of Cepheid absolute luminosity, the LMC distance mod-
ulus would be 18.66, or slightly less with corrections for the metal-
licity of the LMC (though with the absolute luminosity of Cepheids
calibrated by Hipparcos observations, the only relevance of the LMC
for the Cepheid period–luminosity relation is to determine its shape.)
This result for the Cepheid absolute luminosities has in turn been
contradicted.40

These uncertainties may now have been resolved by measurements
of the trigonometric parallax of Cepheids in our galaxy with the Fine
Guidance Sensor of the Hubble Space Telescope. First, the trig-
onometric parallax of δ Cephei41 gave a distance of 273 ± 11 pc,
corresponding to an LMC distance modulus of 18.50 ± 0.13. More
recently, trigonometricparallaxeshavebeenmeasured fornineGalactic
Cepheids, giving an LMC distance modulus of 18.50 ± 0.03, or with
metallicity corrections, 18.40 ± 0.05.42

There has also been an independent calibration of the Cepheid
period–luminosity relation through observations43 of Cepheids in the
galaxy NGC 4258, whose distance 7.2 ± 0.5 Mpc has been measured
using the observations of proper motions of masers in this galaxy
mentioned above. This distance is in satisfactory agreement with the
distance 7.6 ± 0.3 Mpc obtained from the Cepheids in NGC 4258
under the assumption that these Cepheids have the period–luminosity
relation (1.3.7) obtained under the assumption that the LMC distance
modulus is 18.5, which tends to confirm this period–luminosity rela-
tion. But there are differences in the metallicity of the Cepheids in
NGC 4258 and in the LMC, which makes this conclusion somewhat
controversial.44 A 2006 calibration of the Cepheid period–luminosity
relation based on the study of 281 Cepheids in NGC 425845 (whose dis-
tance, as we have seen, is known from observations of maser Doppler
shifts and proper motions) gave an LMC distance modulus 18.41 ±
0.10 (stat.)±0.13 (syst.). This study includes both a field that is metal
rich, like our Galaxy, and a field that is metal poor, like the LMC, so

40See, e.g., B. F. Madore and W. L. Freedman, Astrophys. J. 492, 110 (1998) For a recent survey of
the theory underlying the Cepheid period–luminosity relation, see A. Gautschy, in Recent Results on
H0–19th Texas Symposium on Relativistic Astrophysics [astro-ph/9901021].

41G. F. Benedict et al., Astrophys. J. 124, 1695 (2002).
42G. F. Benedict et al., Astron. J. 133, 1810 (2007), [astro-ph/0612465].
43J. A. Newman et al., Astrophys. J. 553, 562 (2001) [astro-ph-0012377].
44For instance, see B. Paczynski, Nature 401, 331 (1999); F. Caputo, M. Marconi, and I. Musella,

Astrophys. J. [astro-ph/0110526].
45L. M. Macri et al., Astrophys. J. 652, 1133 (2006) [astro-ph/0608211].
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it provides a calibration of the metallicity dependence of the Cepheid
period–luminosity relation.

In a 2003 survey46 the LMC distance modulus measured using a
variety of distance indicators other than Cepheid variables (including
RR Lyrae stars, red clump stars, etc.) was found to be 18.48 ± 0.04,
in very good agreement with the earlier value 18.52 ± 0.05 found by
observation of Cepheids, with the corrections adopted by the Hubble
Space Telescope group.

B. Secondary distance indicators

None of the above distance indicators are bright enough to be used to
measure distances at redshifts large enough so that peculiar velocities can
be neglected compared with the expansion velocity, say, z > 0.03. For this
we need what are called secondary distance indicators that are brighter than
Cepheids, such as whole galaxies, or supernovae, which can be as bright as
whole galaxies.

For many years Cepheids could be used as distance indicators only out
to a few million parsecs (Mpc), which limited their use to the Local Group
(which consists of our galaxy and the Andromeda nebula M31, and a dozen
or so smaller galaxies like M33 and the LMC and SMC) and some other
nearby groups (the M81, M101, and Sculptor groups). This was not enough
to calibrate distances to an adequate population of galaxies or supernovae,
and so it was necessary to use a variety of intermediate distance indicators:
globular clusters, HII regions, brightest stars in galaxies, etc. Now the
Hubble Space Telescope allows us to observe Cepheids in a great many
galaxies at much greater distances, out to about 30 Mpc, and so the sec-
ondary distance indicators can now be calibrated directly, without the use
of intermediate distance indicators. Four chief secondary distance indica-
tors have been developed:

1. The Tully–Fisher relation
Although whole galaxies can be seen out to very large distances, it has
not been possible to identify any class of galaxies with the same absolute
luminosity. However, in 1977 Tully and Fisher47 developed a method for
estimating the absolute luminosity of suitable spiral galaxies. The 21 cm
absorption line in these galaxies (arising in transitions of hydrogen atoms
from lower to the higher of their two hyperfine states) is widened by the

46M. Feast, Lect. Notes Phys. 635, 45 (2003) [astro-ph/0301100].
47R. B. Tully and J. R. Fisher, Astron. Astrophys. 54, 661 (1977)

25



1 The Expansion of the Universe

Doppler effect, caused by the rotation of the galaxy. The line width W
gives an indication of the maximum speed of rotation of the galaxy, which
is correlated with the mass of the galaxy, which in turn is correlated with the
galaxy’s absolute luminosity.48 (It is also possible to apply the Tully–Fisher
relation using the width of other lines, such as a radio frequency transition
in the carbon monoxide molecule.49)

In one application of this approach50 the shape of the function LI (W )
that gives the infrared band absolute luminosity as a function of 21 cm line
width (that is, the absolute luminosity up to a common constant factor) was
found from a sample of 555 spiral galaxies in 24 clusters, many with redshifts
less than 0.01. (The relative distances to these galaxies were found from the
ratios of their redshifts, using Eq. (1.2.9), so that the peculiar velocities of
these galaxies introduced considerable errors into the estimated ratios of
absolute luminosities of individual pairs of galaxies, but with 555 galaxies
in the sample it could be assumed that these errors would cancel in a least-
squares fit of the measured relative values of absolute luminosity to a smooth
curve.) Roughly speaking, LI (W ) turned out to be proportional to W 3.
The overall scale of the function LI (W ) was then found by fitting it to the
absolute luminosities of 15 spiral galaxies whose distances were accurately
known from observations of Cepheid variables they contain. (These 15
galaxies extended out only to 25 Mpc, not far enough for them to be used
to measure the Hubble constant directly.) The Hubble constant could then
be found by using the function LI (W ) calibrated in this way to find the
distances to galaxies in 14 clusters with redshifts ranging from 0.013 to
0.03, and comparing the results obtained with Eq. (1.2.8). (These redshifts
may not be large enough to ignore peculiar velocities altogether, but again,
this problem is mitigated by the use of a fairly large number of galaxies.)
The Hubble constant found in this way was 70 ± 5 km s−1 Mpc−1. More
recently, the Hubble Space Telescope Key Project to Measure the Hubble
Constant has used Cepheid variables to recalibrate the Tully–Fisher relation
(assuming an LMC distance of 50 kpc) and then found H0 by plotting
distances found from the Tully–Fisher relation against redshift for a sample
of 19 clusters with redshifts from 0.007 to 0.03,51 taken from the G97 survey
of Giovanelli et al.52 The result was H0 = 71 ± 3 ± 7 km s−1 Mpc−1, with
the first quoted uncertainty statistical and the second systematic.

48M. Aaronson, J. R. Mould, and J. Huchra, Astrophys. J. 229, 1 (1979).
49Y. Tutui et al., Publ. Astron. Soc. Japan 53, 701 (2001) [astro-ph/0108462].
50R. Giovanelli, in The Extragalactic Distance Scale - Proceedings of the Space Telescope Science

Institute Symposium held in Baltimore, MD, May, 1996 (Cambridge University Press, Cambridge, 1997):
113; R. Giovanelli et al., Astron. J. 113, 22 (1997).

51S. Sakai et al., Astrophys. J. 529, 698 (2000); W. L. Freedman et al., Astrophys. J. 553, 47 (2001);
and references cited therein.

52Giovanelli et al., op. cit.
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2. Faber–Jackson relation
Just as the Tully–Fisher method is based on a correlation of orbital velocities
with absolute luminosities in spiral galaxies, the Faber–Jackson method is
based on a correlation of random velocities with absolute luminosities in
elliptical galaxies.53 An advantage of this method over the Tully–Fisher
method is that it has a firmer theoretical foundation, provided by the virial
theorem to be discussed in Section 1.9, which directly relates the mean
square random velocity to the galaxy mass.

3. Fundamental plane
The Faber–Jackson method was improved by the recognition that the cor-
relation between orbital velocity and absolute luminosity depends also on
the surface brightness of the cluster, and hence on its area.54 (The term
“fundamental plane” refers to the way that data on elliptical galaxies are
displayed graphically.) This method has been used55 to estimate that H0 =
78 ± 5 (stat.) ± 9 (syst.) km sec−1 Mpc−1.

4. Type Ia supernovae
Supernovae of Type Ia are believed to occur when a white dwarf star in a
binary system accretes sufficient matter from its partner to push its mass
close to the Chandrasekhar limit, the maximum possible mass that can be
supported by electron degeneracy pressure.56 When this happens the white
dwarf becomes unstable, and the increase in temperature and density allows
the conversion of carbon and oxygen into 56Ni, triggering a thermonuclear
explosion that can be seen at distances of several thousand megaparsecs.
The exploding star always has a mass close to the Chandrasekhar limit, so
there is little variation in the absolute luminosity of these explosions, mak-
ing them nearly ideal distance indicators.57 What variation there is seems

53S. M. Faber and R. E. Jackson, Astrophys. J. 204, 668 (1976).
54A. Dressler et al., Astrophys. J. 313, 42 (1987).
55D. D. Kelson et al., Astrophys. J. 529, 768 (2000) [astro-ph/9909222]; J. P. Blakeslee, J. R. Lucey,

J. L. Tonry, M. J. Hudson, V. K. Nararyan, and B. J. Barris, Mon. Not. Roy. Astron. Soc. 330, 443
(2002) [astro-ph/011183].

56W. A. Fowler and F. Hoyle, Astrophys. J. 132, 565 (1960). Calling a supernova Type I simply means
that hydrogen lines are not observed in its spectrum. In addition to Type Ia supernovae, there are other
Type I supernovae that occur in the collapse of the cores of stars much more massive than white dwarfs,
whose outer layer of hydrogen has been lost in stellar winds, as well as Type II supernovae, produced by
core collapse in massive stars that have not lost their outer layer of hydrogen. For a discussion of the
Chandrasekhar limit, see G&C, Section 11.3.

57The use of Type Ia supernovae as distance indicators was pioneered by A. Sandage and G. A.
Tammann, Astrophys. J. 256, 339 (1982), following an earlier observation that they had fairly uniform
luminosity by C. T. Kowal, Astron. J. 73, 1021 (1968). In 1982 it was necessary to use brightest
supergiant stars as intermediate distance indicators, to bridge the gap between the distances that could
then be measured using Cepheids and the distances at which the Type Ia supernova could be found.
For reviews of the use of type Ia supernovae as standard candles, see D. Branch, Ann. Rev. Astron. &
Astrophys. 36, 17 (1998); P. Höflich, C. Gerardy, E. Linder, and H. Marion, in Stellar Candles, eds. W.
Gieren et al. (Lecture Notes in Physics) [astro-ph/0301334].
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to be well correlated with the rise time and decline time of the supernova
light: the slower the decline, the higher the absolute luminosity.58

This relation has been calibrated by measurements of Type Ia super-
novae in several galaxies of known distance. From 1937 to 1999 there were
ten supernovae in galaxies whose distance had been measured by observa-
tion of Cepheid variables they contain.59 Of these, six Type Ia supernovae
were used by the HST Key H0 Group60 to calibrate the relation between
absolute luminosity and decline time. This relation was then used to calcu-
late distances to a sample of 29 Type Ia supernovae in galaxies with redshifts
extending from 0.01 to 0.1, observed at the Cerro Tololo Inter-American
Observatory.61 Plotting these distances against measured redshifts gave a
Hubble constant62 of 71 ± 2(statistical) ± 6(systematic) km s−1 Mpc−1.
This agrees well with an older determination using Type Ia supernovae by
a Harvard group,63 which found H0 = 67 ± 7 km s−1 Mpc−1. Members
of this group have superceded this result,64 now giving a Hubble constant
H0 = 73 ± 4(stat.) ± 5(syst.) km s−1 Mpc−1. On the other hand, a group
headed by Sandage using Type Ia supernovae and the Tully–Fisher relation
has consistently found lower values of H0.65 The gap seems to be narrow-
ing; in 2006, this group quoted66 a value H0 = 62.3 ± 1.3(stat.)± 5.0(syst.)
km s−1 Mpc−1. (According to Sandage et al., the difference between these
results is due to a difference in the Cepheid period–luminosity relation used
to measure distances to the galaxies that host the supernovae that are used
to calibrate the relation between supernova absolute luminosity and decline
time. Sandage et al. use a metallicity-dependent period–luminosity rela-
tion. However Macri et al.45 subsequently reported no difference in the
period-luminosity relation for Cepheids in a metal-rich and a metal-poor
region of NGC 4258.)

It is an old hope that with a sufficient theoretical understanding of
supernova explosions, it might be possible to measure their distance

58M. Phillips, Astrophys. J. 413, L105 (1993); M. Hamuy et al., Astron. J. 109, 1 (1995); A. Reiss,
W. Press, and R. Kirshner, Astrophys. J. 438, L17 (1996); S. Jha, A. Riess, & R. P. Kirshner, Astrophys.
J. 659, 122 (20007). A dependence of absolute luminosity on color as well as decline time has been
considered by R. Tripp and D. Branch, Astrophys. J. [astro-ph/9904347].

59For a list, see Tripp and Branch, op. cit..
60B. Gibson et al., Astrophys. J. 529, 723 (2000) [astro-ph/9908149].
61M. Hamuy et al., Astron. J. 112, 2398 (1996).
62L. Ferrarese et al., in Proceedings of the Cosmic Flows Workshop, eds. S. Courteau et al. (ASP

Conference Series) [astro-ph/9909134]; W. L. Freedman et al., Astrophys. J. 553, 47 (2001).
63A. G. Riess, W. H. Press, And R. P. Kirshner, Astrophys. J. 438, L17 (1995)
64A. Riess et al., Astrophys. J. 627, 579 (2005) [astro-ph/0503159].
65For a 1996 summary, see G. A. Tammann and M. Federspeil, in The Extragalactic Distance Scale,

eds. M. Livio, M. Donahue, and N. Panagia (Cambridge University Press, 1997): 137.
66A. Sandage et al., Astrophys. J. 653, 843 (2006) [astro-ph/0603647].
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withoutuseofprimarydistance indicators. A2003comparison67 ofobserved
light curves (apparent magnitude as a function of time) and spectra with
theory for 26 Type Ia supernovae with redshifts extending up to 0.05, plus
one with redshift 0.38, gave H0 = 67 km sec−1Mpc−1, with a two standard
deviation uncertainty of 8 km sec−1Mpc−1. It is too soon for this method
to replace the older method based on the use of primary distance indicators
to calibrate the supernova absolute luminosities, but the agreement between
the values of H0 found in these two ways provides some reassurance that no
large error is being made with the older method.

It is instructive to consider a fifth secondary distance indicator that is
also used to measure the Hubble constant:

5. Surface brightness fluctuations
In 1988 Tonry and Schneider68 suggested using the fluctuations in the
observed surface brightness of a galaxy from one part of the image to
another as a measure of the galaxy’s distance. Suppose that the stars in
a galaxy can be classified in luminosity classes, all the stars in a luminosity
class i having the same absolute luminosity Li . The rate of receiving energy
per unit area of telescope aperture in a small part of the galactic image (as
for instance, a single pixel in a charge-coupled device) is

/ =
∑

i

NiLi

4πd2 (1.3.8)

where Ni the number of stars of class i in this part of the galaxy’s image,
and d is the distance of the galaxy. Usually only the brightest stars can
be resolved, so it is not possible to measure all the Ni directly, but one
can measure the fluctuations in / from one part of the image to another
due to the finite values of the Ni . Suppose that the different Ni fluctuate
independently from one small part of the galaxy’s image to another, and
obey the rules of Poisson statistics, so that

〈
(Ni − 〈Ni〉) (Nj − 〈Nj〉)

〉
= δij〈Ni〉 , (1.3.9)

with brackets denoting an average over small parts of the central portion of
the galaxy’s image. It follows then that

〈(/ − 〈/〉)2〉
〈/〉 = L̄

4πd2 , (1.3.10)

67P. Höflich, C. Gerardy, E. Linder, and H. Marion, op. cit.
68J. Tonry and D. P. Schneider, Astron. J. 96, 807 (1988).
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where L̄ is a luminosity-weighted mean stellar luminosity

L̄ ≡
∑

i〈Ni〉L2
i∑

i〈Ni〉Li
(1.3.11)

which is expected to vary much less from one galaxy to another than the
luminosities of the galaxies themselves. Eq. (1.3.10) can be used to mea-
sure distances once this relation is calibrated by measuring L̄. By studying
surface brightness fluctuations in a survey of galaxies whose distances were
found by observations of Cepheids they contain, Tonry et al.69 found an
absolute magnitude M̄I that in the infrared band is equivalent to the abso-
lute luminosity L̄:

M̄I = (−1.74 ± 0.07) + (4.5 ± 0.25) [mV − mI − 1.15] (1.3.12)

where mV − mI is a parameter characterizing the color of the galaxy, equal
to the difference of its apparent magnitudes in the infrared and visual
bands, assumed here to lie between 1.0 and 1.5. Using Eq. (1.3.10) to find
distances of galaxies of higher redshift, they obtained a Hubble constant
81 ± 6 km s−1 Mpc−1.

There are other phenomena that are used to measure the Hubble
constant, including the comparison of apparent and absolute luminosity
of supernovae of other types, novae, globular clusters, and planetary neb-
ulae, the diameter–velocity dispersion relation for elliptical galaxies, grav-
itational lenses (discussed in Section 1.12), the Sunyaev–Zel’dovich effect
(discussed in Section 2.3), etc.70 The HST Key H0 Group have put together
their results of measurements of the Hubble constant using the Tully–Fisher
relation, Type Ia supernovae, and several of these other secondary distance
indicators, and conclude that71

H0 = 71 ± 6 km s−1 Mpc−1 .

As we will see in Section 7.2, the study of anisotropies in the cosmic
microwave background has given a value H0 = 73±3 km s−1 Mpc−1. This
does not depend on any of the tools discussed in this section, but it does
depend on some far-reaching cosmological assumptions: including flat spa-
tial geometry, time-independent vacuum energy, and cold dark matter. For
this reason, the increasingly precise measurement of H0 provided by the

69J. L. Tonry, J. P. Blakeslee, E. A. Ajhar, and A. Dressler, Astrophys. J. 473, 399 (1997). For a more
recent survey, see J. L. Tonry et al., Astrophys. J. 546, 681 (2001) [astro-ph/0011223].

70For a survey of most of these methods, with references, see G. H. Jacoby, D. Branch, R. Ciardullo,
R. L. Davies, W. E. Harris, M. J. Pierce, C. J. Pritchet, J. L. Tonry, and D. L. Welch, Publ. Astron. Soc.
Pacific 104, 599 (1992).

71L. Ferrarese et al., op. cit.; W. L. Freedman et al., Astrophys. J. 553, 47 (2001).
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cosmic microwave background will not supplant the older measurements
discussed in this section — rather, the agreement (or possible future disagree-
ment) between the values of H0 provided by these very different methods
will serve to validate (or possibly invalidate) the cosmological assumptions
made in the analysis of the cosmic microwave background.

To take account of the remaining uncertainty in the Hubble constant, it
is usual these days to take

H0 = 100 h km s−1 Mpc−1 , (1.3.13)

with the dimensionless parameter h assumed to be in the neighborhood of
0.7. This corresponds to a Hubble time

1/H0 = 9.778 × 109 h−1 years . (1.3.14)

1.4 Luminosity distances and angular diameter distances

We must now consider the measurement of distances at large redshifts, say
z > 0.1, where the effects of cosmological expansion on the determination
of distance can no longer be neglected. It is these measurements that can
tell us whether the expansion of the universe is accelerating or decelerating,
and how fast. Before we can interpret these measurements, we will need
to consider in this section how to define distance at large redshifts, and
we will have to apply Einstein’s field equations to the Robertson–Walker
metric in the following section. After that, we will return in Section 1.6 to
the measurements of distances for large redshift, and their interpretation.

In the previous section we derived the familiar relation / = L/4πd2 for
the apparent luminosity / of a source of absolute luminosity L at a distance
d . At large distances this derivation needs modification for three reasons:

1. At the time t0 that the light reaches earth, the proper area of a sphere
drawn around the luminous object and passing through the earth is
given by the metric (1.1.10) as 4πr2

1a2(t0), where r1 is the coordinate
distance of the earth as seen from the luminous object, which is just the
same as the coordinate distance of the luminous object as seen from
the earth. The fraction of the light received in a telescope of aperture
A on earth is therefore A/4πr2

1a2(t0), and so the factor 1/d2 in the
formula for / must be replaced with 1/r2

1a2(t0).

2. The rate of arrival of individual photons is lower than the rate at which
they are emitted by the redshift factor a(t1)/a(t0) = 1/(1 + z).

3. The energy hν0 of the individual photons received on earth is less than
the energy hν1 with which they were emitted by the same redshift factor
1/(1 + z).
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Putting this together gives the correct formula for apparent luminosity of a
source at radial coordinate r1 with a redshift z of any size:

/ = L
4πr2

1a2(t0)(1 + z)2
. (1.4.1)

It is convenient to introduce a “luminosity distance” dL, which is defined so
that the relation between apparent and absolute luminosity and luminosity
distance is the same as Eq. (1.3.3):

/ = L
4πd2

L
. (1.4.2)

Eq. (1.4.1) can then be expressed as

dL = a(t0)r1(1 + z) . (1.4.3)

For objects with z ( 1, we can usefully write the relation between
luminosity distance and redshift as a power series. The redshift 1 + z ≡
a(t0)/a(t1) is related to the “look-back time” t0 − t1 by

z = H0(t0 − t1) + 1
2
(q0 + 2)H2

0 (t0 − t1)2 + . . . (1.4.4)

where H0 is the Hubble constant (1.2.7) and q0 is the deceleration
parameter

q0 ≡ − 1
H2

0 a(t0)
d2a(t)

dt2

∣∣∣∣∣
t=t0

. (1.4.5)

This can be inverted, to give the look-back time as a power series in the
redshift

H0(t0 − t1) = z − 1
2
(q0 + 2)z2 + . . . . (1.4.6)

The coordinate distance r1 of the luminous object is given by Eq. (1.2.2) as

t0 − t1
a(t0)

+ H0(t0 − t1)2

2a(t0)
+ · · · = r1 + . . . , (1.4.7)

with the dots on the right-hand side denoting terms of third and higher order
in r1. Using Eq. (1.4.6), the solution is

r1 a(t0) H0 = z − 1
2
(1 + q0)z2 + · · · . (1.4.8)
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This gives the luminosity distance (1.4.3) as a power series

dL = H−1
0

[
z + 1

2
(1 − q0)z2 + · · ·

]
. (1.4.9)

We can therefore measure q0 as well as H0 by measuring the luminosity
distance as a function of redshift to terms of order z2. The same reasoning
has been used to extend the expression (1.4.9) to fourth order in z:1

dL(z)=H−1
0

[

z + 1
2
(1 − q0)z2 − 1

6

(

1 − q0 − 3q2
0 + j0 + K

H2
0 a2

0

)

z3

+ 1
24

(
2 − 2q0 − 15q2

0 − 15q3
0 + 5j0 + 10q0j0

+s0 + 2K(1 + 3q0)

H2
0 a2

0

)
z4 + · · ·

]

,

where j0 and s0 are parameters known as the jerk and snap:

j0 ≡ 1
H3

0 a(t0)
d3a(t)

dt3

∣∣∣∣∣
t=t0

, s0 ≡ 1
H4

0 a(t0)
d4a(t)

dt4

∣∣∣∣∣
t=t0

.

Years ago cosmology was called “a search for two numbers,” H0 and q0.
The determination of H0 is still a major goal of astronomy, as discussed in
the previous section. On the other hand, there is less interest now in q0.
Instead of high-precision distance determinations at moderate redshifts, of
order 0.1 to 0.2, which would give an accurate value of q0, we now have
distance determinations of only moderate precision at high redshifts, of
order unity, which depend on the whole form of the function a(t) over the
past few billion years. For redshifts of order unity, it is not very useful to
expand in powers of redshift. In order to interpret these measurements, we
will need a dynamical theory of the expansion, to be developed in the next
section. As we will see there, modern observations suggest strongly that
there are not two but at least three parameters that need to be measured to
calculate a(t).

Before turning to this dynamical theory, let’s pause a moment to clar-
ify the distinction between different measures of distance. So far, we have
encountered the proper distance (1.1.15) and the luminosity distance (1.4.3).
There is another sort of distance, which is what we measure when we
compare angular sizes with physical dimensions. Inspection of the metric

1M. Visser, Class. Quant. Grav. 21, 2603 (2004) [gr-qc/0309109]. The term of third order in z was
previously calculated by T. Chiba and T. Nakamura, Prog. Theor. Phys. 100, 1077 (1998).
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(1.1.12) shows that a source at co-moving radial coordinate r1 that emits light
at time t1 and is observed at present to subtend a small angle θ will extend
over a proper distance s (normal to the line of sight) equal to a(t1)r1θ . The
angular diameter distance dA is defined so that θ is given by the usual relation
of Euclidean geometry

θ = s/dA (1.4.10)

and we see that

dA = a(t1)r1 . (1.4.11)

Comparison of this result with Eq. (1.4.3) shows that the ratio of the
luminosity and angular-diameter distances is simply a function of redshift:

dA/dL = (1 + z)−2 . (1.4.12)

Therefore if we have measured the luminosity distance at a given redshift
(and if we are convinced of the correctness of the Robertson–Walker met-
ric), then we learn nothing additional about a(t) if we also measure the
angular diameter distance at that redshift. Neither galaxies nor supernovas
have well-defined edges, so angular diameter distances are much less use-
ful in studying the cosmological expansion than are luminosity distances.
However, as we shall see, they play an important role in the theoretical anal-
ysis of both gravitational lenses in Chapter 9 and of the fluctuations in the
cosmic microwave radiation background in Chapters 2 and 7. We will see
in Section 8.1 that the observation of acoustic oscillations in the matter
density may allow a measurement of yet another distance, a structure
distance, equal to a(t0)r1 = (1 + z)dA.

1.5 Dynamics of expansion

All our results up to now have been very general, not depending on
assumptions about the dynamics of the cosmological expansion. To go fur-
ther we will need now to apply the gravitational field equations of Einstein,
with various tentative assumptions about the cosmic energy density and
pressure.

The expansion of the universe is governed by the Einstein field equations
(B.71), which can be put in the convenient form

Rµν = −8πGSµν , (1.5.1)

where Rµν is the Ricci tensor:

Rµν =
∂'λ

λµ

∂xν
−

∂'λ
µν

∂xλ
+ 'λ

µσ'σ
νλ − 'λ

µν'
σ
λσ , (1.5.2)
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1.5 Dynamics of expansion

and Sµν is given in terms of the energy-momentum tensor Tµν by

Sµν ≡ Tµν − 1
2gµνTλ

λ . (1.5.3)

As we saw in Section 1.1, for the Robertson–Walker metric the components
of the affine connection with two or three time indices all vanish, so

Rij = ∂'k
ki

∂xj −
[

∂'k
ij

∂xk +
∂'0

ij

∂t

]

+
[
'0

ik'k
j0 + 'k

i0'
0
jk + 'l

ik'k
jl

]

−
[
'k

ij'
l
kl + '0

ij'
l
0l

]
(1.5.4)

R00 = ∂'i
i0

∂t
+ 'i

0j'
j
0i (1.5.5)

We don’t need to calculate Ri0 = R0i , because it is a three-vector, and
therefore must vanish due to the isotropy of the Robertson–Walker metric.
Using the formulas (1.1.17)–(1.1.19) for the non-vanishing components of
the affine connection gives

∂'0
ij

∂t
= g̃ij

d
dt

(aȧ) , '0
ik'k

j0 = g̃ij ȧ2 , '0
ij'

l
0l = 3g̃ij ȧ2 ,

∂'i
i0

∂t
= 3

d
dt

(
ȧ
a

)
, 'i

0j'
j
i0 = 3

(
ȧ
a

)2
, (1.5.6)

where dots denote time derivatives. Using this in Eqs. (1.5.4) and (1.5.5),
we find that the non-vanishing components of the Ricci tensor are

Rij = R̃ij − 2ȧ2g̃ij − aäg̃ij , (1.5.7)

R00 = 3
d
dt

(
ȧ
a

)
+ 3

(
ȧ
a

)2
= 3

ä
a

, (1.5.8)

where R̃ij is the purely spatial Ricci tensor

R̃ij = ∂'k
ki

∂xj −
∂'k

ij

∂xk + 'l
ik'k

jl − 'l
ij'

k
kl . (1.5.9)

According to Eq. (1.1.19), the spatial components 'i
jk of the four-dimen-

sional affine connection are here the same as those of the affine connection
that would be calculated in three dimensions from the three-metric g̃ij :

'k
ij = Kxkg̃ij . (1.5.10)
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1 The Expansion of the Universe

To calculate R̃ij , we use a trick used earlier in calculating particle traj-
ectories: we calculate R̃ij where the calculation is simplest, at x = 0, and
express the result as a relation that is invariant under all transformations of
the spatial coordinates, so that the homogeneity of the three-dimensional
metric insures that this relation is valid everywhere. The spatial Ricci tensor
at x = 0 is

R̃ij = ∂'l
li

∂xj −
∂'l

ji

∂xl = Kδij − 3Kδij = −2Kδij . (1.5.11)

At x = 0 the spatial metric g̃ij is just δij , so this can be rewritten as

R̃ij = −2Kg̃ij , (1.5.12)

which, since it is an equality between two three-tensors, is then true in all
spatial coordinate systems, including systems in which the point x = 0 is
transformed into any other point. Hence Eq. (1.5.12) is true everywhere,
and together with Eq. (1.5.7) gives

Rij = −
[
2K + 2ȧ2 + aä

]
g̃ij . (1.5.13)

We also need the values of Sij and S00. For this, we use Eq. (1.1.31) in
the form

T00 = ρ , Ti0 = 0 , Tij = a2p g̃ij , (1.5.14)

where ρ(t) and p(t) are the proper energy density and pressure. Eq. (1.5.3)
gives then

Sij = Tij −
1
2

g̃ija2
(
Tk

k + T 0
0

)
= a2pg̃ij −

1
2

a2g̃ij(3p−ρ) = 1
2
(ρ−p) a2 g̃ij ,

(1.5.15)

S00 = T00 + 1
2

(
Tk

k + T 0
0

)
= ρ + 1

2
(3p − ρ) = 1

2
(ρ + 3p) ,

(1.5.16)

and Si0 = 0. The Einstein equations are therefore

−2K
a2 − 2ȧ2

a2 − ä
a

= −4πG(ρ − p) , (1.5.17)

3ä
a

= −4πG(3p + ρ) . (1.5.18)
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1.5 Dynamics of expansion

We can eliminate the second derivative terms by adding three times the
first equation to the second, and find

ȧ2 + K = 8πG ρ a2

3
. (1.5.19)

This is the fundamental Friedmann equation1 governing the expansion of
the universe.

The remaining information in Eqs. (1.5.17) and (1.5.18) just reproduces
the conservation law (1.1.32):

ρ̇ = − 3ȧ
a

(ρ + p) . (1.5.20)

(This should come as no surprise. Under all circumstances, the energy-
momentum conservation law may be derived as a consequence of the Ein-
stein field equations.) Given p as a function of ρ, we can solve Eq. (1.5.20)
to find ρ as a function of a, and then use this in Eq. (1.5.19) to find a as a
function of t.

There is another way of deriving Eq. (1.5.19), at least for the case of non-
relativistic matter. Imagine a co-moving ball cut out from the expanding
universe, with some typical galaxy at its center, and suppose it then emptied
of the matter it contains. According to Birkhoff’s theorem,2 in any system
that is spherically symmetric around some point, the metric in an empty ball
centered on this point must be that of flat space. This holds whatever is hap-
pening outside the empty ball, as long as it is spherically symmetric. Now
imagine putting the matter back in the ball, with a velocity proportional to
distance from the center of symmetry, taken as X = 0:

Ẋ = H(t)X . (1.5.21)

(Here the components X i of X are ordinary Cartesian coordinates, not the
co-moving coordinates xi used in the Robertson–Walker metric. Note that
this is the one pattern of velocities consistent with the principle of homog-
eneity: The velocity of a co-moving particle at X1 relative to a co-moving
particle at X2 is Ẋ1 − Ẋ2 = H(t)(X1 − X2).) The solution of Eq. (1.5.21) is

X(t) =
(

a(t)
a(t0)

)
X(t0) , (1.5.22)

where a(t) is the solution of the equation

ȧ(t)/a(t) = H(t) . (1.5.23)

1A. Friedmann, Z. Phys. 16, 377 (1922); ibid 21, 326 (1924).
2G&C, Section 11.7.
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1 The Expansion of the Universe

As long as the radius of the ball is chosen to be not too large, the expansion
velocity (1.5.21) of the matter we put into it will be non-relativistic, and
the gravitational field will be weak, so that we can follow its motion using
Newtonian mechanics. The kinetic energy of a co-moving particle of mass
m at X is

K .E. = 1
2

m Ẋ2 = mȧ2X2

2 a2 . (1.5.24)

The mass interior to the position of the particle is M(X) = 4πρ|X|3/3, so
the potential energy of the particle is

P.E. = −G m M(X)

|X| = −4πG m ρ |X|2
3

. (1.5.25)

The condition of energy conservation thus tells us that

E = K .E. + P.E. = m |X(t0)|2
a2(t0)

[
ȧ2

2
− 4πG ρ a2

3

]

= constant . (1.5.26)

This is the same as Eq. (1.5.19), providing we identify the particle energy as

E = − K m |X(t0)|2
2 a2(t0)

. (1.5.27)

Particles will be able to escape to infinity if and only if E ≥ 0, which requires
K = 0 or K = −1. For K = +1 they have less than escape velocity, so the
expansion eventually stops, and particles fall back toward each other.

Returning now to the relativistic formalism and an arbitrary dependence
of ρ on a, even without knowing this dependence we can use Eq. (1.5.19) to
draw important consequences about the general features of the expansion.
First, as long as ρ remains positive, it is only possible for the expansion of
the universe to stop if K = +1, the case of spherical geometry. Also, for
any value of the Hubble constant H0 ≡ ȧ(t0)/a(t0), we may define a critical
present density

ρ0,crit ≡ 3H2
0

8πG
= 1.878 × 10−29 h2 g/cm3 , (1.5.28)

where h is the Hubble constant in units of 100 km s−1 Mpc−1. According to
Eq. (1.5.19), whatever we assume about the constituents of the universe, the
curvature constant K will be +1 or 0 or −1 according to whether the present
density ρ0 is greater than, equal to, or less than ρ0,crit. If the quantity 3p+ρ
is positive (as it is for any mixture of matter and radiation, in the absence
of a vacuum energy density) then Eq. (1.5.18) shows that ä/a ≤ 0, so the
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1.5 Dynamics of expansion

expansion must have started with a = 0 at some moment in the past; the
present age of the universe t0 is less than the Hubble time

t0 < H−1
0 . (1.5.29)

Also, if K = +1 and the expansion stops, then with ä/a ≤ 0 the universe
will again contract to a singularity at which a = 0.

We can use Eq. (1.5.18) to give a general formula for the deceleration
parameter q0 ≡ −ä(t0)a(t0)/ȧ2(t0):

q0 = 4πG(ρ0 + 3p0)

3H2
0

= ρ0 + 3p0

2ρ0,crit
, (1.5.30)

with a subscript 0 denoting a present value. If the present density of the
universe were dominated by non-relativistic matter then p0 ( ρ0, and the
curvature constant K would be +1 or 0 or −1 according to whether q0 > 1

2
or q0 = 1

2 or q0 < 1
2 . On the other hand, if the present density of the universe

were dominated by relativistic matter then p0 = ρ0/3, and the critical value
of the deceleration parameter at which K = 0 would be q0 = 1. Finally, if
the present density of the universe were dominated by vacuum energy then
p0 = −ρ0, and the value of the deceleration parameter at which K = 0
would be q0 = −1.

There is a peculiar aspect to these results. The contribution of non-
relativistic and relativistic matter to the quantity ρa2 in Eq. (1.5.19) grows
as a−1 and a−2, respectively, as a → 0, so at sufficiently early times in the
expansion we may certainly neglect the constant K , and Eq. (1.5.19) gives

ȧ2

a2 → 8πGρ

3
. (1.5.31)

That is, at these early times the density becomes essentially equal to
the critical density 3H2/8πG, where H ≡ ȧ/a is the value of the Hubble
“constant” at those times. On the other hand, we will see later that the total
energy density of the present universe is still a fair fraction of the critical
density. How is it that after billions of years, ρ is still not very different from
ρcrit? This is sometimes called the flatness problem.

The simplest solution to the flatness problem is just that we are in a
spatially flat universe, in which K = 0 and ρ is always precisely equal to ρcrit.
A more popular solution is provided by the inflationary theories discussed
in Chapter 4. In these theories K may not vanish, and ρ may not start out
close to ρcrit, but there is an early period of rapid growth in which ρ/ρcrit
rapidly approaches unity. In inflationary theories it is expected though not
required that ρ should now be very close to ρcrit, in which case it is a good
approximation to take K = 0.
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1 The Expansion of the Universe

For K = 0 we get very simple solutions to Eq. (1.5.19) in the three special
cases listed in Section 1.1:

Non-relativistic matter: Here ρ = ρ0(a/a0)
−3, and the solution of

Eq. (1.5.19) with K = 0 is

a(t) ∝ t2/3 . (1.5.32)

This gives q0 ≡ −aä/ȧ2 = 1/2, and a simple relation between the age of the
universe and the Hubble constant

t0 = 2
3H0

= 6.52 × 109 h−1 yr . (1.5.33)

Eqs. (1.5.32) and (1.5.18) show that for K = 0, the energy density at time t
is ρ = 1/6πGt2. This is known as the Einstein–de Sitter model. It was for
many years the most popular cosmological model, though as we shall see,
the age (1.5.33) is uncomfortably short compared with the ages of certain
stars.

Relativistic matter: Here ρ = ρ0(a/a0)
−4, and the solution of Eq. (1.5.19)

with K = 0 is

a(t) ∝
√

t . (1.5.34)

This gives q0 = +1, while the age of the universe and the Hubble constant
are related by

t0 = 1
2H0

. (1.5.35)

The energy density at time t is ρ = 3/32πGt2.

Vacuum energy: Lorentz invariance requires that in locally inertial
coordinate systems the energy-momentum tensor Tµν

V of the vacuum must
be proportional to the Minkowski metricηµν (for whichηij = ηij = δij , ηi0 =
ηi0 = η0i = η0i = 0, η00 = η00 = −1), and so in general coordinate systems
Tµν

V must be proportional to gµν . Comparing this with Eq. (B.43) shows that
the vacuum has pV = −ρV , so that Tµν

V = −ρV gµν . In the absence of any
other form of energy this would satisfy the conservation law 0 = Tµν

V ;µ =
gµν∂ρV /∂xµ, so that ρV would be a constant, independent of spacetime
position. Eq. (1.5.19) for K = 0 requires that ρV > 0, and has the solutions

a(t) ∝ exp(Ht) (1.5.36)

where H is the Hubble constant, now really a constant, given by

H =
√

8πGρV

3
. (1.5.37)
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1.5 Dynamics of expansion

Here q0 = −1, and the age of the universe in this case is infinite. This
is known as the de Sitter model.3 Of course, there is some matter in the
universe, so even if the energy density of the universe is now dominated
by a constant vacuum energy, there was a time in the past when matter
and/or radiation were more important, and so the expansion has a finite
age, although greater than it would be without a vacuum energy.

More generally, for arbitrary K and a mixture of vacuum energy and
relativistic and non-relativistic matter, making up fractions $2, $M , and
$R of the critical energy density,4 we have

ρ = 3 H2
0

8πG

[
$2 + $M

(a0

a

)3
+ $R

(a0

a

)4
]

, (1.5.38)

where the present energy densities in the vacuum, non-relativistic matter,
and and relativistic matter (i.e., radiation) are, respectively,

ρV0 ≡ 3H2
0 $2

8πG
, ρM0 ≡ 3H2

0 $M

8πG
, ρR0 ≡ 3H2

0 $R

8πG
, (1.5.39)

and, according to Eq. (1.5.19),

$2 + $M + $R + $K = 1 , $K ≡ − K
a2

0H2
0

. (1.5.40)

Using this in Eq. (1.5.19) gives

dt= dx

H0x
√

$2 + $K x−2 + $Mx−3 + $Rx−4

= −dz

H0(1 + z)
√

$2 + $K (1 + z)2 + $M (1 + z)3 + $R(1 + z)4
, (1.5.41)

where x ≡ a/a0 = 1/(1 + z). Therefore, if we define the zero of time
as corresponding to an infinite redshift, then the time at which light was
emitted that reaches us with redshift z is given by

t(z) = 1
H0

∫ 1/(1+z)

0

dx

x
√

$2 + $K x−2 + $Mx−3 + $Rx−4
. (1.5.42)

3W. de Sitter, Proc. Roy. Acad. Sci. (Amsterdam), 19, 1217 (1917); ibid. 20, 229 (1917); ibid. 20,
1309 (1917); Mon. Not. Roy. Astron. Soc., 78, 2 (1917).

4The use of the symbol $2 instead of $V for the ratio of the vacuum energy density to the critical
energy density has become standard, because of a connection with the cosmological constant discussed
in a historical note below.
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1 The Expansion of the Universe

In particular, by setting z = 0, we find the present age of the universe:

t0 = 1
H0

∫ 1

0

dx

x
√

$2 + $K x−2 + $Mx−3 + $Rx−4
. (1.5.43)

In order to calculate luminosity or angular diameter distances, we also
need to know the radial coordinate r(z) of a source that is observed now
with redshift z. According to Eqs. (1.2.2) and (1.5.41), this is

r(z) = S
[∫ t0

t(z)

dt
a(t)

]

= S

[
1

a0H0

∫ 1

1/(1+z)

dx

x2
√

$2 + $K x−2 + $Mx−3 + $Rx−4

]

,

where

S[y] ≡






sin y K = +1
y K = 0
sinh y K = −1 .

This can be written more conveniently by using Eq. (1.5.40) to express a0H0
in terms of $K . We then have a single formula

a0r(z) = 1

H0$
1/2
K

× sinh

[

$
1/2
K

∫ 1

1/(1+z)

dx

x2
√

$2 + $K x−2 + $Mx−3 + $Rx−4

]

,

(1.5.44)

which can be used for any curvature. (Eq. (1.5.43) has a smooth limit for
$K → 0, which gives the result for zero curvature. Also, for $K < 0,
the argument of the hyperbolic sine is imaginary, and we can use sinh ix =
i sin x.) Using Eq. (1.5.44) in Eq. (1.4.3) gives the luminosity distance of a
source observed with redshift z as

dL(z) = a0r(z)(1 + z) = 1 + z

H0$
1/2
K

× sinh

[

$
1/2
K

∫ 1

1/(1+z)

dx

x2
√

$2 + $K x−2 + $Mx−3 + $Rx−4

]

.

(1.5.45)
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1.5 Dynamics of expansion

For K = 0 we have $K = 0 and Eq. (1.5.45) becomes

dL(z) = a0r1(1 + z) = 1 + z
H0

∫ 1

1/(1+z)

dx

x2
√

$2 + $Mx−3 + $Rx−4
.

(1.5.46)

As we will see in Section 2.1, $R is much less than $M , and the integral
(1.5.46) converges at its lower bound for z → ∞ whether or not $R vanishes,
so it is a good approximation to take $R = 0 here.

It is of some interest to express the deceleration parameter q0 in terms
of the $s. The p/ρ ratio w for vacuum, matter, and radiation is −1, 0, and
1/3, respectively, so Eq. (1.5.39) gives the present pressure as

p0 = 3H2
0

8πG

(
−$2 + 1

3
$R

)
. (1.5.47)

Eq. (1.5.30) then gives

q0 = 4πG(3p0 + ρ0)

3H2
0

= 1
2

($M − 2$2 + 2$R) . (1.5.48)

One of the reasons for our interest in the values of $K , $M , etc. is that
they tell us whether the present expansion of the universe will ever stop.
According to Eq. (1.5.38), the expansion can only stop if there is a real root
of the cubic equation

$2u3 + $K u + $M = 0 , (1.5.49)

where u ≡ a(t)/a(t0) is greater than one. (We are ignoring radiation here,
since it will become even less important as the universe expands.) This
expression has the value +1 for u = 1. If $2 < 0 then the left-hand side
of Eq. (1.5.49) becomes negative for sufficiently large u, so it must take the
value zero at some intermediate value of u, and the expansion will stop
when this value of u is reached. Even for $2 ≥ 0 it is still possible for the
expansion to stop, provided $K = 1 − $2 − $M is sufficiently negative
(which, among other things, requires that K = +1).

Historical Note 1: If we express the total energy momentum tensor Tµν as
the sum of a possible vacuum term −ρV gµν and a term TM

µν arising from
matter (including radiation), then the Einstein equations take the form

Rµν − 1
2

gµνRλ
λ = −8πGTM

µν + 8πGρV gµν . (1.5.50)
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1 The Expansion of the Universe

Thus the effect of a vacuum energy is equivalent to modifying the Einstein
field equations to read

Rµν − 1
2

gµνR − 2gµν = −8πGTM
µν , (1.5.51)

where

2 = 8 π G ρV . (1.5.52)

The quantity 2 is known as the cosmological constant. It was introduced
into the field equation by Einstein in 1917 in order to satisfy a condition
that at the time was generally regarded as essential, that the universe should
be static.5 According to Eqs. (1.5.18) and (1.5.19), a static universe is only
possible if 3p + ρ = 0 and K = 8πGρa2/3. If the contents of the universe
are limited to vacuum energy and non-relativistic matter, then ρ = ρM +ρV ,
p = −ρV , and ρM ≥ 0. It follows that ρM = 2ρV ≥ 0, so K > 0, which by
convention means K = +1, so that a takes the value aE = 1/

√
8πGρV =

1/
√

2. This is known as the Einstein model.
Einstein did not realize it, but his cosmology was unstable: If a is a little

less than aE then ρM is a little larger than 2ρV , so Eq. (1.5.18) shows that
ä/a < 0, and a thus begins to decrease. Likewise, if a is a little greater
than aE then it begins to increase. The models with K = +1 and 2 > 0
in which a starts at the Einstein radius a = aE with ρM = 2ρV and then
expands to infinity (or starts at a = 0 and approaches aE as t → ∞ with
just enough matter so that ρM = 2ρV at the Einstein radius), are known as
Eddington–Lemaître models.6 There are also models with K = +1 and a
little more matter, that start at a = 0, spend a long time near the Einstein
radius, and then expand again to infinity, approaching a de Sitter model.
These are known as Lemaître models.7

Oddly, de Sitter also invented his cosmological model (with a ∝ exp(Ht))
in order to satisfy a supposed need for a static universe. He originally
proposed a time-independent metric, given by

dτ 2 = (1 − r2/R2)dt2 − dr2

1 − r2/R2 − r2 dθ2 − r2 sin2 θ dφ2 ,

(1.5.53)

5A. Einstein, Sitz. Preuss. Akad. Wiss. 142 (1917). For an English translation, see The Principle of
Relativity (Methuen, 1923; reprinted by Dover Publications, New York, 1952), p. 35.

6A. S. Eddington, Mon. Not. Roy. Astron. Soc. 90, 668 (1930); G. Lemaître, Ann. Soc. Sci. Brux.
A47, 49 (1927); Mon. Not. Roy. Astron. Soc. 91, 483 (1931). The interpretation of the cosmolog-
ical constant in terms of vacuum energy was stated by Lemaître in Proc. Nat. Acad. Sci. 20, 12L
(1934).

7G. Lemaître, op. cit.
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1.6 Distances at large redshift: Accelerated expansion

or equivalently, setting r = R sin χ ,

dτ 2 = cos2 χ dt2 − R2
(
dχ2 + sin2 χdθ2 + sin2 χ sin2 θ dφ2

)
, (1.5.54)

with R = √
3/2 constant. De Sitter did not realize at first that this metric

has 'i
00 2= 0, so that his coordinate system was not co-moving.8 Only later

was it noticed that, using co-moving spatial coordinates and cosmological
standard time, de Sitter’s model is equivalent to a Robertson–Walker metric
with K = 0 and a ∝ exp(t/R).

After the discovery of the expansion of the universe, cosmologists lost
interest in a static universe, and Einstein came to regret his introduction of
a cosmological constant, calling it his greatest mistake. But as we shall see
in the next section, there are theoretical reasons to expect a non-vanishing
vacuum energy, and there is observational evidence that in fact it does not
vanish. Einstein’s mistake was not that he introduced the cosmological
constant — it was that he thought it was a mistake.

Historical Note 2: There is a cosmological model due to Bondi and Gold9

and in a somewhat different version to Hoyle,10 known as the steady state
theory. In this model nothing physical changes with time, so the Hubble
constant really is constant, and hence a(t) ∝ exp(Ht), just as in the de Sitter
model. To keep the curvature constant, it is necessary to take K = 0. In
this model new matter must be continually created to keep ρ constant as the
universe expands. Since the discovery of the cosmic microwave background
(discussed in Chapter 2) the steady state theory in its original form has been
pretty well abandoned.

1.6 Distances at large redshift: Accelerated expansion

We now return to our account of the measurement of distances as a function
of redshift, considering now redshifts z > 0.1, which are large enough so
that we can ignore the peculiar motions of the light sources, and also large
enough so that we need to take into account the effects of cosmological
expansion on distance determination.

For many years, the chief “standard candles” used at large redshift were
the brightest galaxies in rich clusters. It is now well established that the

8A. S. Eddington, The Mathematical Theory of Relativity, 2nd ed. (Cambridge University Press,
Cambridge, 1924), Section 70. It is interesting that Eddington interpreted Slipher’s observation that
most spiral nebulae exhibit redshifts rather than blueshifts in terms of the de Sitter model, rather than
Friedmann’s models.

9H. Bondi and T. Gold, Mon. Not. Roy. Astron. Soc. 108, 252 (1948).
10F. Hoyle, Mon. Not. Roy. Astron. Soc. 108, 372 (1948), ibid. 109, 365 (1949).
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1 The Expansion of the Universe

absolute luminosity of these brightest galaxies evolves significantly over
cosmological time scales. There are also severe selection effects: there is a
tendency to pick out larger clusters with brightest galaxies of higher abs-
olute luminosity at large distances. The evolution of brightest galaxies is of
interest in itself, and continues to be the object of astronomical study,1 but
the use of these galaxies as distance indicators has been pretty well aban-
doned. Similarly, although the Tully–Fisher relation discussed in Section 1.3
has been applied to galaxies with redshifts of order unity, at these redshifts
it is used to study galactic evolution, rather than to measure cosmological
parameters.2

Fortunately, the Type Ia supernovae discussed in Section 1.3 provide
an excellent replacement as standard candles.3 They are very bright; the
peak blue absolute magnitude averages about −19.2, which compares well
with the absolute magnitude −20.3 estimated for our own galaxy. Also, as
described in Section 1.3, a Type Ia supernova typically occurs when a white
dwarf member of a binary pair has accreted just enough mass to push it
over the Chandrasekhar limit, so that the nature of the explosion does not
depend much on when in the history of the universe this happens, or on the
mass with which the white dwarf started or the nature of the companion
star. But it might depend somewhat on the metallicity (the proportion of
elements heavier than helium) of the white dwarf, which can depend on the
epoch of the explosion. The absolute luminosity of Type Ia supernovae is
observed to vary with environmental conditions, but fortunately in the use
of supernovae as distance indicators the bulk of this variation is correctable
empirically.

Observations of Type Ia supernovae have been compared with theoretical
predictions (equivalent to Eq. (1.5.45)) for luminosity distance as a function
of redshift at about the same time by two groups: The Supernova Cosmology
Project4 and the High-z Supernova Search Team.5

1See, e.g., D. Zaritsky et al., in Proceedings of the Sesto 2001 Conference on Tracing Cosmic Evolution
with Galaxy Clusters [astro-ph/0108152]; S. Brough et al., in Proceedings of the Sesto 2001 Conference
on Tracing Cosmic Evolution with Galaxy Clusters [astro-ph/0108186].

2N. P. Vogt et al., Astrophys. J. 465, l15 (1996). For a review and more recent references, see A.
Aragón-Salmanca, in Galaxy Evolution Across the Hubble Time – Proceedings of I.A.U. Symposium 235,
eds. F. Combes and J. Palous [astro-ph/0610587].

3For reviews, see S. Perlmutter and B. P. Schmidt, in Supernovae & Gamma Ray Bursts, ed. K. Weiler
(Springer, 2003) [astro-ph/0303428]; P. Ruiz-Lapuente, Astrophys. Space Sci. 290, 43 (2004) [astro-
ph/0304108]; A. V. Filippenko, in Measuring and Modeling of the Universe (Carnegie Observatories
Astrophysics Series, Vol 2., Cambridge University Press) [astro-ph/0307139]; Lect. Notes Phys. 645,
191 (2004) [astro-ph/0309739]; N. Panagia, Nuovo Cimento B 210, 667 (2005) [astro-ph/0502247].

4S. Perlmutter et al., Astrophys. J. 517, 565 (1999) [astro-ph/9812133]. Also see S. Perlmutter et al.,
Nature 391, 51 (1998) [astro-ph/9712212].

5A. G. Riess et al., Astron. J. 116, 1009 (1998) [astro-ph/9805201]. Also see B. Schmidt et al.,
Astrophys. J. 507, 46 (1998) [astro-ph/9805200].
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1.6 Distances at large redshift: Accelerated expansion

The Supernova Cosmology Project analyzed the relation between
apparent luminosity and redshift for 42 Type Ia supernovae, with redshifts
z ranging from 0.18 to 0.83, together with a set of closer supernovae from
another supernova survey, at redshifts below 0.1. Their original results are
shown in Figure 1.1.

With a confidence level of 99%, the data rule out the case $2 = 0 (or
$2 < 0). For a flat cosmology with $K = $R = 0, so that $2 + $M = 1,
the data indicate a value

$M = 0.28+0.09
−0.08 (1σ statistical)+0.05

−0.04 (identified systematics)

(These results are independent of the Hubble constant or the absolute
calibration of the relation between supernova absolute luminosity and time
scale, though they do depend on the shape of this relation.) This gives the
age (1.5.43) as

t0 = 13.4+1.3
−1.0 × 109
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Figure 1.1: Evidence for dark energy, found in 1998 by the Supernova Cosmology Project,
from S. Perlmutter et al., Astrophys. J. 517, 565 (1999) [astro-ph/9812133]. Here the effective
blue apparent magnitude (corrected for variations in absolute magnitude, as indicated by
supernova light curves) are plotted versus redshift for 42 high redshift Type Ia supernovae
observed by the Supernova Cosmology Project, along with 18 lower redshift Type Ia super-
novae from the Calán–Tololo Supernovae Survey. Horizontal bars indicate the uncertainty
in cosmological redshift due to an assumed peculiar velocity uncertainty of 300 km sec−1.
Dashed and solid curves give the theoretical effective apparent luminosities for cosmological
models with $K = 0 or $2 = 0, respectively, and various possible values of $M .
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1 The Expansion of the Universe

For $M = 0.28 and $2 = 1 − $M , Eq. (1.5.48) gives a negative decelera-
tion parameter, q0 = −0.58, indicating that the expansion of the universe is
accelerating.

The High-z Supernova Search Team originally studied 16 Type Ia super-
novae of high redshift (with redshifts ranging from 0.16 to 0.97), including
2 from the Supernova Cosmology Project, together with 34 nearby super-
novae, and conclude that $2 > 0 at the 99.7% confidence level, with no
assumptions about spatial curvature. Their original results are shown in
Figure 1.2.

Their best fit for a flat cosmology is $M = 0.28±0.10 and $2 = 1−$M ,
giving an age of about (14.2±1.5)×109 years, including uncertainties in the
Cepheid distance scale. Assuming only $M ≥ 0, and with a conservative
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Figure 1.2: Evidence for dark energy, found in 1998 by the High-z Supernova Search Team,
from A. G. Riess et al., Astron. J. 116, 1009 (1998) [astro-ph/9805201]. In the upper panel
distance modulus is plotted against redshift for a sample of Type Ia supernovae. The curves
give the theoretical results for two cosmologies with $2 = 0 and a good-fit flat cosmology
with $M = 0.24 and $2 = 0.76. The bottom panel shows the difference between data and
a formerly popular Einstein–de Sitter model with $M = 0.2 and $2 = 0, represented by
the horizontal dotted line.
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1.6 Distances at large redshift: Accelerated expansion

fitting method, with 99.5% confidence they conclude that q0 < 0, again
strongly indicating an accelerated expansion. Including 8 new supernovae
in a sample of 230 supernovae of Type Ia gave6 1.4 $M −$2 = −0.35±0.14,
providing further evidence that $2 > 0. The case for vacuum energy was
then strenghtened when the Supernova Cosmology Project,7 including a
new set of supernova, found for a flat universe that $2 = 0.75+0.06

−0.07(stat.)±
0.032(syst.).

Both groups agree that their results are chiefly sensitive to a linear combi-
nation of $2 and $M , given as 0.8$M − 0.6$2 by the Supernova Cosmol-
ogy Project and $M −$2 or 1.4$M −$2 by the High-z Supernova Search
Team. The minus sign in these linear combinations, as in Eq. (1.5.48),
reflects the fact that matter and vacuum energy have opposite effects on
the cosmological acceleration: Matter causes it to slow down, while a pos-
itive vacuum energy causes it to accelerate. The negative values found for
these linear combinations shows the presence of a component of energy
something like vacuum energy, with p ) −ρ. This is often called dark
energy.

Incidentally, these linear combinations of $2 and $M are quite different
from the expression $M/2 − $2, which according to Eq. (1.5.48) gives the
deceleration parameter q0 that was the target of much cosmological work
of the past. Thus the observations of Type Ia supernovae at cosmological
distances should not be regarded as simply measurements of q0.

The High-z Supernova Search Team subsequently began to use the same
survey observations to follow the time development of supernovae that were
used to find them.8 They discovered 23 new high redshift supernovae of
Type Ia, including 15 with z > 0.7. Using these new supernovae along
with the 230 used earlier by Tonry et al., and with the assumption that
$M + $2 = 1, they found the best-fit values $M = 0.33 and $2 = 0.67.

The crucial feature of the supernova data that indicates that $2 > $M
is that the apparent luminosity of Type Ia supernovae falls off more rapidly
with redshift than would be expected in an Einstein–de Sitter cosmology
with $M = 1 and $2 = 0. We can see the effect of vacuum energy
on apparent luminosity by comparing the luminosity distance calculated
in two extreme cases, both with no matter or radiation. For a vacuum-
dominated flat model with $2 = 1 and $K = $M = $R = 0, Eq. (1.5.46)
gives

dL(z) = z + z2

H0
(vacuum dominated) , (1.6.1)

6J. L. Tonry et al., Astrophys. J. 594, 1 (2003) [astro-ph/0305008].
7R. Knop et al., Astrophys. J. 598, 102 (2003) [astro-ph/0309368].
8B. J. Barris et al., Astrophys. J. 502, 571 (2004) [astro-ph/0310843].
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1 The Expansion of the Universe

while for an empty model with $K = 1 and $2 = $M = $R = 0,
Eq, (1.5.46) gives

dL(z) = z + z2/2
H0

(empty) , (1.6.2)

Evidently for all z, vacuum energy increases the luminosity distance. The
same increase is seen if we compare the more realistic case $2 = 0.7, $M =
0.3, $K = $R = 0 with the corresponding case without vacuum energy
and $K = 0.7, $M = 0.3, $2 = $R = 0, as can be seen in Figure 1.3.

Both theSupernovaCosmologyProject and theHigh-zSupernovaSearch
Team found that curve of measured luminosity distances vs. redshift of Type
Ia supernovae was closer to the upper than the lower curve in Figure 1.3.
Indeed, according to Eq. (1.4.9), the negative value of q0 found by all groups
corresponds to the fact that the apparent luminosity of the type Ia super-
novae seen at moderate redshifts is less than in the empty model, for which
q0 = 0, in contrast with what had been expected, that the expansion is dom-
inated by matter, in which case we would have had q0 > 0, and the apparent
luminosities at moderate redshifts would have been larger than for q0 = 0.

The connection between an accelerating expansion and a reduced
apparent luminosity can be understood on the basis of the naive Newtonian
cosmological model discussed in Section 1.5. In this model, the redshift we
observe from a distant galaxy depends on the speed the galaxy had when
the light we observe was emitted, but the apparent luminosity is inversely
proportional to the square of the distance of this galaxy now, because the
galaxy’s light is now spread over an area equal to 4π times this squared dis-
tance. If the galaxies we observe have been traveling at constant speed since
the beginning, as in the empty model, then the distance of any galaxy from

0.2 0.4 0.6 0.8 1
z

0.25

0.5

0.75

1
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dL H0

Figure 1.3: Luminosity distance versus redshift for two cosmological models. The upper
solid curve is for the case $2 = 0.7, $M = 0.3, $K = $R = 0; the lower dashed curve
is for an empty model, with $K = 1, $2 = $M = $R = 0. The vertical axis gives the
luminosity distance times the Hubble constant.
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1.6 Distances at large redshift: Accelerated expansion

us now would be proportional to its speed when the light was emitted. In
the absence of a vacuum energy, we would expect the galaxies to be slowing
down under the influence of their mutual gravitational attraction, so that
the speed we observe would be greater than the speed they have had since
the light was emitted, and their distances now would therefore be smaller
than they would be if the speeds were constant. Thus in the absence of
vacuum energy we would expect an enhanced apparent luminosity of the
supernovae in these galaxies. In fact, it seems that the luminosity distances
of supernovae are larger than they would be if the speeds of their host
galaxies were constant, indicating that these galaxies have not been slowing
down, but speeding up. This is just the effect that would be expected from
a positive vacuum energy.

Of course, it is also possible that the reduction in apparent luminosity
is due to absorption or scattering of light by intervening material rather
than an accelerated expansion. It is possible to distinguish such effects
from a true increase in luminosity distance by the change in the apparent
color produced by such absorption or scattering, but this is a complicated
business.9 This concern has been allayed by careful color measurements.10

But it is still possible to invent intergalactic media (so-called gray dust) that
would reduce the apparent luminosity while leaving the color unchanged.

This concern has been largely put to rest, first by the study11 of the super-
novae SN1997ff found in the Hubble Deep Field12 in a galaxy with a redshift
z = 1.7±0.1, the greatest yet found for any supernova, and then by the dis-
covery and analysis by a new team, the Higher-z Supernova Team,13 of 16
new Type Ia supernovae, of which six have z > 1.25. These redshifts are so
large that during a good part of the time that the light from these supernovae
has been on its way to us, the energy density of the universe would have been
dominated by matter rather than by a cosmological constant, and so the
expansion of the universe would have been decelerating rather than acceler-
ating as at present. Thus if the interpretation of the results of the two groups
at smaller redshifts in terms of $M and $2 is correct, then the apparent
luminosity of these supernovae should be larger than would be given by a
linear relation between luminosity distance and redshift, a result that could
not be produced by absorption or scattering of light. We see this in Figure
1.4, which shows the difference between the luminosity distance (in units
H−1

0 ) for the realistic case with $2 = 0.7, $M = 0.3, $K = $R = 0 and for

9See e.g., A. Aguirre, Astrophys. J. 525, 583 (1999) [astro-ph/9904319].
10R. Knop et al., ref. 7; also see M. Sullivan et al., Mon. Not. Roy. Astron. Soc. 340, 1057 (2003)

[astro-ph/0211444].
11A. G. Riess et al., Astrophys. J. 560, 49 (2001) [astro-ph/0104455].
12R. L. Gilliland, P. E. Nugent, and M. M. Phillips, Astrophys. J. 521, 30 (1999).
13A. G. Riess et al., Astrophys. J. 607, 665 (2004) [astro-ph/0402512].
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Figure 1.4: The luminosity distance times H0 for the realistic case $2 = 0.7, $M = 0.3,
$K = $R = 0, minus its value for the empty case $K = 1, $2 = $M = $R = 0, plotted
against redshift.

the empty model with $K = 1, $M = $K = $R = 0. We see that luminos-
ity distances for the realistic model are greater than for the empty model for
moderate redshift, but become less than for the empty model for z > 1.25.
This is just what is seen. The apparent luminosity of all supernovae is consis-
tent with the parameters $M ≈ 0.3, $2 ≈ 0.7 found in the 1998 studies, but
not consistent with what would be expected for gray dust and$2 = 0. These
conclusions have subsequently been strengthened by the measurement of
luminosity distances of additional Type Ia supernovae with redshifts near
0.5.14 In 2006 Riess et al.15 announced the discovery with the Hubble Space
Telescope of 21 new Type Ia supernovae, which included 13 supernovae with
redshifts z ≥ 1 measured spectroscopically (not just photometrically). Their
measured luminosity distances and redshifts, together with data on previ-
ously discovered Type Ia supernovae, gave further evidence of a transition
from a matter-dominated to a vacuum energy-dominated expansion, and
showed that the pressure/density ratio of the vacuum energy for z > 1 is
consistent with w = −1, and not rapidly evolving.

Another serious concern arises from the possibility that the absolute
luminosity of Type Ia supernovae may depend on when the supernovae
occur. Because Type Ia supernovae occur at a characteristic moment in the
history of a star, evolution effects on the luminosities of these supernovae
are not expected to be as important as for whole galaxies, which at great
distances are seen at an earlier stage in their history.16 Even so, the absolute
luminosity of a Type Ia supernova is affected by the chemical composition

14A. Clocchiatti et al., Astrophys. J. 642, 1 (2006) [astro-ph/0510155].
15A. Riess et al., Astrophys. J. 659, 98 (2007) [astro-ph/0611572].
16D. Branch, S. Perlmutter, E. Baron, and P. Nugent, contribution to the Supernova Acceleration

Probe Yellow Book (Snowmass, 2001) [astro-ph/0109070].
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1.6 Distances at large redshift: Accelerated expansion

of the two progenitor stars of the supernova, which is in turn affected by the
evolution of the host galaxy.17 Such effects are mitigated by taking account
of the correlation of supernova absolute luminosity with decay time and
with intrinsic color, both of which presumably depend on the progenitor’s
chemical composition. Also, evidence for dark energy has been found in
studies of subsets of Type Ia supernovae found in very different environ-
ments with very different histories.18 The study of the seven supernovae
with z > 1.25 mentioned above rules out models with $2 = 0 and any sort
of dramatic monotonic evolution of supernovae absolute luminosities that
would mimic the effects of dark energy.

There are other effects that might possibly impact the observed relation
between supernova apparent luminosities and redshifts:

1. Theeffectofweakgravitational lensingonthe implicationsof thesuper-
nova observations is expected to be small,19 except perhaps for small
area surveys.20 (Gravitational lensing is discussed in Chapter 9.) It had
been thought that the apparent luminosity of the most distant observed
supernova, SN1997ff, maybeenhancedbygravitational lensing,21 con-
ceivably reopening the possibility that the reduction of the apparent
luminosity of the nearer supernovae is due to gray dust. However, a
subsequent analysis by the same group22 reported that the magnifica-
tion of this supernova due to gravitational lensing is less than had been
thought, and that the effect of the corrections due to gravitational lens-
ing on current cosmological studies is small. Members of the High-z
Supernova project have reported that instead this effect is likely to imp-
rove agreement with the estimate that $M = 0.35 and $2 = 0.65.23

2. It has been argued that inhomogeneities in the cosmic distribution of
matter could produce an accelerating expansion, without the need
for any sort of exotic vacuum energy.24 Given the high degree of

17P. Podsiadlowski et al., astro-ph/0608324. Evolution may also affect the extinction of light by dust
in the host galaxy; see T. Totani and C. Kobayashi, Astrophys. J. 526, 65 (1999).

18M. Sullivan et al., ref. 10.
19A. J. Barber, Astron. Soc. Pacific Conf. Ser. 237, 363 (2001) [astro-ph/0109043].
20A. Cooray, D. Huterer, and D. E. Holz, Phys. Rev. Lett. 96, 021301 (2006).
21E. Mörtstell, C. unnarsson, and A. Goobar, Astrophys. J. 561, 106 (2001); C. Gunnarsson, in

Proceedings of a Conference on New Trends in Theoretical and Observational Cosmology – Tokyo, 2001
[astro-ph/0112340].

22J. Jönsson et al., Astrophys. J. 639, 991 (2006) [astro-ph/0506765].
23N. Benítez et al., Astrophys. J. 577, L1 (2002) [astro-ph/0207097].
24E. W. Kolb, S. Matarrese, A. Notari, and A. Riotto, Astrophys. J. 626, 195 (2005) [hep-th/0503117];

E. W. Kolb, S. Matarrese, and A. Riotto, New J. Phys. 8, 322 (2006) [astro-ph/0506534]; E. Barausse, S.
Matarrese, and A. Riotto, Phys. Rev. D 71, 063537 (2005).
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homogeneity of the universe when averaged over sufficiently large
scales, this seems unlikely.25

3. There is some evidence for two classes of type Ia supernovae,26 with
the minority associated perhaps with merging white dwarfs, or with
a variation in explosion physics. The effect on cosmological studies
remains to be evaluated.

4. Other uncertainties that can degrade the accuracy of measurements
of dark energy (without casting doubt on its existence) arise from the
circumstance that the shape of the curve of luminosity distance versus
redshift is found by numerous observatories, both ground-based and
space-based, and there are various flux calibration errors that can arise
between these different observatories.

5. The measurement of luminosity distance of any source of light at large
redshift has historically been plagued by the fact that measurements
are not “bolometric,” that is, equally sensitive to all wavelengths, but
are rather chiefly sensitive to wavelengths in a limited range. The
cosmological redshift changes the apparent colors of sources, and
thereby changes the sensitivity with which apparent luminosity is mea-
sured. To take this into account, the observed apparent magnitude is
corrected with a so-called K-correction.27 The K-correction for super-
novae were worked out before the discovery of dark energy,28 and has
been refined subsequently.29 As theprecisionof supernovaeobservations
improves, further improvementsmayalsobeneeded in theK-correction.

These observations of an accelerated expansion are consistent with the
existence of a constant vacuum energy, but do not prove that this energy
density really is constant. According to Eq. (1.5.18), the existence of an
accelerated expansion does however require that a large part of the energy
density of the universe is in a form that has ρ + 3p < 0, unlike ordinary
matter or radiation. This has come to be called dark energy.30

25É. É. Flanagan, Phys. Rev. D 71, 103521 (2005) [hep-th/0503202]; G. G. Geshnizjani, D. J. H. Chung,
and N. Afshordi, Phys. Rev. D 72, 023517 (2005) [astro-ph/0503553]; C. M. Hirata and U. Seljak, Phys.
Rev. D 72, 083501 (2005) [astro-ph/0503582]; A. Ishibashi and R. M. Wald, Class. Quant. Grav. 23,
235 (2006) [gr-qc/0509108].

26D. Howell et al., Nature 443, 308 (2006); S. Jha, A. Riess, & R. P. Kirshner, Astrophys. J. 654, 122
(2007); R. Quimby, P. Höflich, and J. C. Wheeler, 0705.4467.

27For a discussion of the K-correction applied to observations of whole galaxies, and original refer-
ences, see G&C, p. 443.

28A. Kim, A. Goobar, and S. Perlmutter, Proc. Astron. Soc. Pacific 108, 190 (1995) [astro-
ph/9505024].

29P. Nugent, A. Kim, and S. Perlmutter, Proc. Astron. Soc. Pacific 114, 803 (2002) [astro-ph/0205351].
30For a general review, see P. J. E. Peebles and B. Ratra, Rev. Mod. Phys. 75, 559 (2003).
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To take into account the possibility that the dark energy density is not
constant, it has become conventional to analyze observations in terms of
its pressure/density ratio pD.E./ρD.E. ≡ w. Except in the case of a con-
stant vacuum energy density, for which w = −1, there is no special reason
why w should be time-independent. (A different, more physical, possibil-
ity is explored at the end of Section 1.12.) Still, it is popular to explore
cosmological models with w constant but not necessarily equal to −1. As
long as the dark energy density and $K are non-negative, the expansion of
the universe will continue, with ȧ always positive. As shown in Eq. (1.1.34),
the dark energy density in this case goes as a−3−3w, so if w is negative (as
indicated by the supernova observations) the energy density of radiation and
matter must eventually become negligible compared with the dark energy
density. For w < −1/3, the effect of a possible curvature in the Friedmann
equation (1.5.19) also eventually becomes negligible. The solution of this
equation for w > −1 with ȧ > 0 then becomes t − t1 → Ca(3+3w)/2, with
C > 0, and t1 an integration constant. This is a continued expansion, with a
decreasing expansion rate. But for w < −1, sometimes known as the case of
phantom energy, the solution with ȧ > 0 is instead t1−t → Ca(3+3w)/2, again
with C > 0. This solution has the remarkable feature that a(t) becomes
infinite at the time t1. In contrast with the case w ≥ −1, for w < −1 all
structures — galaxy clusters, galaxy clusters, stars, atoms, atomic nuclei,
protons and neutrons — eventually would be ripped apart by the repulsive
forces associated with dark energy.31

To further study the time dependence of the dark energy, a five year
supernova survey, the Supernova Legacy Survey,32 was begun in 2003 at the
Canada–France–Hawaii telescope on Mauna Kea. At the end of the first
year, 71 high redshift Type Ia supernovae had been discovered and studied,
with the result that $M = 0.263±0.042(stat)±0.032(sys). Combining this
supernova data with data from the Sloan Digital Sky Survey (discussed
in Chapter 8), and assuming that the dark energy has w ≡ p/ρ time-
independent, it is found that if w is constant then w = −1.023±0.09(stat)±
0.054(sys), consistent with the value w = −1 for a constant vacuum energy.
At the time of writing, results have just become available for 60 Type Ia
supernovae from another supernova survey, ESSENCE.33 (The acronym is
for Equation of State: Supernovae trace Cosmic Expansion). Combining
these with the results of the Supernova Legacy Survey, the ESSENCE group
found that if w is constant then w = −1.07 ± 0.09(stat, 1σ ) ± 0.13(syst),
and $M = 0.267_0.028

−0.018(stat, 1σ ).

31R. R. Caldwell, M. Kamionkowski, and N. N. Weinberg, Phys. Rev. Lett. 91, 071301 (2003)
[astro-ph/0302506].

32P. Astier, et al., Astron. Astrophys. 447, 31 (2006) [astro-ph/0510447].
33M. Wood-Vesey et al., astro-ph/0701041
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The conclusion that dark energy makes up a large fraction of the energy
of the universe has been confirmed by observations of the cosmic microwave
background, as discussed in Section 7.2. This conclusion has also received
support from the use of a different sort of secondary distance indicator, the
emission of X-rays from hot gas in galaxy clusters. In Section 1.9 we will see
that the measurement of redshift, temperature, apparent X-ray luminosity
and angular diameter of a cluster allows a determination of the ratio of hot
gas (“baryons”) to all matter in the cluster, with this ratio proportional to
d−3/2

A , where dA is the assumed angular-diameter distance of the cluster.
This can be turned around: under the assumption that the ratio of hot gas
to all matter is the same for all clusters in a sample, X-ray observations can
be used to find the dependence of the cluster angular diameter distances
on redshift.34 In this way, observations by the Chandra satellite of X-rays
from 26 galaxy clusters with redshifts in the range 0.07 < z < 0.9 have been
used to determine that in a cosmology with a constant vacuum energy and
cold dark matter, $2 = 0.94+0.21

−0.25, within 68% confidence limits.35 Relax-
ing the assumption that the cosmological dark energy density is constant,
but assuming $K = 0 and a constant w, and taking the baryon density
to have the value indicated by cosmological nucleosynthesis (discussed in
Section 3.2), this analysis of the Chandra data yields 1 −$M = 0.76 ± 0.04
and a dark energy pressure/density ratio w = −1.20+0.24

−0.28.
It is possible that measurements of luminosity distance can be pushed

to much larger redshifts by the use of long gamma ray bursts as secondary
distance indicators. These bursts definitely do not have uniform absolute
luminosity, but there are indications that the absolute gamma ray luminosity
is correlated with the peak gamma ray energy and a characteristic time
scale.36

The discovery of dark energy is of great importance, both in interpreting
other observations and as a challenge to fundamental theory. It is pro-
foundly puzzling why the dark energy density is so small. The contribution
of quantum fluctuations in known fields up to 300 GeV, roughly the highest
energy at which current theories have been verified, gives a vacuum energy

34S. Sasaki, Publ. Astron. Soc. Japan 48, 119 (1996) [astro-ph/9611033]; U.-L. Pen, New Astron. 2,
309 (1997) [astro-ph/9610147].

35S. W. Allen, R. W. Schmidt, H. Ebeling, A. C. Fabian, and L. van Speybroeck, Mon. Not. Roy.
Astron. Soc. 353, 457 (2004) [astro-ph/0405340]. For earlier applications of this technique, see K. Rines
et al., Astrophys. J. 517, 70 (1999); S. Ettori and A. Fabian, Astron. Soc. Pac. Conf. Ser. 200, 369
(2000); S. W. Allen, R. W. Schmidt, and A. C. Fabian, Mon. Not. Roy. Astron. Soc. 334, L11 (2002);
S. Ettori, P, Tozzi, and P. Rosati, Astron. & Astrophys. 398, 879 (2003). The possibility of a variable
ratio of hot gas to all matter is explored by R. Sadat et al., Astron. & Astrophys. 437, 310 (2005); L. D.
Ferramacho and A. Blanchard, Astron. & Astrophys. 463, 423 (2007) [astro-ph/0609822].

36C. Firmani, V. Avila-Reese, G. Ghisellini, and G. Ghirlanda, Mon. Not. Roy. Astron. Soc. 372,
28 (2006) [astro-ph/0605430]; G. Ghirlanda, G. Ghisellini, and C. Firmani, New J. Phys. 8, 123 (2006)
[astro-ph/0610248].
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density of order (300 GeV),4 or about 1027 g/cm3. This of course is vastly
larger than the observed dark energy density, $V ρ0,crit ) 10−29 g/cm3, by
a factor of order 1056. There are other unknown contributions to the vac-
uum energy that might cancel this contribution, coming from fluctuations
in fields at higher energies or from the field equations themselves, but this
cancelation would have to be precise to about 56 decimal places. There is
no known reason for this remarkable cancelation.37 The discovery of dark
energy now adds a second problem: why is the dark energy density compa-
rable to the matter energy density at this particular moment in the history
of the universe?

In thinking about these problems, it is crucial to know whether the vac-
uum energy is really time-independent, or varies with time, a question that
may be answered by future studies of distant Type Ia supernovae or other
measurements at large redshift. The possibility of a varying dark energy
(known as quintessence) will be considered further in Section 1.12.

1.7 Cosmic expansion or tired light?

In comparingobservationsof redshifts and luminositydistanceswith theory,
we rely on the general understanding of redshifts and luminosities outlined
in Sections 1.2 and 1.4. One thing that might invalidate this understanding
is absorption or scattering, which reduces the number of photons reach-
ing us from distant sources. This possibility is usually taken into account
by measuring the color of the source, which would be affected by absorp-
tion or scattering, though as mentioned in the previous section there is a
possibility of gray dust, which could not be detected in this way. Another
possible way that apparent luminosities could be reduced is through the
conversion of photons into particles called axions by intergalactic magnetic
fields. There is also a more radical possibility. Ever since the discovery of
the cosmological redshift, there has been a nagging doubt about its interpre-
tation as evidence of an expanding universe. Is it possible that the universe
is really static, and that photons simply suffer a loss of energy and hence
a decrease in frequency as they travel to us, the loss of energy and hence
the redshift naturally increasing with the distance that the photons have to
travel?

It is possible to rule out all these possibilities by comparing the
luminosity distance dL(z) with the angular diameter distance dA(z) of the
same distant source. None of the possibilities mentioned above can affect
the angular diameter distance, while the conventional interpretation of

37For a survey of efforts to answer this question, see S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).
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redshifts and luminosities provides the model-independent result (1.4.12),
that dL(z)/dA(z) = (1 + z)2, so a verification of this ratio can confirm the
conventional understanding of dL(z).

We can check this formula for dL(z)/dA(z) by a “surface brightness test”
suggested long ago by Tolman.1 If a light source has an absolute luminos-
ity per proper area L, then the apparent luminosity of a patch of area A
will be / = LA/4πd2

L. This patch will subtend a solid angle $ = A/d2
A.

The surface brightness B is defined as the apparent luminosity per solid
angle, so

B ≡ /

$
= L d2

A

4πd2
L

. (1.7.1)

In the conventional big bang cosmology the ratio dA/dL is given by
Eq. (1.4.12), so

B = (1 + z)−4
(

L
4π

)
. (1.7.2)

If we can find a class of light sources with a common value for the absolute
luminosity per proper area L, then their surface brightness should be found
to decrease with redshift precisely as (1 + z)−4.

For instance, one important difference between “tired light” theories
and the conventional big bang theory is that in the conventional theory all
rates at the source are decreased by a factor (1 + z)−1, while in tired light
theories there is no such slowing down. One rate that is slowed down at
large redshifts in the conventional theory is the rate at which photons are
emitted by the source. This is responsible for one of the two factors of
(1 + z)−1 in formula (1.4.1) for apparent luminosity, the other factor being
due to the reduction of energy of individual photons. On the other hand, if
the rate of photon emission is not affected by the redshift, then in a static
Euclidean universe in which photons lose energy as they travel to us, the
apparent luminosity of a distant source L at a distance d will be given by
L/4π(1 + z)d2, with only a single factor 1 + z in the denominator to take
account of the photon energy loss. That is, the luminosity distance will be
(1 + z)1/2d , while the angular diameter distance in a Euclidean universe is
just d , so here dL/dA = (1 + z)1/2, and the surface brightness of distant
galaxies should decrease as (1 + z)−1.

Lubin and Sandage2 have used the Hubble Space Telescope to compare
the surface brightness of galaxies in three distant clusters with redshifts

1R. C. Tolman, Proc. Nat. Acad. Sci 16, 5111 (1930); Relativity, Thermodynamics, and Cosmology
(Oxford Press, Oxford, 1934): 467.

2L. M. Lubin and A. Sandage, Astron. J. 122, 1084 (2001) [astro-ph/0106566]. Their earlier work is
described in A. Sandage and L. M. Lubin, Astron. J. 121, 2271 (2001); L. M. Lubin and A. Sandage,
ibid, 2289 (2001) and Astron. J. 122, 1071 (2001) [astro-ph/0106563.]
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0.76, 0.90, and 0.92 with the surface brightness measured in closer galax-
ies. They detect a decrease of B with increasing z that is consistent with
Eq. (1.7.2) with reasonable corrections for the effects of galaxy evolution,
and is quite inconsistent with the behavior B ∝ (1+z)−1 expected in a static
universe with “tired light.”

In the standard big bang cosmology all rates observed from a distant
source are slowed by a factor 1/(1 + z), not just the rate at which photons
are emitted. This slowing has been confirmed3 for the rate of decline of light
from some of the Type Ia supernovae used by the Supernova Cosmology
Project discussed in the previous section. The hypothesis that the absolute
luminosity is simply correlated with the intrinsic decline time is found to
work much better if the observed decline time is taken to be the intrinsic
decline time stretched out by a factor 1 + z. Nothing like this would be
expected in a static Euclidean universe with redshifts attributed to tired
light.

1.8 Ages

As we have seen, a knowledge of the Hubble constant and of the matter and
vacuum density parameters $M and $2 allows us to estimate the age of the
universe. In this section we will discuss independent estimates of the age of
the universe, based on calculations of the ages of some of the oldest things
it contains.

Since metals (elements heavier than helium) found in the outer parts
of stars arise chiefly from earlier generations of stars, the oldest stars are
generally those whose spectra show small abundances of metals. These are
the so-called Population II stars, found in the halo of our galaxy, and in
particular in globular clusters. There are two main ways of estimating ages
of old stars:

A. Heavy element abundances

If a nucleus decays with decay rate λ, and has an initial abundance Ainit, then
the abundance A after a time T is A = Ainit exp(−λT ). Hence if we knew
Ainit and could measure A, we could determine T from T = λ−1 ln(Ainit/A).
Unfortunately neither condition is likely to be satisfied. On the other hand,
it is often possible to calculate the ratio of the initial abundances A1 init and
A2 init of two nuclei, and to measure their relative present abundance A1/A2.

3B. Leibundgut et al., Astrophys. J. 466, L21 (1996); G. Goldhaber et al. (Supernova Cosmology
Project), Astrophys. J. 558, 359 (2001) [astro-ph/0104382].
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This relative abundance is given by

A1

A2
=
(

A1 init

A2 init

)
exp

(
(λ2 − λ1)T

)
,

so

T = 1
λ2 − λ1

[
ln
(

A1

A2

)
− ln

(
A1 init

A2 init

)]
(1.8.1)

If the initial abundances are similar and the observed abundances are very
different, then the estimated value of T will be insensitive to the precise
value of the initial abundance ratio.

The initial relative abundances of heavy, radioactive elements are est-
imated on the well-founded assumption that these elements are made in the
so-called r-process, the rapid addition of neutrons to lighter elements such
as iron in core-collapse supernova explosions, after which the neutron-rich
isotopes formed in this way undergo multiple beta decays, transforming
them to the most deeply bound nuclei with the same number of nucleons.
This method has been used to put a lower bound on the age of our galaxy
from the terrestrial abundance of 235U, which has a decay rate of 0.971 ×
10−9/yr. To avoid uncertainties in the distribution of 235U in earth, its
abundance is measured relative to the isotope 238U, which has a slower decay
rate of 0.154 × 10−9/yr, but behaves the same chemically and is presumably
distributed in the same way. The initial abundance ratio of 235U to 238U is
estimated to be 1.65 ± 0.15; it is larger than one because three additional
neutrons must be added to the progenitor of 235U to form the progenitor of
238U. On the other hand, the larger decay rate of 235U makes it (fortunately)
less abundant than 238U now. The present abundance ratio of uranium
isotopes on earth is 0.00723, so this uranium has been decaying for a time

ln(1.65) − ln(.00723)

0.971 × 10−9/yr − 0.154 × 10−9/yr
= 6.6 Gyr [1 Gyr = 109 yr].

But the sun is a second (or perhaps third) generation (called “Population I”)
star,andpresumablyitsuraniumwasbeingproducedoveralongtimeinterval
before the formation of the solar system. The uranium abundance ratio has
beensupplementedwithmeasurementsofotherabundanceratiosontheearth
andmeteorites, suchas232Th/238Uand187Re/187Osratios, andanalyzedwith
the length of the period of heavy element formation left as a free parameter.
This gives a more stringent (but less certain) lower bound of 9.6 Gyr1 on the
age of the heavy elements in the neighborhood of the solar system.

1B. S. Meyer and D. N. Schramm, Astrophys. J. 311, 406 (1986).
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A much more stringent lower bound on the age of the galaxy is given
by applying these methods to heavy elements in metal-poor stars beyond
the solar system. First thorium was observed spectroscopically in a very
metal-poor star (and hence presumably old) K giant star, CS 22892-052.2

The relative abundances in this star of the more stable elements produced in
the r-process, as measured from the intensity of absorption lines in the star’s
spectrum, matches those of the same elements in the solar system, except for
a much lower abundance of the heaviest detected element thorium, which
(for 232Th) has a half life 14 Gyr. Attributing the decrease in thorium to
its radioactive decay, the age of the thorium in this star is estimated as
14.1 ± 3 Gyr. Other estimates of the ages of CS 22892-052 and other metal-
poor stars have been made using the measured abundance ratios of thorium
to europium and lanthanum.3

Uranium-238 decays more rapidly than 232Th, so we can get a more
sensitive estimate of the age of a star by using both its uranium and its
thorium abundances, providing of course that uranium as well as tho-
rium lines can be observed in the star’s spectrum. No uranium absorp-
tion lines were observed in the spectrum of CS 22892-052, but absorption
lines from singly ionized uranium were subsequently observed in two other
metal-poor star with an abundance of r-process elements, CS31082-001 and
BD+17◦3248. The observed abundance ratio of uranium to thorium in
CS31082-001 is 10−0.74±0.15, while the initial abundance ratio has been var-
iously estimated as 10−0.255 or 10−0.10. Using these numbers in Eq. (1.8.1)
gives this star an age of 12.5 ± 3 Gyr.4 Subsequent observations indicated
ages of 14 ± 2 Gyr,5 15.5 ± 3.2 Gyr,6 and 14.1 ± 2.5 Gyr.7 In a similar way,
the age of BD+17◦3248 has been calculated as 13.8 ± 4 Gyr.8 (See Fig-
ure 1.5.) More recently, both uranium and thorium lines have been found
in the spectrum of the newly discovered metal-poor star HE 1523-0903;
the ratio of thorium and uranium abundance to the abundances of other
r-process elements, and to each other, was used to give an age of the star as
13.2 Gyr.9

2C. Sneden et al., Astrophys. J. 467, 819 (1996); Astrophys. J. 591, 936 (2003) [astro-ph/0303542]. A
review with references to earlier work on thorium abundances was given by C. Sneden and J. J. Cowan,
Astronomia y Astrofisica (Serie de Conferencia) 10, 221 (2001) [astro-ph/0008185].

3I. I Ivans et al., Astrophys. J. 645, 613 (2006) [astro-ph/0604180], and earlier references cited
therein.

4R. Cayrel et al., Nature 409, 691 (2001).
5V. Hill et al., Astron. Astrophys. 387, 580 (2002).
6H. Schatz et al., Astrophys. J. 579, 626 (2002).
7S. Wanajo, Astrophys. J. 577, 853 (2002).
8J. J. Cowan, et al., Astrophys. J. 572, 861 (2002) [astro-ph/0202429].
9A. Frebel et al., Astrophys. 660, L117 (2007). [astro-ph/0703414].
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Figure 1.5: Abundances of elements produced by the r-process in the star BD+17◦3248,
obtained by ground-based and Hubble Space Telescope spectroscopic observations. For
comparison, the solid curve gives theoretical initial abundances, based on solar system data.
Note the low observed abundances of thorium and uranium, compared with the theoretical
initial abundances, which indicate an age for BD+17◦3248 of 13.8±4 Gyr. From J. J. Cowan
et al., Astrophys. J. 572, 861 (2002) [astro-ph/0202429].

B. Main sequence turn-off

The stars that satisfy the main sequence relation between absolute luminos-
ity and surface temperature are still burning hydrogen at their core. When
the hydrogen is exhausted at the core, hydrogen-burning continues in a shell
around a (temporarily) inert helium core. The star then moves off the
main sequence, toward higher luminosity and lower surface temperature.
The heavier a star is, the more luminous it is on the main sequence, and
the faster it evolves. Thus as time passes, the main sequence of a cluster
of stars of different masses but the same age shows a turn-off that moves
to lower and lower luminosities. (See Figure 1.6). Roughly, the absolute
luminosity of stars at the turn-off point is inversely proportional to the age
of the cluster. In particular, observations of the main sequences of a number
of globular clusters gave ages variously calculated10 as 11.5±1.3 Gyr, 12±1
Gyr, 11.8±1.2 Gyr, 14.0±1.2 Gyr, 12±1 Gyr, and 12.2±1.8 Gyr. A sum-
mary by Schramm11 found that most of the discrepancies disappear when

10For references, see B. Chaboyer, Phys. Rep. 307, 23 (1998) [astro-ph/9808200].
11D. Schramm, in Critical Dialogues in Cosmology, N. Turok, ed. (World Scientific, Singapore,

1997): 81
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Figure 1.6: Color–magnitude diagram for the globular cluster M15. Visual apparent mag-
nitudes of M15 stars are plotted on the vertical axis. Since all stars in M15 are at about
the same distance from earth, the apparent visual magnitude differs from the absolute visual
magnitude by a constant term, with absolute luminosities increasing upwards. The difference
of apparent blue and visual magnitudes is plotted on the horizontal axis. This is a measure
of surface temperature, with temperature decreasing to the right. If M15 were young, the
main sequence would continue upwards and to the left; the position of the main sequence
turn-off (MSTO) and other features of the diagram indicate that the age of the cluster is
15 ± 3 Gyr. Diagram from B. Chaboyer, Phys. Rep. 307, 23 (1998), based on data of P. R.
Durrell and W. E. Harris, Astron. J. 105, 1420 (1993) [astro-ph/9808200].

the various calculations are done with the same input values for parameters
like the initial abundance of helium, oxygen, and iron, and gave a consensus
value as 14 ± 2(statistical) ± 2(systematic) Gyr. Note that all these ages
are sensitive to the distance scale; a fractional change δd/d in estimates of
distances would produce a fractional change δL/L = −2δd/d in estimates
of absolute luminosities, and hence a fractional change δt/t ≈ +2δd/d
in estimates of ages. Using measurements of distances to nine globular
clusters with the Hipparcos satellite yields an estimated galactic age12 of
13.2 ± 2.0 Gyr.

12E. Carretta, R. G. Gratton, G. Clementini, and F. F. Pecci, Astrophys. J. 533, 215 (2000) [astro-
ph/9902086].
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These ages would pose a problem for what used to be the most popular
model, with $M = 1 and no vacuum energy. In this case, the age of the
universe is

t0 = 2
3H0

= 9.3
(

70 km/sec/Mpc
H0

)
Gyr ,

which is somewhat younger than the oldest objects in the galaxy, though not
by many standard deviations. Inclusion of a constant vacuum energy helps
to avoid this problem; as remarked in Section 1.5, with nothing else in the
universe we would have a(t) ∝ exp(Ht), and the age of the universe would be
infinite. As we saw in Section 1.6, the supernovae distance–redshift relation
indicates that the vacuum energy is now roughly twice the matter energy,
giving an age much longer than 2/3H0:

t0 = 13.4+1.3
−1.0

(
70 km/sec/Mpc

H0

)
Gyr ,

This removes the danger of a conflict, provided that the globular clusters in
our galaxy are not much younger than the universe itself. In fact, there is
now a truly impressive agreement between the age of the oldest stars and
star clusters on one hand and the cosmic age calculated using values of H0,
$M , and $2 found from the redshift–distance relation. As we will see in
Section 7.2, there is also an excellent agreement between these ages and the
age calculated using parameters measured in observations of anisotropies
in the cosmic microwave background.

So far in this section, we have considered only the present age of our
own galaxy. It is also possible to estimate the ages of other galaxies at
high redshift, at the time far in the past when the light we now observe
left these galaxies. Of course, it is not possible to distinguish individual
stars or globular clusters in these galaxies, but the spectrum of the galaxy
gives a good idea of the age. We need the whole spectrum to separate the
effects of metallicity, scattering, etc., but roughly speaking, the redder the
galaxy, the more of its bright bluer stars have left the main sequence, and
hence the older it is. In this way, it has been found13 that the radio galaxies
53W091(z = 1.55) and 53W069(z = 1.43) have ages ) 3.5 Gyr and 3 to
4 Gyr, respectively. This sets useful lower bounds on the vacuum energy. In
a model with non-relativistic matter and a constant vacuum energy, the age
of the universe at the time of emission of light that is seen at present with

13J. S. Dunlop et al., Nature 381, 581 (1996); J. S. Dunlop, in The Most Distant Radio Galaxies -
KNAW Colloquium, Amsterdam, October 1997, eds. Best et al. [astro-ph/9801114].
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redshift z is given by Eq. (1.5.42) as

t(z) = 1
H0

∫ 1
1+z

0

dx

x
√

$2 + $K x−2 + $Mx−3 + $Rx−4
. (1.8.2)

Any galaxy observed with redshift z must have been younger than this at
the time that its light was emitted. For instance, for a flat universe with
$K = $R = 0, so that $M = 1 − $2, the existence of a galaxy at z = 1.55
with age ) 3.5 Gyr sets a lower bound14 on $2 of about 0.6 for H0 = 70
km s−1 Mpc−1.

Eventually the accuracy of these age determinations may become good
enough to allow us to measure at least the dependence of redshift on the
cosmic age. Of course, galaxies form at various times in the history of the
universe, so the age of any one galaxy does not allow us to infer the age of
the universe at the time light we now see left that galaxy. However, the
homogeneity of the universe implies that the distribution of cosmic times of
formation for any one variety of galaxy is the same anywhere in the universe.
From differences in the distributions of ages of a suitable species of galaxy
at different redshifts, we can then infer the difference of cosmic age t at these
redshifts. The Robertson–Walker scale factor a(t) is related to the redshift
z(t) observed now of objects that emitted light when the cosmic age was t
by 1 + z(t) = a(t0)/a(t), so ż = −H(t)(1 + z). To calculate z̈, we note that
for K = 0, H2(t) = 8πGρ(t)/3, and ρ̇ = −3H(ρ + p),

Ḣ(t) = −4πG
(
ρ(t) + p(t)

)
. (1.8.3)

Then for K = 0

z̈ = ż2

1 + z

(
5
2

+ 3p
2ρ

)
. (1.8.4)

Thus measurements of differences in t for various differences in redshift may
allow a measurement of the ratio p/ρ at various times in the recent history
of the universe.15

1.9 Masses

We saw in Section 1.6 that the observed dependence of luminosity distance
on redshift suggests that the fraction $M of the critical density provided by

14L. M. Krauss, Astrophys. J. 489, 486 (1997); J. S. Alcaniz and J. A. S. Lima, Astrophys. J. 521, L87
(1999) [astro-ph/9902298].

15R. Jiminez and A. Loeb, Astrophys. J. 573, 37 (2002) [astro-ph/0106145].
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non-relativistic matter is roughly 30%. In this section we will consider other
independent ways that $M is measured.

A. Virialized clusters of galaxies

The classic approach1 to the measurement of $M is to use the virial theo-
rem to estimate the masses of various clusters of galaxies, calculate a mean
ratio of mass to absolute luminosity, and then use observations of the total
luminosity of the sky to estimate the total mass density, under the
assumption that the mass-to-light ratio of clusters of galaxies is typical
of the universe as a whole.

To derive the virial theorem, consider a non-relativistic gravitationally
bound system of point masses mn (either galaxies, or stars, or single parti-
cles) with positions relative to the center of mass (in an ordinary Cartesian
coordinate system) Xn. The equations of motion are

mnẌ i
n = − ∂V

∂X i
n

, (1.9.1)

where the potential energy V is

V = − 1
2

∑

n 2=/

G mn m/

|Xn − X/|
. (1.9.2)

Multiplying Eq. (1.9.1) with X i
n and summing over n and i gives

−
∑

n
X i

n
∂V
∂X i

n
=
∑

n
mn Xn · Ẍn = 1

2
d2

dt2

∑

n
mnX2

n − 2T , (1.9.3)

where T is the internal kinetic energy (not counting any motion of the center
of mass)

T = 1
2

∑

n
mnẊ2

n . (1.9.4)

Let us assume that the system has reached a state of equilibrium (“become
virialized”), so that although the individual masses are moving there is no
further statistical evolution, and in particular that

0 = d2

dt2

∑

n
mn X2

n (1.9.5)

1F. Zwicky, Astrophys. J. 86, 217 (1937); J. H. Oort, in La Structure et l’Evolution de l’Universe
(Institut International de Physique Solvay, R. Stoops, Brussels, 1958): 163.
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(This is why it was important to specify that Xn is measured relative to the
center of mass; otherwise a motion of the whole cluster would give the sum
a term proportional to t2, invalidating Eq. (1.9.5).) But V is of order −1
in the coordinates, so the left-hand side of Eq. (1.9.3) is just V , giving the
virial theorem:

2T + V = 0 . (1.9.6)

We may express T and V as

T = 1
2

M〈v2〉 , V = − 1
2

GM2〈1
r
〉 , (1.9.7)

where 〈v2〉 is the mean (mass weighted) square velocity relative to the center
of mass, 〈1/r〉 is the mean inverse separation, and M = ∑

n mn is the total
mass. Eq. (1.9.6) thus gives the virial formula for M :

M = 2 〈v2〉
G 〈1/r〉 . (1.9.8)

This derivation does not apply to irregular clusters of galaxies, like the
nearby one in Virgo. Clusters like this do not seem to have settled into a
configuration in which the condition (1.9.5) is satisfied, and therefore prob-
ably do not satisfy the virial theorem. On the other hand, the virial theorem
probably does apply at least approximately to other clusters of galaxies, like
the one in Coma, which appear more or less spherical. According to general
ideas of statistical equilibrium, we may expect the rms velocity dispersion√

〈v2〉 of the dominant masses in such clusters to equal the velocity disp-
ersion of the visible galaxies in the cluster, which can be measured from the
spread of their Doppler shifts, and also to equal the velocity dispersion of
the ionized intergalactic gas in the cluster, which since the advent of X-ray
astronomy can be measured from the X-ray spectrum of the gas. The values
obtained in these ways for 〈v2〉 are independent of the distance scale. On the
other hand, values for 〈1/r〉 are obtained from angular separations: the true
transverse proper distance d is given in terms of the angular separation θ by
d = θdA, where dA is the angular diameter distance (1.4.11). For clusters
with z ( 1, Eqs. (1.4.9) and (1.4.11) give dA ) z/H0, so d ) θz/H0 . Thus
the estimated values of 〈1/r〉 for galaxy clusters with z ( 1 scale as H0,
and the values of M inferred from Eq. (1.9.8) scale as 1/H0. The absolute
luminosity L of a cluster of galaxies with redshift z and apparent luminosity
/ is given for z ( 1 by Eqs. (1.4.2) and (1.4.9) as L = 4πz2//H2

0 , so the
values of L scale as H−2

0 , and the mass-to-light ratios obtained in this way
therefore scale as H−1

0 /H−2
0 = H0.
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Estimates of M/L for rich clusters have generally given results of order
200 to 300 h M5/L5, where h is the Hubble constant in units of 100 km
s−1 Mpc−1, and M5 and L5 are the mass and absolute luminosity of the
sun. For instance, a 1996 study2 of 16 clusters of galaxies with redshifts
between 0.17 and 0.55 gave M/L = (295 ± 53) h M5/L5. Some of the
same group3 have corrected this result for various biases, and now find
M/L = (213 ± 59) h M5/L5. A more recent application4 of the virial
theorem to 459 clusters has found a value M/L ) 348 h M5/L5.

All these values of M/L for clusters of galaxies are very much larger than
the mass-to-light ratios of the visible regions of individual galaxies.5 The
mass-to-light ratios of individual elliptical galaxies can be measured using
the virial theorem, with

√
< v2 > taken as the velocity dispersion of stars

contained in the galaxy; this gives mass-to-light ratios generally in the range
of 10 to 20 h M5/L5.6 All of the visible light from clusters comes from their
galaxies, so we must conclude that most of the mass in clusters of galaxies
is in some non-luminous form, either in the outer non-luminous parts of
galaxies or in intergalactic space. It has been argued that this mass is in large
dark halos surrounding galaxies, extending to 200 kpc for bright galaxies.7

The nature of this dark matter is an outstanding problem of cosmology, to
which we will frequently return.

Incidentally, the large value of M/L given by the virial theorem for
elliptical galaxies shows that most of the mass of these galaxies is not in
the form of stars as bright as the sun. It is harder to estimate M/L for
spiral galaxies, but since the work of Vera Rubin8 it has been known that
most of their mass is also not in luminous stars.9 If most of the mass of a
spiral galaxy were in the luminous central regions of the galaxy, then the
rotational speeds of stars outside this region would follow the Kepler law,
v ∝ r−1/2. Instead, it is observed that v outside the central region is roughly
constant, even beyond the visible disk of the galaxy, which is what would
be expected for a spherical halo with a mass density that decreases only as
1/r2, in which case most of the mass of the galaxy would be in the dark outer

2R. G. Carlberg et al., Astrophys. J. 462, 32 (1996).
3R. G. Carlberg, H. K. C. Yee, and E. Ellingson, Astrophys. J. 478, 462 (1997).
4H. Andernach, M. Plionis, O. López-Cruz, E. Tago, and S. Basilakos, Astron. Soc. Pacific Conf.

Ser. 329, 289 (2005) [astro-ph/0407098].
5This conclusion was first reached in a study of the Coma cluster by F. Zwicky, Helv. Phys. Acta 6,

110 (1933).
6T. R. Lauer, Astrophys. J. 292, 104 (1985); J. Binney and S. Tremaine, Galactic Dynamics (Princeton

University Press, Princeton, 1987).
7N. A. Bahcall, L. M. Lubin, and V. Dorman, Astrophys. J. 447, L81 (1995).
8V. C. Rubin, W. K. Ford, and N. Thonnard, Astrophys. J. 225, L107; 238, 471 (1980).
9M. Persic and P. Salucci, Astrophys. J. Supp. 99, 501 (1995); M. Persic, P. Salucci, and F. Stel, Mon.

Not. Roy. Astron. Soc. 281, 27P (1996).
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parts of the halo. There is some evidence from the absence of gravitational
microlensing by the halo (discussed in Section 9.2) that this mass is not in
the form of dark stars either, but it is still possible that most of the matter in
galaxies is baryonic. We will not go into this in detail, because the formation
of galaxies involves cooling processes that requires baryonic matter of the
same sort as in stars, so that we would only expect the value of M/L for
galaxies to be similar to the value for the universe as a whole if the matter
of the universe were mostly baryonic.

In using the value of M/L derived from the virial theorem for clusters of
galaxies to find the mass density of the universe, we cannot just add up the
luminosity per volume of clusters, because most of the light of the universe
comes from “field” galaxies that are not in clusters. Instead, if we assume
that the field galaxies are accompanied by the same amount of dark matter
as the galaxies in clusters, as argued in ref. 7, then we can find $M by
using the value of M/L for clusters together with an estimate of the total
luminosity density L to estimate the total mass density as

ρM = (M/L)L . (1.9.9)

Since values of absolute luminosities inferred from apparent luminosities
and redshifts scale as H−2

0 , and distances inferred from redshifts scale as
H−1

0 , the total luminosity density of the universe calculated by adding up the
absolute luminosities of galaxies per volume scales as H−2

0 /(H−1
0 )3 = H0.

For example, a 1999 estimate10 gave L = 2 ± 0.2 × 108 h L5 Mpc−3. For
the purpose of calculating $M it is more convenient to write this as a ratio
of the critical mass density to the luminosity density:

ρ0,crit/L = (1390 ± 140) h M5/L5 .

(Here we use M5 = 1.989 × 1033 g, 1 Mpc = 3.0857 × 1024 cm, and
ρ0,crit = 1.878 × 10−29 h2 g/cm3.) Taking M/L = (213 ± 53)hM5/L5
gives then

$M = M/L
ρ0,crit/L

= 0.15 ± 0.02 ± .04 ,

with the first uncertainty arising from L and the second from M/L. It is
important to note that this is independent of the Hubble constant, as both
LM/L and ρ0,crit scale as H2

0 .
This estimate of $M is somewhat lower than those derived from the

redshift–luminosity relation of supernovae and from the anisotropies in the

10S. Folkes et al., Mon. Not. Roy. Astron. Soc. 308, 459 (1999); M. L. Blanton et al., Astron. J. 121,
2358 (2001).
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cosmic microwave background, to be discussed in Section 2.6 and Chapter 7.
But all these estimates agree that $M is distinctly less than unity.

B. X-ray luminosity of clusters of galaxies

Does the dark matter in clusters of galaxies consist of ordinary nuclei and
electrons? We can find the ratio of the fraction $B of the critical density
provided by baryonic matter (nuclei and electrons) to the fraction $M pro-
vided by all forms of non-relativistic matter by studying the X-rays from
clusters of galaxies, for it is only the collisions of ordinary baryonic parti-
cles that produces these X-rays. Because these collision processes involve
pairs of particles of baryonic matter, the absolute X-ray luminosity per unit
proper volume takes the form

LX = 2
(
TB

)
ρ2

B , (1.9.10)

where TB andρB are the temperature and density of the baryonic matter, and
2(T ) is a known function of temperature and fundamental constants. The
baryonic density satisfies the equation of hydrostatic equilibrium, which
(assuming spherical symmetry) follows from the balance of pressure and
gravitational forces acting on the baryons in a small area A and between
radii r and r + δr:

A
(
pB(r + δr) − pB(r)

)
= −Aδr ρB(r) G

r2

∫ r

0
4πr2 ρM (r) dr ,

or, canceling factors of A and δr and using the ideal gas law pB = kB
TBρB/mB,

d
dr

(
kB TB(r)ρB(r)

mB

)
= −GρB(r)

r2

∫ r

0
4πr2ρM (r) dr ,

where ρM (r) is the total mass density, kB is Boltzmann’s constant, mB is a
characteristic mass of the baryonic gas particles, and r is here the proper
distance to the center of the cluster. Multiplying by r2/ρB(r) and differen-
tiating with respect to r yields

d
dr

[
r2

ρB(r)
d
dr

(
kB TB(r)ρB(r)

mB

)]

= −4πGr2ρM (r) . (1.9.11)

If we make the assumption that cold dark matter particles, or whatever
particles dominate the dark intergalactic matter, have an isotropic velocity
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distribution (which is not very well motivated), then the same derivation
applies to these particles, and their density ρD = ρM − ρB satisfies the
non-linear differential equation

d
dr

[
r2

ρD(r)
d
dr

(
kB TD(r)ρD(r)

mD

)]

= −4πGr2ρM (r) . (1.9.12)

where TD(r) and mD are the temperature and mass of the dark matter parti-
cles. With perfect X-ray data and a knowledge of the distance of the source,
one could measure the X-ray luminosity density LX (r) and (using the X-
ray spectrum) the baryon temperature TB(r) at each point in the cluster,
then use Eq. (1.9.10) to find the baryon density ρB(r) at each point, and
then use Eq. (1.9.11) to find the total mass density at each point. We could
then calculate the fractional baryon densityρB/ρM , and if we were interested
we could also use Eq. (1.9.12) to find the velocity dispersion kBTD(r)/mD
of the dark matter.

In practice, it is usually necessary to use some sort of cluster model. In
the simplest sort of model, one assumes an isothermal sphere: the tempera-
tures TB and TD are taken to be independent of position, at least near the
center of the cluster where most of the X-rays come from. It is also often
assumed that the same gravitational effects that causes the concentration of
the hot intergalactic gas in the cluster is also responsible for the concentra-
tion of the dark matter, so that the densities ρB(r) and ρM (r) are the same, up
to a constant factor, which represents the cosmic ratio $B/$M of baryons
to all non-relativistic matter. (These gravitational effects are believed to
be a so-called “violent relaxation,”11 caused by close encounters of clumps
of matter whose gravitational attraction cannot be represented as an inter-
action with a smoothed average gravitational field. The condensation of
galaxies out of this mixture requires quite different cooling processes that
can affect only the baryonic gas, which is why galaxies have a lower pro-
portion of dark matter and a lower mass-to-light ratio.) Comparison of
Eqs. (1.9.11) and (1.9.12) shows that ρB(r) and ρD(r) will be proportional
to each other, and hence also to ρM (r) if the velocity dispersions of the dark
matter and hot baryonic gas are the same:

kBTM/mM = kBTD/mD ≡ σ 2 . (1.9.13)

Equations (1.9.11) and (1.9.12) both then tell us that

ρM (r) = ρM (0) F (r/r0) (1.9.14)

11D. Lynden-Bell, Mon. Not. Roy. Astron. Soc. 136, 101 (1967).
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where F (0) ≡ 1; r0 is a core radius, defined conventionally by

r0 ≡
√

9σ 2

4πGρM (0)
; (1.9.15)

and F (u) is a function satisfying the differential equation

d
du

(
u2

F (u)

d F (u)

du

)

= −9u2F (u) . (1.9.16)

We must also impose the boundary condition that ρM is analytic in the
coordinate X at X = 0, which for a function only of r means that it is
given near r = 0 by a power series in r2, so that F (u) is given near u = 0
by a power series in u2, F (u) = 1 + O(u2). Together with this boundary
condition, Eq. (1.9.16) defines a unique function12 that for small u has the
approximate behavior13

F (u) ) (1 + u2)−3/2 . (1.9.17)

The solution to Eq. (1.9.16) is shown together with the approximation
(1.9.17) in Figure 1.7.

For large u, F (u) approaches the exact solution 2/9u2. Taken literally,
this would make the integral for the total mass diverge at large r, which
shows that the assumption of constant σ 2 must break down at some large
radius. Often the function F (u) is taken simply as14

F (u) = (1 + u2)−3β/2 ,

where β is an exponent of order unity.

0.5 1 1.5 2 2.5 3
u

0.2
0.4
0.6
0.8

1
F(u) F(u)

4 5 6 7 8 9 10
u
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0.015
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0.025
0.03

Figure 1.7: The solution to Eq. (1.9.16) (solid line) and the approximation (1.9.17) (dashed
line). For the lower values of u in the figure at the left, the two curves are indistinguishable.

12For a tabulation of values of F (u), see e.g. J. Binney and S. Tremaine, Galactic Dynamics (Princeton
University, Princeton, 1987): Table 4.1.

13I. R. King, Astron. J. 67, 471 (1962).
14A. Cavaliere and R. Fusco-Fermiano, Astron. Astrophys. 49, 137 (1976).
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Also, Eq. (1.9.11) has the solution

ρB(r) = ρB(0)F (r/r0) , (1.9.18)

with the same function F (u) and the same core radius r0. We can measure
the core radius from the X-ray image of the cluster, and measure σ 2 from
the X-ray spectrum, so that Eq. (1.9.15) can be used to find the central
density ρM (0) of all non-relativistic matter. The central density ρB(0) of
the baryonic matter can then be found from the total X-ray luminosity,
which with these approximations (and using Eq. (1.9.10)) is

LX ≡
∫

d3x LX = 4π2(TB) r3
0 ρB(0)2I , (1.9.19)

where

I ≡
∫ ∞

0
u2F 2(u) du . (1.9.20)

Even though the solution of Eq. (1.9.16) gives an infinite mass, it gives a
finite total X-ray luminosity, with I = 0.1961. (The approximation (1.9.17)
would give I = π/16 = 0.1963.)

For a cluster at redshift z, the core radius r0 inferred from observation of
the angular size of the cluster will be proportional to the angular diameter
distance dA(z), while the temperature and velocity dispersion found from
the X-ray spectrum will not depend on the assumed distance. Thus the
value of the central total matter density ρM (0) given by Eq. (1.9.15) will be
proportional to 1/d2

A(z). On the other hand, the absolute X-ray luminos-
ity LX inferred from the apparent X-ray luminosity will (like all absolute
luminosities) be proportional to the value assumed for d2

L(z), the square of
the luminosity distance, so with r0 ∝ dA, the central baryon density ρB(0)
given by Eq. (1.9.19) will be proportional to [d2

L(z)/d3
A(z)]1/2. The value of

the ratio of central densities inferred from observations of a given cluster at
redshift z will therefore have a dependence on the distance assumed for the
cluster given by

ρB(0)

ρM (0)
∝ dL(z)d1/2

A (z) = (1 + z)2d3/2
A (z) , (1.9.21)

in which we have used the relation (1.4.12) between luminosity and angular
diameter distances.

For z ( 1, we have dA(z) ) dL(z) ) z/H0, and so according to
Eq. (1.9.21) the value of ρB(0)/ρM (0) obtained from observations of clus-
ters of small redshift will be proportional to the assumed value of H−3/2

0 .
It is believed that most of the baryonic mass in a cluster of galaxies is in the
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hot gas outside the galaxies, and if we suppose that this mass is the same
fraction of the total mass as in the universe as a whole,15 then we should get
the same value of ρB(0)/ρM (0), equal to $B/$M , for all clusters, whatever
value we assume for H0, but this value of $B/$M will be proportional to
the assumed value of H−3/2

0 . For example, Schindler16 quotes various stud-
ies that give ρB(0)/ρM (0) as 0.14, 0.11, 0.12, and 0.12 for H0 = 65 km s−1

Mpc−1, so if we take the average 0.12 of these values as the cosmic value of
$B/$M for H0 = 65 km s−1 Mpc−1, then for a general Hubble constant
we find

$B/$M ) 0.06 h−3/2 , (1.9.22)

where h as usual is Hubble’s constant in units of 100 km s−1 Mpc−1. We
can thus conclude pretty definitely that only a small fraction of the mass in
clusters of galaxies is in a baryonic form that can emit X-rays.

On the other hand, when we study clusters with a range of redshifts that
are not all small, we will not get a uniform value of ρB(0)/ρM (0) unless
we use values of dA(z) with the correct dependence on z. As remarked in
Section 1.6, observations of clusters have been used in this way to learn
about the z-dependence of dA(z).

It should be mentioned that computer simulations that treat galaxy clus-
ters as assemblages of collisionless particles do not show evidence for a
central core,17 but instead indicate that the dark matter density at small
distances r from the center should diverge as r−1 to r−3/2. On the other
hand, it has been shown18 that the density of a baryonic gas in hydrostatic
equilibrium in the gravitational field of such a distribution of dark mat-
ter does exhibit the core expected from Eq. (1.9.18). In any case, the dark
matter and baryonic gas densities do have the same distributions at
distances from the center that are larger than r0.

As we will see in Section 3.2, it is possible to infer a value for $Bh2 from
the abundances of deuterium and other light isotopes, which together with
Eq. (1.9.22) can be used to derive a value for $Mh1/2. There are several
other methods for estimating $M or $Mh2 that will be discussed elsewhere

15This is argued by S. D. M. White, J. F. Navarro, A. E. Evrard, and C. S. Frenk, Nature 366, 429
(1993). Calculations supporting this assumption are described in Section 8.3.

16S. Schindler, in Space Science Reviews 100, 299 (2002), ed. P. Jetzer, K. Pretzl, and R. von Steiger
(Kluwer) [astro-ph/0107028].

17J. F. Navarro, C. S. Frenk, and S. D. M. White, Astrophys. J. 462, 563 (1996) [astro-ph/9508025];
490, 493 (1997) [astro-ph/9610188]; T. Fukushige and J. Makino, Astrophys. J. 477, L9 (1997) [astro-
ph/9610005]; B. Moore et al., Mon. Not. Roy. Astron. Soc. 499, L5 (1998).

18N. Makino, S. Sasaki, and Y. Suto, Astrophys. J. 497, 555 (1998). Also see Y. Suto, S. Sasaki, and
M. Makino, Astrophys. J. 509, 544 (1998); E. Komatsu and U. Seljak, Mon. Not. Roy. Astron. Soc.
327, 1353 (2001).
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in this book, using gravitational lenses (Section 9.3), the Sunyaev–Zel’dovich
effect (Section 2.5), and anisotropies in the cosmic microwave background
(Sections 2.6 and 7.2), the last of which also gives a value for $Bh2. In
addition to these, there are methods19 based on the evolution of clusters
of galaxies, cosmic flows, cluster correlations, etc., that depend on detailed
dynamical theories of structure formation.

1.10 Intergalactic absorption

Some of the cosmic gas of nuclei and electrons from which the first galaxies
and clusters of galaxies condensed must be still out there in intergalactic
space. Atoms or molecules in this gas could be observed through the res-
onant absorption of light or radio waves from more distant galaxies or
quasars, but it is believed that most of the gas was ionized by light from
a first generation of hot massive stars, now long gone, that are sometimes
called stars of Population III. It now appears that some quasars formed
before this ionization was complete, giving us the opportunity to observe
the intergalactic gas through resonant absorption of the light from these
very distant quasars.

Let us suppose that an atomic transition in a distant source produces a
ray of light of frequency ν1 that leaves the source at time t1 and arrives at
the Earth with frequency ν0 at time t0. At time t along its journey the light
will have frequency redshifted to ν1a(t1)/a(t), so if the intergalactic medium
absorbs light of frequency ν at a rate (per proper time) 2(ν, t), and does not
emit light, then the intensity I (t) of the light ray will decrease according to
the equation

İ (t) = −2
(
ν1a(t1)/a(t), t

)
I (t) .

But if the intergalactic gas is at a non-zero temperature T (t), then photons
will also be added to the light ray through the process of stimulated emission,
as a rate per photon given by the Einstein formula1 exp (−hν/kBT ) 2(ν, t),
so the intensity of the light ray will satisfy

İ (t) = −
[
1 − exp

(
− hν1a(t1)

kBT (t)a(t)

)]
2
(
ν1a(t1)/a(t), t

)
I (t) .(1.10.1)

The intensity observed at the earth will then be

I (t0) = exp(−τ )I (t1) , (1.10.2)

19For surveys, see N. A. Bahcall, Astrophys. J. 535, 593 (2000) [astro-ph/0001076]; M. Turner, Astro-
phys. J. 576, L101 (2002) [astro-ph/0106035]; S. Schindler, op. cit.; K. A. Olive, lectures given at Theoret-
ical Advanced Study Institute on Elementary Particle Physics, Boulder, June 2002 [astro-ph/0301505].

1A. Einstein, Phys. Z. 18, 121 (1917).
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where τ is the optical depth:

τ =
∫ t0

t1

[
1 − exp

(
− hν1a(t1)

kBT (t)a(t)

)]
2(ν1a(t1)/a(t), t) dt . (1.10.3)

The absorption rate is given by

2(ν, t) = n(t) σ (ν) , (1.10.4)

where σ (ν) is the absorption cross section at frequency ν, and n(t) is the
number density (per proper volume) of absorbing atoms. Often the absorp-
tion cross section is sharply peaked at some frequency νR, so the absorption
takes place only close to a time tR, given by

a(tR) = ν1a(t1)/νR . (1.10.5)

Therefore the optical depth can be approximated as

τ ) n(tR)
[
1 − exp

(
− hνR/kBT (tR)

)] ∫
σ
(
ν1a(t1)/a(t)

)
dt .

By changing the variable of integration from time to frequency, we can write
this as

τ ) n(tR)
[
1 − exp

(
− hνR/kBT (tR)

)]
[a(tR)/ȧ(tR)] IR , (1.10.6)

where

IR ≡ 1
νR

∫
σ (ν) dν , (1.10.7)

the integral being taken over a small range of frequencies containing the
absorption line. The only thing in the formula for τ that depends on a
cosmological model is the Hubble expansion rate ȧ(tR)/a(tR) at the time of
absorption, given by Eq. (1.5.19) and (1.5.38) as

ȧ(tR)

a(tR)
= H0

√
$2 + $K (1 + zR)2 + $M (1 + zR)3 + $R(1 + zR)4 ,

(1.10.8)

where zR = a(t0)/a(tR)−1 = νR/ν0 −1 is the redshift of the location of the
resonant absorption. For a source at redshift z, the absorption takes place
over a range of observed frequencies ν0 = ν1/(1 + z) given by the condition
that the time tR defined by Eq. (1.10.5) should be between t1 and t0:

νR/(1 + z) ≤ ν0 ≤ νR . (1.10.9)
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For example, in 1959 Field2 suggested looking for the effects of abs-
orption of radio frequencies in the 21 cm transition in hydrogen atoms,
caused in transitions from the spin zero to spin one hyperfine states in the 1s
state of intergalactic hydrogen. Here νR = 1420 MHz, so the radio spectrum
of the galaxy Cygnus A at a redshift z = 0.056 should show an absorp-
tion trough (1.10.9) from 1342 MHz to 1420 MHz. Unfortunately, the
temperature of neutral hydrogen in intergalactic space is much larger than
hνR/kB = 0.068K, so the optical depth (1.10.6) is suppressed by a factor
) 0.068 K/T (tR). No sign of this absorption trough has been discovered.
It is hoped that in the future a new generation of low frequency radio tel-
escopes with good angular resolution may be able to use the emission and
absorption of 21 cm radiation at large redshifts to study both the growth
of structure and primordial density perturbations from which they grew.3

For instance, by 2010 the Low Frequency Array (LOFAR) should be able to
study 21 cm radiation from sources at redshift between 5 and 15 with good
sensitivity and high angular resolution.4

For the present, a much better probe of intergalactic hydrogen atoms is
provided by absorption of photons in the Lyman α transition from the 1s
ground state to the 2p excited state, known as the Gunn–Peterson effect.5

This has a resonant frequency in the ultraviolet, νR = 2.47 × 1015 Hz,
corresponding to a wavelength 1,215 Å, but for a source of redshift z > 1.5
the lower part or the absorption trough (1.10.9) will be observable on the
Earth’s surface at wavelengths greater than 3,000 Å, in the visible or infrared
part of the spectrum. Here hνR/kB = 118,000 K, which is likely to be larger
than the temperature of the intergalactic medium, in which case the factor
1 − exp

(
− hνR/kBT (tR)

)
in Eq. (1.10.6) can be set equal to unity. The

integral (1.10.7) here has the value 4.5×10−18 cm2, so Eq. (1.10.6) gives the
optical depth just above the lower end of the absorption trough (1.10.9) as

τν0=νR/(1+z)+ =
(

n(tR)

2.4 h × 10−11 cm−3

)(
$2 + $K (1 + z)2

+$M (1 + z)3 + $R(1 + z)4
)−1/2

, (1.10.10)

where again h is Hubble’s constant in units of 100 km s−1 Mpc−1. For
instance, if a fraction f of the baryons of the universe at a time corresponding

2G. Field, Astrophys. J. 129, 525 (1959).
3A. Loeb and M. Zaldarriaga, Phys. Rev. Lett. 92, 211301 (2004) [astro-ph/0312134]; S. Furlanetto,

S. P. Oh, and F. Briggs, Phys. Rep. 433, 181 (2006) [astro-ph/0608032].
4H. J. A. Röttgering et al., in Cosmology, Galaxy Formation, and Astroparticle Physics on the Pathway

to the SKA, eds. H.-R. Klöckner et al. [astro-ph/0610596].
5J. E. Gunn and B. A. Peterson, Astrophys. J. 142, 1633 (1965). Also see I. S. Shklovsky, Astron. Zh.

41, 408 (1964); P. A. G. Scheuer, Nature 207, 963 (1965).
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to z = 5 were in the form of neutral intergalactic hydrogen atoms, and
$Bh2 = 0.02, then the number density of hydrogen atoms at z = 5 would
be 4.8 f × 10−5 cm−3. Taking h = 0.65, $2 = 0.7, $M = 0.3, and
$K = $R = 0, the optical depth (1.10.10) would be 3.8 f × 105. Thus
with these parameters intergalactic neutral hydrogen that makes up a frac-
tion of baryonic matter f * 2.6 × 10−6 would completely block any light
with a frequency above the redshifted Lyman α line from sources beyond
z = 5. Evidently the Gunn–Peterson effect provides a very sensitive probe
of even a small proportion of neutral hydrogen atoms.

For many years the search for the Lyman α absorption trough was
unsuccessful. Quasar spectra show numerous Lyman α absorption lines,
forming what are sometimes called “Lyman α forests,” which are believed
to arise from clouds of neutral hydrogen atoms along the line of sight, but
for quasars out to z ≈ 5 there was no sign of a general suppression of
frequencies above the redshifted Lyman α frequency,6 that would be pro-
duced by even a small fraction f of the baryons in the universe in the form
of neutral intergalactic hydrogen atoms. Then in 2001 the spectrum of the
quasar SDSSp J103027.10+052455.0 with redshift z = 6.28 discovered by
the Sloan Digital Sky Survey was found to show clear signs of a complete
suppression of light in the wavelength range from just below the redshifted
Lyman α wavelength at 8,845 Å down to 8,450 Å, indicating a significant
fraction f of baryons in the form of neutral intergalactic hydrogen atoms at
redshifts greater than 8, 450/1, 215 − 1 = 5.95.7 (See Figure 1.8.) Thus a
redshift of order 6 may mark the end of a “dark age,” in which the absorption
of light by neutral hydrogen atoms made the universe opaque to light with
frequencies above the redshifted Lyman α frequency. Further evidence for
this conclusion is supplied by the spectrum of intense gamma ray sources,
known as gamma ray bursters, at large redshifts.8

This does not mean that all or even most of the hydrogen in the universe
was in the form of neutral atoms at z > 6. As we have seen, even small con-
centrations of neutral hydrogen could have produced an absorption trough
in the spectrum of distant quasars. In fact, we shall see in Chapter 7 that
there is now some evidence from the study of the cosmic microwave back-
ground that hydrogen became mostly ionized at redshifts considerably larger
than z ≈ 6, perhaps around z ≈ 10.

6A. Songalia, E. Hu, L. Cowie, and R. McMahon, Astrophys. J. 525, L5 (1999).
7R. H. Becker et al., Astron. J. 122, 2850 (2001) [astro-ph/0108097]. See S. G. Djorgovski et al.,

Astrophys. J. 560, L5 (2001) [astro-ph/0108069], for a hint of absorption by neutral hydrogen at slightly
smaller redshifts. Also see X. Fan et al., Astrophys. J. 123, 1247 (2002) [astro-ph/0111184].

8T. Totani et al., Publ. Astron. Soc. Pacific 58, 485 (2006) [astro-ph/0512154].
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The clouds of neutral hydrogen at redshifts z < 6 which produce the
Lyman α forest can provide an independent means of measuring $M and
$2. The idea goes back to a 1979 paper of Alcock and Paczyński.9 Suppose
we observe a luminous object at a redshift z that extends a proper distance
D⊥ perpendicular to the line of sight and a proper distance D‖ along the
line of sight. According to the definition of the angular diameter distance,
the object will subtend an angle

5θ = D⊥/dA(z) . (1.10.11)

Also, when we observe light from the whole object at the same time t0, the
difference in the time t1 that the light was emitted from the far and near
points of the object will be 5t1 = D‖. The redshift is a(t0)/a(t1) − 1, so the
absolute value of the difference of redshift from the far and near points of
the object will be

5z = a(t0)
a2(t1)

ȧ(t1)5t1 = (1 + z)H(z)D‖ , (1.10.12)

where H(z) ≡ ȧ(t1)/a(t1) is the Hubble constant at the time of emission.
Taking the ratio, we have

5z
5θ

= (1 + z) H(z) dA(z)
(
D‖/D⊥

)
(1.10.13)

It is then only necessary to use Eq. (1.5.19) to write H(z) as

H(z) =
√(

8πG
3

)(
ρM0(1 + z)3 + ρV + ρR0(1 + z)4

)
− K

a2
0
(1 + z)2

= H0
√

$M (1 + z)3 + $2 + $R(1 + z)4 + $K (1 + z)2 , (1.10.14)

and use Eqs. (1.4.12) and (1.5.45) to write dA(z) as

dA(z) = 1

(1 + z)H0$
1/2
K

× sinh

[

$
1/2
K

∫ 1

1/(1+z)

dx

x2
√

$2 + $K x−2 + $Mx−3 + $Rx−4

]

.

(1.10.15)

9C. Alcock and B. Paczyński, Nature 281, 358 (1979).
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The Hubble constant H0 cancels in the product, and we find a result that
depends only on z, D‖/D⊥, and the $s:

5z
5θ

=
(
D‖/D⊥

)
$

−1/2
K

√
$M (1 + z)3 + $2 + $R(1 + z)4 + $K (1 + z)2

× sinh

[

$
1/2
K

∫ 1

1/(1+z)

dx

x2
√

$2 + $K x−2 + $Mx−3 + $Rx−4

]

.

(1.10.16)

For instance, if the object is known to be a sphere, such as a spherical cluster
of galaxies, then D‖/D⊥ = 1, and we can use a measurement of 5z and 5θ
to set a model-independent constraint on the $s, with no need to worry
about effects of evolution or intergalactic absorption.

Unfortunately, it is not so easy to find spherical objects at large redshift.
But there are various objects whose distribution functions are spherically
symmetric. For instance, the distribution of field galaxies is presumably
spherically symmetric about any point in space, and it has been proposed
that the application of the Alcock–Paczyński method to galaxies might
allow a determination of the cosmological constant.10 This method has
been applied11 instead to the distribution of quasars measured in the 2dF
QSO Redshift Survey.12 Assuming K = 0, this analysis gives $2 =
0.710.09

−0.17.
Recently the Alcock–Paczyński idea has been applied to the distribution

function of Lyman α clouds.13 As already mentioned, these are intergalactic
clouds containing neutral hydrogen atoms, which absorb light from more
distant quasars along the line of sight in 1s → 2p transitions, showing up as
dark lines in the spectrum of the quasar at wavelengths 1215 (1 + z) Å for
clouds at redshift z. Suppose we measure the number density N(z, n̂) of
Lyman α clouds at various redshifts z in various directions n̂. Assuming a
spherically symmetric distribution of Lyman α clouds, the mean value of the
product of the number densities of these clouds at two nearby points with
redshifts z and z +5z (with 5z ( 1) and directions n̂ and n̂+5n̂ separated
by a small angle 5θ will be a function only of z and the proper distance
between the points, and will be analytic in the components of the vector

10W. E. Ballinger, J. A. Peacock, and A. F. Heavens, Mon. Not. Roy. Astron. Soc. 281, 877 (1996).
11P. J. Outram et al., Mon. Not. Roy. Astron. Soc. 348, 745 (2004) [astro-ph/0310873].
12S. M. Croom et al., Mon. Not. Roy. Astron. Soc. 349, 1397 (2004); available at www.2df

quasar.org.
13L. Hui, A. Stebbins, and S. Burles, Astrophys. J. 511, L5 (1999); P. McDonald and J. Miralda-

Escudeé, Astrophys. J. 518, 24 (1999); W-C. Lin and M. L. Norman, talk at the Theoretical Astrophysics
in Southern California meeting, Santa Barbara, October 2002 [astro-ph/0211177]; P. McDonald, Astro-
phys. J. 585, 34 (2003).
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Figure 1.8: Observed intensity versus wavelength for four high-redshift quasars, from
R. H. Becker et al., Astron. J. 122, 2850 (2001) [astro-ph/0108097]. Vertical dashed lines
indicate the redshifted wavelengths for various spectral lines. In the direction of the quasar
with z = 6.28 the intensity drops to zero within experimental accuracy just to the left of the
Lyman α line at 8845 Å, a feature not seen for the quasar with z = 5.99, indicating the onset
of patches of nearly complete ionization at a redshift between 5.99 and 6.28.
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separating these components, so for small separations it can be written

〈N(z, n̂) N(z + 5z, n̂ + 5n̂)〉 ) 〈N2(z, n̂)〉
[

1 −
D2

⊥ + D2
‖

L2(z)

]

, (1.10.17)

where D⊥ and D‖ are given by Eqs. (1.10.11) and (1.10.12), and L is some
correlation length. This can be written in terms of the observed 5z and
5θ , as

〈N(z, n̂) N(z + 5z, n̂ + 5n̂)〉 ) 〈N2(z, n̂)〉
[

1 − 5z2

L2
z (z)

− 5θ2

L2
θ (z)

]

,

(1.10.18)

where Lz and Lθ are correlation lengths for redshift and angle

Lθ (z) = L(z)
dA(z)

, Lz(z) = L(z)(1 + z)H(z) . (1.10.19)

By measuring this product for various redshifts and directions, we can infer
a value for the ratio of correlation lengths, which is independent of L:

Lz(z)
Lθ (z)

= $
−1/2
K

√
$M (1 + z)3 + $2 + $R(1 + z)4 + $K (1 + z)2

× sinh

[

$
1/2
K

∫ 1

1/(1+z)

dx

x2
√

$2 + $K x−2 + $Mx−3 + $Rx−4

]

.

(1.10.20)

This method has been applied14 to five pairs of close quasars, with red-
shifts in the range from 2.5 to 3.5 and separations ranging from 33 to
180 arcseconds. Use of this limited sample sets only weak constraints on
the $s, but it rules out $2 = 0 at the level of 2 standard deviations.

1.11 Number counts

A uniform distribution of sources with a smooth distribution of absolute
luminosity leads in ordinary Euclidean space to a unique distribution in
apparent luminosity. If there are N(L)dL sources per unit volume with
absolute luminosity between L and L + dL, then the number n(> /) of

14A. Lidz, L. Hui, A. P. S. Crotts, and M. Zaldarriaga, astro-ph/0309204 (unpublished).
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sources observed with apparent luminosity greater than / is given by

n(> /) =
∫ ∞

0
N(L) dL

∫ √
L/4π/

0
4πr2 dr

= 1

3
√

4π /3/2

∫ ∞

0
L3/2 N(L) dL (1.11.1)

Thus whatever the distribution in absolute luminosity, we expect that
n(> /) ∝ /−3/2.

This analysis needs several changes in a cosmological setting:

1. Instead of the volume element r2 sin θ dr dθ dφ, the proper volume
element here is (Det g(3))1/2dr dθ dφ, where g(3)

ij ≡ a2g̃ij is the

three-dimensional metric, with non-vanishing components g(3)
rr =

a2/(1 − Kr2), g(3)
θθ = a2r2, g(3)

φφ = a2r2 sin2 θ , so

dV = a3(t) r2 sin θ dr dθ dφ√
1 − Kr2

. (1.11.2)

2. The apparent luminosity is related to the absolute luminosity by

/ = L
4πd2

L(z)
, (1.11.3)

where dL(z) is the luminosity distance (1.4.3).

3. Except in the steady state cosmology, the number density of sources
changes with time, even if only through the cosmic expansion.

4. We can often measure the redshift z as well as the apparent lumino-
sity.

Eq. (1.11.2) gives the number of sources with redshift between z and
z + dz and apparent luminosity between / and / + d/ as

n(z, /) dz d/ = 4πN (t, L)dL
a3(t) r2 dr√

1 − Kr2
, (1.11.4)

where N (t, L) dL is the number of sources per proper volume at time t
with absolute luminosity between L and L + dL; t and z are related by
1 + z = a(t0)/a(t), and t and r are related by Eq. (1.2.2):

∫ t0

t

dt′

a(t′)
=
∫ r

0

dr′
√

1 − Kr′2 . (1.11.5)

83



1 The Expansion of the Universe

We use (1.11.5) to express the differential dr in terms of dt, and then express
dt in terms of dz:

dr√
1 − Kr2

= − dt
a(t)

= dz
H(z) a0

,

where H(z) ≡ ȧ(t)/a(t) and a0 ≡ a(t0). As a reminder, for a universe
containing radiation, matter, and a constant vacuum energy, Eq. (1.5.41)
gives

H(z) = H0
√

$2 + $K (1 + z)2 + $M (1 + z)3 + $R(1 + z)4 .

Canceling dz in Eq. (1.11.4), we then have

n(z, /) d/ =
4 π N

(
t(z), L

)
r2(z)a2

0 dL

(1 + z)3 H(z)
,

We next use Eq. (1.11.3) to write (with z now held fixed):

dL = 4πd2
L(z) d/ ,

so that canceling d/ gives

n(z, /) =
16 π2 N

(
t(z), 4πd2

L(z)/
)

d4
L(z)

H(z) (1 + z)5 , (1.11.6)

in which we have used Eq. (1.4.3) to express a0r in terms of dL.
In particular, for a sample of sources that are not evolving at a time

t(z), the time dependence of the number density N is just proportional to
a−3 ∝ (1 + z)3:

N
(
t(z), L

)
= (1 + z)3N0(L) . (1.11.7)

If all members of this sample are bright enough to be visible at a redshift
z, then the total number of sources observed with redshifts between z and
z + dz will be n(z) dz, where

n(z) ≡
∫ ∞

0
n(z, /) d/ = 4 π N0 d2

L(z)
H(z) (1 + z)2 (1.11.8)

where dL(z) is given by Eq. (1.5.45), and

N0 ≡
∫ ∞

0
N0(L) dL . (1.11.9)
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In principle, even without knowing N0 or H0, if n(z) were accurately
measured we could compare the observed shape of this function with
Eq. (1.11.8) to find the $s.

There are several obvious dangers in using Eq. (1.11.8) in this way. For
one thing, it is necessary to avoid missing sources that have high redshift and
hence low apparent luminosity. Also, evolution in the number of sources
can introduce an additional dependence on the light emission time t, and
hence on z. In 1986 Loh and Spillar1 carried out a survey of galaxy numbers
as a function of redshift. The redshifts were measured photometrically (i. e.,
from their luminosities at various colors rather than by the shift of specific
spectral lines), which generally gives less reliable results. Comparing their
results with Eq. (1.11.8) in the case $K = $R = 0 (so that $2 + $M = 1),
they found that $2/$M = 0.1−0.4

+0.2. By now it has been realized that the
evolution of sources cannot be neglected at redshifts large enough for n(z)
to be sensitive to cosmological parameters, and this result for $2/$M has
been abandoned.2

Useful results can be obtained when evolution is taken into account.
One group3 used number counts of very faint galaxies4 as a function of
apparent luminosity to estimate the free parameters in a model of galac-
tic luminosity evolution (assuming the number of galaxies per coordinate
volume to be constant), and then used this model together with a redshift
survey5 extending to z ) 0.47 to conclude that $M is small and that $2 is in
the range of 0.5 to 1. More recently, several surveys6 of numbers of galaxies
at different redshifts that yield important results about galactic evolution,
and with the use of dynamical models they can yield information about $M
and $2.7 But it appears that number counts of galaxies will be more useful
in learning about galactic evolution than in making precise determinations
of cosmological parameters. In a dramatic application of this approach,8 a

1E. D. Loh, Phys. Rev. Lett. 57, 2865 (1986); E. D. Loh and E. J. Spillar, Astrophys. J. 284, 439
(1986).

2For a discussion of future prospects for measuring $2 in redshift surveys, see W. E. Ballinger, J. A.
Peacock, and A. F. Heavens, Mon. Not. Roy. Astron. Soc. 282, 877 (1996).

3M. Fukugita, F. Takahara, K. Yamashita, and Y. Yoshii, Astrophys. J. 361, L1 (1990).
4J. A. Tyson, Astron. J. 96, 1 (1988).
5T. J. Broadhurst, R. S. Ellis, and T. Shanks, Mon. Not. Roy. Astron. Soc. 235, 827 (1988).
6G. Efstathiou, R. S. Ellis, B. A. Peterson, Mon. Not. Roy. Astron. Soc. 232, 431 (1988); J.

Loveday, B. A. Peterson, G. Efstathiou, and S. J. Maddox, Astrophys. J. 390, 338 (1992); L. da Costa,
in Proceedings of the Conference on Evolution of Large Scale Structure, Garching, August 1998 [astro-
ph/9812258]; S. Borgani, P. Rosati, P. Tozzi, and C. Norman, Astrophys. J. 517, 40 (1999) [astro-
ph/9901017]; S. J. Oliver, in Highlights of the ISO Mission: Special Scientific Session of the IAU General
Assembly. eds. D. Lemke et al. (Kluwer) [astro-ph/9901272]; M. Colless, in Publ. Astron. Soc.
Australia [astro-ph/9911326]; S. Rawlings, astro-ph/0008067.

7W. J. Percival et al., Mon. Not. Roy. Astron. Soc. 327, 1297 (2001) [astro-ph/0105252]; S. Borgnani
et al., Astrophys. J. 561, 13 (2001) [astro-ph/0106428].

8R. J. Bouwens and G. D. Illingworth, Nature 443, 189 (2006).
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search at the Lick Observatory for galaxies with redshifts in the range z ≈
7 to 8 found at most just one galaxy, while it is estimated that if Eq. (1.11.7)
were valid then, on the basis of the number of galaxies observed (with the
same conservative selection criteria) at redshifts z ≈ 6, ten galaxies should
have been found with z ≈ 7 to 8. The implication is that there must have
been a spurt in the formation of luminous galaxies at a redshift in the range
6 to 7. This fits in well with the conclusion discussed in Section 1.10, that
the ionization of intergalactic hydrogen became essentially complete at a
redshift of order 6, presumably due to ultraviolet radiation from massive
stars formed around that time.

* * *

Historically the first important application of number counts was in radio
source surveys, where redshifts are not generally available. These surveys
take place at a fixed receiving frequency ν, corresponding to a variable
emitted frequency ν(1+z), so the source counts are affected by the frequency
dependence of the distribution of intrinsic source powers.

If a source with a redshift z emits a power9 P(ν)dν between frequencies
ν and ν + dν, then the power received at the origin per unit antenna area
between frequencies ν and ν + dν is

S(ν)dν =
P
(
ν(1 + z)

)
dν (1 + z)

4πd2
L(z)

. (1.11.10)

Many radio sources have a “straight” spectrum, i.e.

P(ν) ∝ ν−α (1.11.11)

with the spectral index α typically about 0.7 to 0.8. This allows a great
simplification in Eq. (1.11.10):

S(ν)dν = P(ν) dν

4π d2
L(z)(1 + z)α−1

. (1.11.12)

From now on we will take the observed frequency ν as fixed, and write
S(ν) = S and P(ν) = P. Canceling dν, Eq. (1.11.12) then reads

S = P
4π d2

L(z) (1 + z)α−1
. (1.11.13)

9In G&C, P was defined as the power emitted per solid angle, while here it is the power emitted in
all directions.
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If at time t there are N(P, t) dP sources per proper volume with power
between P and P + dP, then the number of sources observed with power
per antenna area greater than S is

n(> S) =
∫ ∞

0
dP
∫

N(P, t)
4πr2a3(t) dr√

1 − Kr2
, (1.11.14)

with the upper limit on the integral over r set by the condition that

a2
0 r2 (1 + z)1+α <

P
4π S

. (1.11.15)

Of course, r, z, and t are related by the familiar formulas
∫ r

0

dr′
√

1 − Kr′2
=
∫ t0

t

dt′

a(t′)
, 1 + z = a(t0)/a(t) . (1.11.16)

This becomes much simpler if we assume that the time-dependence of
the source number density can be parameterized as

N(P, t) = N(P)

(
a(t)
a0

)β

. (1.11.17)

For instance, if sources do not evolve and are neither created nor destroyed,
then β = −3, while in the steady-state model β = 0. Eq. (1.11.14) now
reads

n(> S) = a3
0

∫ ∞

0
N(P) dP

∫
4πr2(1 + z)−β−3 dr√

1 − Kr2
, (1.11.18)

with the same P/S-dependent upper limit (1.11.15) on r.
The coordinate r is given in terms of z by the power series (1.4.8)

a0H0 r = z − 1
2(1 + q0)z2 + . . . . (1.11.19)

We can then convert the integral over r to one over z, with

a0H0 dr = dz [1 − (1 + q0)z + . . . ] , (1.11.20)

and the upper limit on z is given by

z2 [1 + z(α − q0) + . . . ] <
PH2

0
4π S

,

or, in other words,

z <

√
PH2

0
4π S



1 − 1
2
(α − q0)

√
PH2

0
4π S

+ . . .



 . (1.11.21)
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Then Eq. (1.11.18) becomes

n(> S) = 4π

H3
0

∫ ∞

0
N(P) dP

×
[

1
3

(
PH2

0
4π S

)3/2


1 − 3
2
(α − q0)

(
PH2

0
4π S

)1/2

+ . . .





−1
4

(
PH2

0
4π S

)2

(β + 5 + 2q0) + . . .

]
,

or, collecting terms,

n(> S) = 1

3
√

4π S3/2

∫ ∞

0
P3/2N(P) dP

×
[
1 − 3

4

(
5 + β + 2α

)(PH2
0

4π S

)1/2

+ . . .

]
. (1.11.22)

We see that n(> S) has a term with the familiar S−3/2 dependence,
plus a correction proportional to S−2 with a coefficient proportional to
5 + β + 2α. It is noteworthy that this coefficient is independent of q0 or
K . For the standard cosmology with no evolution of sources β = −3, and
we have mentioned that α ≈ 0.75, so 5 + β + 2α = 3.5. Although the
precise value is uncertain, this coefficient is definitely positive, which means
that for faint sources n(> S) should fall off more slowly than S−3/2. This
is definitely not what is observed.10 It has been known for many years that
for S > 5 × 10−26Wm−2/Hz, the source count function N(> S) falls off
more rapidly than S−3/2. The conclusion is inevitable that the number of
radio sources per co-moving volume is decreasing, with β < −6.5. Radio
source counts are useful in studying this evolution, but not for measuring
cosmological parameters.

On the other hand, for the steady state cosmology (discussed in
Section 1.5) we have β = 0, so the coefficient 5 + β + 2α ≈ 6.5, and
the predicted number count N(> S) decreases even more slowly with S,
making the disagreement with experiment even worse than for the standard
cosmology with no evolution of sources. Here it is not possible to save
the situation by appealing to evolution, because the essence of the steady
state model is that on the average there is no evolution. This observation

10For a list of major radio source surveys, and references to the original literature, see G&C, Sec. 14.8.
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discredited the steady state model even before the discovery of the cosmic
microwave radiation background.

1.12 Quintessence

So far, we have taken into account only non-relativistic matter, radiation,
and a constant vacuum energy in calculating the rate of expansion of the
universe. It appears that the vacuum energy is not only much smaller than
would be expected from order-of-magnitude estimates based on the quan-
tum theory of fields, but is only a few times greater than the present matter
density. This has led to a widespread speculation that the vacuum energy
is not in fact constant; it may now be small because the universe is old. A
time-varying vacuum energy is sometimes called quintessence.1

The natural way to introduce a varying vacuum energy is to assume the
existence of one or more scalar fields, on which the vacuum energy depends,
and whose cosmic expectation values change with time. Scalar fields of this
sort play a crucial part in the modern theory of weak and electromagnetic
interactions, and are also introduced in theories of inflation, as discussed in
Chapters 4 and 10.

For simplicity, let us consider a single real scalar field ϕ(x, t). We will
be concerned here with fields that are vary little on elementary particle
spacetime scales, so the action of these field is taken to have a minimum
number of spacetime derivatives:

Iϕ = −
∫

d4x
√

−Detg
[

1
2

gλκ ∂ϕ

∂xλ

∂ϕ

∂xκ
+ V (ϕ)

]
, (1.12.1)

with an unspecified potential function V (ϕ). We are interested here in the
case of a Robertson–Walker metric, and a scalar field that depends only on
time, not position. In this case the formulas (B.66) and (B.67) for the scalar
field energy density and pressure become

ρϕ = 1
2
ϕ̇2 + V (ϕ) (1.12.2)

pϕ = 1
2
ϕ̇2 − V (ϕ) . (1.12.3)

It follows immediately that (1 + w)ρϕ ≥ 0, where w ≡ pϕ/ρϕ , so as long as
ρϕ ≥ 0 this model has w ≥ −1, and the phantom energy disaster discussed
in Section 1.6 does not occur.

1For reviews with references to the original literature, see B. Ratra and P. J. E. Peebles, Rev. Mod.
Phys. 75, 559 (2003); E. V. Linder, 0704.2064.
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The equation (1.1.32) of energy conservation here reads

ϕ̈ + 3H ϕ̇ + V ′(ϕ) = 0 , (1.12.4)

(where as usual H(t) ≡ ȧ(t)/a(t)), which is the same as the field equation
derived from the action (1.12.1). This is the equation of a particle of unit
mass with one-dimensional coordinate ϕ, moving in a potential V (ϕ) with
a frictional force −3H ϕ̇. The field will run toward lower values of V (ϕ),
finally coming to rest if it can reach any field value where V (ϕ) is at least a
local minimum. Unfortunately, we do not know any reason why the value
of V (ϕ) where it is stationary should be small.

Nevertheless, there are potentials that have some attractive properties
once we adjust an additive constant in the potential to make them vanish
at their stationary point. The original and simplest example is provided by
a potential2

V (ϕ) = M4+αϕ−α , (1.12.5)

where α is positive but otherwise arbitrary, and M is a constant with the
units of mass (taking h̄ = c = 1), which gives V (ϕ) the dimensions of
an energy density. There is no special reason to believe that the potential
has this form, and in particular there is no known reason for excluding
an additive constant (including effects of quantum fluctuations in all other
fields), which would give the potential a non-zero value at its stationary
point, at ϕ = ∞. Nevertheless, it may be illuminating to work out the
consequences of this one specific model of quintessence.

For any potential it is necessary to assume that at sufficiently early times
ρϕ was much less than the energy density ρR of radiation because, as we
will see in Section 3.2, any appreciable increase in the energy density at the
time of cosmological nucleosynthesis would lead to a helium abundance
exceeding what is observed. At these early times the energy density of
radiation (including particles like neutrinos with masses less than kBT ) is
also greater than that of non-relativistic matter, so Eq. (1.5.34) gives a(t) ∝
t1/2, and therefore H = 1/2t. The field equation (1.12.4) with potential
(1.12.5) then reads

ϕ̈ + 3
2t

ϕ̇ − αM4+αϕ−α−1 = 0 . (1.12.6)

2P. J. E. Peebles and B. Ratra, Astrophys. J. 325, L17 (1988); B. Ratra and P. J. E. Peebles, Phys. Rev.
D 37, 3406 (1988); C. Wetterich, Nucl. Phys. B302, 668 (1988). Quintessence models with this potential
were intensively studied by I. Zlatev, L. Wang, and P. J. Steinhardt, Phys. Rev. Lett. 82, 896 (1999); P. J.
Steinhardt, L. Wang, and I. Zlatev, Phys. Rev. D 59, 123504 (1999).
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This has a solution

ϕ =
(

α(2 + α)2M4+αt2

6 + α

) 1
2+α

. (1.12.7)

Both ϕ̇2 and V (ϕ) then go as t−2α/(2+α), and therefore at very early times ρϕ

must have been less than ρR, which goes as t−2. This solution is not unique,
but it is an attractor, in the sense that any other solution that comes close to
it will approach it as t increases. (To see this, note that a small perturbation
δϕ of the solution (1.12.7) will satisfy

0 = δϕ̈+ 3
2t

δϕ̇+α(1+α)M4+αϕ−α−2δϕ = δϕ̈+ 3
2t

δϕ̇+ (6 + α)(1 + α)

(2 + α)2t2 δϕ .

This has two independent solutions of the form

δϕ ∝ tγ , γ = −1
4

±
√

1
16

− (6 + α)(1 + α)

(2 + α)2 .

The square root is imaginary for α > 0, so both solutions for δϕ decay as
t−1/4 for increasing t, while ϕ itself is increasing.) For this reason, the
particular solution of Eq. (1.12.6) that goes as Eq. (1.12.7) for t → 0
is known as the tracker solution. There is no particular physical reason
to require that the initial conditions for the scalar field are such that the
scalar field has approached the tracker solution by the present moment
(the set of such initial conditions is called the “basin of attraction”), but
since this requirement would make the present evolution of the scalar field
insensitive to the initial conditions, it has the practical advantage of pro-
viding a model of quintessence with just two free parameters: M
and α.

Nothing much changes when the radiation energy density drops below
the energy density of non-relativistic matter. The tracker solution for the
scalar field continues to grow as t2/(2+α) (though with a different constant
factor), so ϕ̇2 and V (ϕ) continue to fall as t−2α/(2+α). But ρM and ρR are
decreasing faster, like t−2 and t−8/3, respectively, so eventually ρM and ρR
will fall below ρϕ . It is interesting that the value of ϕ where ρϕ becomes equal
to ρM is independent of the unknown constant M . When the expansion is
dominated by matter ρM is given by Eq. (1.5.31) as 1/6πGt2, while (1.1.2),
(1.12.5) and (1.12.7) give ρϕ ≈ M2(4+α)/(2+α)t−2α/(2+α), so the time tc at
which ρϕ = ρM is of order

tc ≈ M−(4+α)/2G−(2+α)/4 . (1.12.8)
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Using this in Eq. (1.12.7) then gives

ϕ(tc) ≈ G−1/2 . (1.12.9)

Once ρM falls well below ρϕ , the equation of motion of ϕ(t) becomes

ϕ̈ +
√

24πGρϕ ϕ̇ − αM4+αϕ−α−1 = 0 , (1.12.10)

with ρϕ given by Eq. (1.12.2). The tracker solution in this era has a
complicated time dependence, but it becomes simple again at sufficiently
late times, times that may be later than the present. We can guess that the
damping term proportional to ϕ̇ in this equation will eventually slow the
growth of ϕ, so that ϕ̇2 will become less than V (ϕ), and also guess that
the inertial term proportional to ϕ̈ will become negligible compared to the
damping and potential terms. (Similar “slow roll” conditions will play an
important role in the theory of inflation, described in Chapters 4 and 10.)
Equation (1.12.10) then becomes

√
24πGM4+αϕ−α ϕ̇ = αM4+αϕ−α−1 ,

and so

ϕ̇ = αM2+α/2ϕ−α/2−1
√

24πG
. (1.12.11)

The solution is

ϕ = M
(

α(2 + α/2) t√
24πG

)1/(2+α/2)

. (1.12.12)

(In general this involves a redefinition of the zero of time, to avoid a
possible integration constant that might be added to t.) We can now
check the approximations used in deriving Eq. (1.12.11), of which this is the
solution. From Eq. (1.12.12) we see that ϕ̇2 ∝ t−(2+α)/(2+α/2) while V (ϕ) ∝
t−α/(2+α/2), so the kinetic energy term in Eq. (1.12.2) does become small
compared with the potential term at late times. Also, ϕ̈ ∝ t−(3+α)/(2+α/2)

while V ′(ϕ) ∝ t−(1+α)/(2+α/2), so the inertial term in Eq. (1.12.10) does
become small compared with the potential term at late times. Eq. (1.12.12) is
therefore a valid asymptotic solution of Eq. (1.12.10) for t → ∞. Numerical
calculations show that it is not only a solution for t → ∞; it is the asymptotic
form approached for t → ∞ by the tracker solution.

With ρϕ ∝ t−α/(2+α/2) dominating the expansion rate at late times, we
have ȧ/a ∝ t−α/2(2+α/2), so

ln a ∝ t2/(2+α/2) . (1.12.13)
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This is a similar but less rapid growth of a than would be produced by
a cosmological constant, for which ln a ∝ t. The difference between the
deceleration parameter q0 and the value −1 for an expansion dominated
by a cosmological constant vanishes as t−(2+α)/(2+α/2). Note that the radi-
ation and matter densities decrease as 1/a4 and 1/a3 respectively, and the
curvature decreases as 1/a2, all of which have a much faster rate of decrease
with time than the power-law decrease of ρϕ , so the expansion rate is indeed
dominated by ρϕ at late times, justifying the derivation of Eq. (1.12.10).

We have found that, at least for a range of initial conditions, the potential
(1.12.5) leads to an expansion that is dominated by radiation and then matter
at early times, but becomes dominated by the scalar field energy at late times.
But to get agreement with observation it is necessary arbitrarily to exclude
a large constant term that might be added to (1.12.5), and also to adjust
the value of M to make the critical time (1.12.8) at which the values of
ρϕ and ρM cross be close to the present moment t0 ≈ 1/H0. Specifically,
Eq. (1.12.8) shows that we need the constant factor in V (ϕ) to take the
value

M4+α ≈ G−1−α/2H2
0 . (1.12.14)

There is no known reason why this should be the case.
Several groups of observers are now planning programs to discover

whether the vacuum energy density is constant, as in the case of a cos-
mological constant, or changing with time. In such programs, one would
compare the observed luminosity distance (or angular diameter distance)
with a formula obtained by replacing the term $2 in the argument of the
square root in Eq. (1.5.45) with a time-varying dark energy term. These
observations will not actually measure the value w0 of w at the present time,
much less the present time derivatives ẇ0, ẅ0, etc., because for that pur-
pose it would be necessary to have extremely precise measurements of the
luminosity distance or angular-diameter distance for small redshifts. Ins-
tead, measurements will be made with only moderate precision, but over a
fairly large range of redshifts. To compare such measurements with theory,
one needs a model of the time-variation of the dark energy. One model is
simply to assume that w is constant, or perhaps varying linearly with time
or redshift, but there is no physical model that entails such behavior.3 It
seems preferable to compare observation with the model of a scalar field
rolling down a potential, which (whatever reservations may have about its
naturalness) at least provides a physically possible model of varying dark

3Other assumptions about the form of w as a function of redshift that can mimic scalar field models
have been considered by J. Weller and A. Albrecht, Phys. Rev. D 65, 103512 (2002); E. V. Linder, Phys.
Rev. Lett. 90, 091301 (2003) [astro-ph/0208512].
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energy.4 Because these observations are difficult, it pays to adopt scalar field
models with just two parameters, which can if we like be expressed in terms
of $2 = 1 − $M (assuming flatness and neglecting the radiation energy
density) and w0.

One possibility is to suppose that over the latest e-folding of cosmic
expansion the scalar field ϕ has taken values for which V (ϕ) is only slowly
varying. If V (ϕ) were constant, we would have a constant vacuum energy,
with w = −1, and the only parameter to measure would be $V . For a
two-parameter fit, we can take V (ϕ) to vary linearly with ϕ:

V (ϕ) = V0 +
(
ϕ − ϕ0

)
V ′

0 . (1.12.15)

This is valid if the fractional change in V ′(ϕ) in a time interval of order
1/H0 is small; that is, if |V ′′

0 ϕ̇0| ( H0|V ′
0|.

The field equation (1.12.4) for ϕ(t) can be put in a convenient dimension-
less form by replacing the dependent variable t and independent variable ϕ
with dimensionless variables x and ω, defined by

x ≡ H0
√

$Mt , ω ≡ 8πGV (ϕ)

3$MH2
0

. (1.12.16)

Because V is linear in ϕ, we have

ϕ̇ = 3$MH2
0 ω̇

8πGV ′
0

= 3$
3/2
M H3

0
8πGV ′

0

dω

dx
.

Then Eq. (1.12.4) becomes

d2ω

dx2 + 3H
dω

dx
+ λ = 0 , (1.12.17)

where λ is the dimensionless parameter

λ ≡ 8πGV ′
0

2

3H4
0 $2

M
, (1.12.18)

and H is a function of ω and dω/dx:

H ≡ H
H0

√
$M

=
√

(1 + z)3 + ω + 1
2λ

(
dω

dx

)2
. (1.12.19)

4This approach is followed by D. Huterer and H. V. Peiris, Phys. Rev. D 75, 083502 (2007) [astro-
ph/0610427]; R. Crittenden, E. Majerotto, and F. Piazza, astro-ph/0702003.
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We will also need the differential equation for the redshift:

dz
dx

= −H(1 + z) . (1.12.20)

In general, even if we wrote all derivatives with respect to x in terms of
derivatives with respect to z, to solve these equations we would need initial
conditions forω and dω/dz at some initial z, which withλwould give a three-
parameter set of solutions. However, assuming that for large redshift the
energy density is dominated by matter rather than vacuum energy (which as
we shall see is the case), the derivative dω/dx sufficiently late in the matter-
dominated era becomes quite insensitive to initial conditions.5 For z * 1,
Eq. (1.12.19) gives

H → (1 + z)3/2 , (1.12.21)

and (1.12.17) and (1.12.20) then have the solution

1 + z →
(

3x
2

)−2/3
,

dω

dx
→ −λx

3
. (1.12.22)

(An integration constant in the solution for z has been absorbed into the
definition of x, setting the zero of time. An integration constant in the
solution for dω/dx has been dropped, because it gives a term in dω/dx that
dies away with increasing time as x−2 ∝ t−2.) The free parameters in our
solution are then λ, together with the value of ω at some arbitrary initial
value x1 of x, taken sufficiently small so that at x1 the energy density is
dominated by matter rather than vacuum energy. (Note that the constant
V0 appears nowhere in these equations; it contributes a term to ω(x1), but
there is no need to isolate this term.) One must adopt various trial values
of λ and ω(x1); use Eq. (1.12.22) to calculate 1 + z and dω/dx at x = x1;
with these initial conditions, integrate the differential equations (1.12.17)
and (1.12.20) numerically from x1 to a value x0 where z = 0; and then if we
like calculate the values of $V = 1 − $M and the present value w0 of the
ratio pϕ/ρϕ for this particular solution,6 using

$2

$M
= ω(x0) + 1

2λ

(
dω

dx

)2

x=x0

, w0 =
(dω/dx)2

x=x0
− 2λω(x0)

(dω/dx)2
x=x0

+ 2λω(x0)
.

(1.12.23)

5R. Cahn, private communication. Cahn has also shown that the approximation of neglecting the
second derivative term in the field equation does not work well in this context.

6As already mentioned, with models of this sort one can only have w0 > −1. To compare the case
w0 < −1 with observation, it is necessary to adopt a model with the opposite sign for the derivative
term in the action (1.12.1). The analysis given here can then be applied, with only obvious sign changes
here and there.
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The ratio of the dark energy at a given time to its value at the
present is

ξ ≡ ρV (t)
ρV (t0)

= (dω(x)/dx)2 + 2λ ω(x)

(dω/dx)2
x=x0

+ 2 λω(x0)
(1.12.24)

For instance, if we take $2 = 1 − $M = 0.76 and w0 = −0.777, the ratio
ξ of the dark energy density to its value at present rises to 1.273 at z = 1
and to 1.340 at infinite redshift.7 The leveling off of ξ(z) for large z occurs
because the growth of the matter density for increasing redshift makes the
expansion rate grow, so that the friction term 3H ϕ̇ in Eq. (1.12.4) freezes
the value of the scalar field at early times.

It should not be thought that the leveling off of the dark energy for large
z for the potential (1.12.15) means that in analyzing dark energy obser-
vations with this potential one must give up the idea motivating theories
of quintessence, that the vacuum energy is now small because the uni-
verse is old. In fact, for the potential V (ϕ) ∝ ϕ−α, for typical initial
conditions the quintessence energy drops at first precipitously, and then
levels off while the scalar field rolls slowly down the potential until the
field approaches the tracker solution, with the tracker solution not reached
by the present time if α is small.8 The condition |V ′′

0 ϕ̇0| ( H0|V ′
0| for

treating this potential as linear over a time of order 1/H0 is satisfied if
α(1 + α)ϕ−2

0 ( 8πG, which in light of Eq. (1.12.9) is likely to be satisfied if
α < 1.

Another possible two-parameter model is provided by the same poten-
tial, V (ϕ) ∝ ϕ−α, but now under the assumption that the tracker solution
is reached by some early time (say, for z ≤ 10) in the matter-dominated era.
With this assumption the observable history of dark energy is insensitive
to initial conditions, so the model has just two parameters: M and α. The
equations of this model can be put in dimensionless form by writing the
coupling constant of this potential in terms of a dimensionless parameter
β as

M4+α ≡ β $M H2
0 (8πG)−1−α/2 (1.12.25)

and replacing the dependent variable t and independent variable ϕ with
dimensionless variables x and f , defined by

t ≡ x/H0
√

$M , ϕ(t) ≡ f (x)/
√

8πG . (1.12.26)

7Numerical results for various values of redshift are given in Table 1.1. These results for the linear
potential were calculated by R. Cahn, private communication.

8Steinhardt, Wang, and Zlatev, ref. 2.
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The field equation (1.12.4) (with no slow roll approximation) in the era
dominated by matter and vacuum energy then takes the form

d2f
dx2 + 3H

df
dx

− αβf −α−1 = 0 , (1.12.27)

where

H ≡ H/
√

$MH0 =
√

1
6

(
df
dx

)2
+ β

3
f −α + (1 + z)3 (1.12.28)

in which we also need
dz
dx

= −H(1 + z) . (1.12.29)

Because the large z solution (1.12.7) is an attractor, the initial conditions
introduce no new free parameters; in terms of these dimensionless variables,
the initial conditions are that, for x → 0,

f →
[

αβ(α + 2)2x2

2(α + 4)

]1/(α+2)

, 1 + z →
(

2
3x

)2/3
. (1.12.30)

We need to integrate the equations (1.12.27) and (1.12.29) from some small
x (say, x = 0.01) to a value x0 at which z = 0, with the initial conditions
(1.12.30), and then evaluate $M = 1−$2 from the condition that H(x0) =
1/

√
$M . We can also evaluate the present value w0 of w ≡ pϕ/ρϕ from the

formula

w0 = f ′2(x0)f (x0)
α/2β − 1

f ′2(x0)f (x0)α/2β + 1
, (1.12.31)

and then replace the parameters α and β with $M and w0. For instance,
if we arbitrarily take α = 1, then to get the realistic value $M = 0.24 we
must take β = 9.93, in which case w0 = −0.777. Of course, we can get any
other values of w0 greater than −1 by choosing different values of α and
re-adjusting β to give the same value of $M (though for small α, the
range of initial conditions that allow the tracker solution to be reached
well before the present is relatively small.) For instance, for α = 1/2 we
must take β = 7.82 to have $M = 0.24, and in this case we calculate that
w0 = −0.87. (For the case w < −1, see footnote 6.) The ratios of dark
energy to its value at present calculated in this way for $M = 0.24 and
w0 = −0.777 are shown in Table 1.1, along with the values calculated with
the same choice of $M and w0 for both the case of constant w and for
the linear potential (1.12.15). The tracker and linear models evidently rep-
resent opposite extreme assumptions about the time-dependence of dark
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Table 1.1: Ratio of dark energy to its present value, for the tracker solution with the potential
(1.12.5), and for the linear potential (1.12.15), calculated for $M = 1 − $2 = 0.24 and
w0 = −0.777, compared with the results for a constant w = −0.777.

z tracker linear constant w

0 1 1 1

0.1 1.067 1.062 1.066

0.5 1.347 1.200 1.312

1 1.712 1.273 1.590

2 2.469 1.318 2.086

3 3.224 1.331 2.528

* 1 * 1 1.340 * 1

energy, but both are better motivated physically than the assumption of a
constant w.

1.13 Horizons

Modern cosmological theories can exhibit horizons of two different types,
which limit the distances at which past events can be observed or at which it
will ever be possible to observe future events. These are called by Rindler1

particle horizons and event horizons, respectively.
According to Eq. (1.2.2), if the big bang started at a time t = 0, then

the greatest value rmax(t) of the Robertson–Walker radial coordinate from
which an observer at time t will be able to receive signals traveling at the
speed of light is given by the condition

∫ t

0

dt′

a(t′)
=
∫ rmax(t)

0

dr√
1 − Kr2

(1.13.1)

Thus there is a particle horizon unless the integral
∫

dt/a(t) does not con-
verge at t = 0. It does converge in conventional cosmological theories;
whatever the contribution of matter or vacuum energy at the present, it is
likely that the energy density will be dominated by radiation at early times,
in which case a(t) ∝ t1/2, and the integral converges. The proper distance

1W. Rindler, Mon. Not. Roy. Astron. Soc. 116, 663 (1956).
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of the horizon is given by Eq. (1.1.15) and (1.13.1) as

dmax(t) = a(t)
∫ rmax(t)

0

dr√
1 − Kr2

= a(t)
∫ t

0

dt′

a(t′)
. (1.13.2)

For instance, during the radiation-dominated era a(t) ∝ t1/2, so dmax(t) =
2t = 1/H . Well into the matter-dominated era most of the integral over
time in Eq. (1.13.1) comes from a time when a ∝ t2/3, so that dmax(t) )
3t = 2/H . At present most of the integral over t′ comes from a period when
the expansion is dominated by matter and the vacuum energy, and perhaps
curvature as well. According to Eq. (1.5.41), the particle horizon distance
at present is

dmax(t0) = 1
H0

∫ 1

0

dx

x2
√

$2 + $K x−2 + $Mx−3
. (1.13.3)

We will see in Chapter 4 that there may have been a time before the radiation-
dominated era in which there was nothing in the universe but vacuum energy,
in which case the particle horizon distance would actually be infinite. But as
far as telescopic observations are concerned, Eq. (1.13.3) gives the proper
distance beyond which we cannot now see.

Just as there are past events that we cannot now see, there may be events
that we never will see. Again returning to Eq. (1.2.2), if the universe re-coll-
apses at a time T , then the greatest value rMAX of r from which an observer
will be able to receive signals traveling at the speed of light emitted at any
time later than t is given by the condition

∫ T

t

dt′

a(t′)
=
∫ rMAX(t)

0

dr√
1 − Kr2

(1.13.4)

Even if the future is infinite, if the integral
∫

dt/a(t) converges at t = ∞
there will be an event horizon given by

∫ ∞

t

dt′

a(t′)
=
∫ rMAX(t)

0

dr√
1 − Kr2

(1.13.5)

Since co-moving sources are labeled with a fixed value of r, the condition
r < rMAX limits the events occurring at time t that we can ever observe. In
the case where the universe does not recollapse, the proper distance to the
event horizon is given by

dMAX(t) = a(t)
∫ rMAX(t)

0

dr√
1 − Kr2

= a(t)
∫ ∞

t

dt′

a(t′)
. (1.13.6)
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In the absence of a cosmological constant, a(t) grows like t2/3, and the
integral diverges, so that there is no event horizon. But with a cosmological
constant a(t) will eventually grow as exp(Ht) with H = H0$

1/2
2 constant,

and there really is an event horizon, which approaches the value dMAX(∞) =
1/H . As time passes all sources of light outside our gravitationally bound
Local Group will move beyond this distance, and become unobservable. The
same is true for the quintessence theory described in the previous section.
In that case a(t) eventually grows as exp(constant × t2/(2+α/2)), so for any
α ≥ 0 the integral (1.13.6) again converges.

If a source is at a radial coordinate r in a Robertson–Walker coordinate
system based on us, then we are at a radial coordinate r in a Robertson–
Walker coordinate system based on the source. Hence Eq. (1.13.4) or
(1.13.5) also gives the greatest radial coordinate to which, starting at time
t, we will ever be able to travel.
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